Статті в журналах з теми "U-Pb detrital zircon geochronology"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: U-Pb detrital zircon geochronology.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "U-Pb detrital zircon geochronology".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Jackson, William T., Matthew P. McKay, Donald A. Beebe, Carolyn Mullins, Adelie Ionescu, Barry Shaulis, and David L. Barbeau. "Late Cretaceous sediment provenance in the eastern Gulf Coastal Plain (U.S.A.) based on detrital-zircon U-Pb ages and Th/U values." Journal of Sedimentary Research 91, no. 10 (October 8, 2021): 1025–39. http://dx.doi.org/10.2110/jsr.2020.177.

Повний текст джерела
Анотація:
ABSTRACT Detrital-zircon U-Pb geochronology documents a regional- to continental-scale drainage reorganization along the eastern Gulf Coastal Plain (USA) from the Late Cretaceous (Cenomanian) to the Paleocene–Eocene. We present detrital-zircon U-Pb ages and Th/U values from the Maastrichtian Ripley Formation to determine the sedimentary provenance and to provide spatiotemporal resolution of drainage reorganization. The Ripley Formation contains a 12.7% overall average abundance of detrital zircons with low (< 0.1) Th/U values relative to the underlying Cenomanian Tuscaloosa Group (3.6%), the overlying Paleocene–Eocene Wilcox Group (2.8%), an Appalachian foreland composite (2.1%), and the laterally equivalent McNairy Sandstone in the northern Mississippi Embayment (3.8%). Multidimensional scaling of detrital-zircon U-Pb spectra shows that the Ripley Formation is dissimilar from underlying and overlying Gulf Coastal Plain units, the McNairy Sandstone, and an Appalachian foreland composite sample because of differences in proportions of Appalachian (490–270 Ma) and Grenville (1250–900 Ma) zircons. We interpret the southern Appalachian Piedmont province as the principal sediment source region for the Ripley Formation to account for the elevated abundance of grains with low (< 0.1) Th/U values and unique detrital-zircon U-Pb age spectra. Results suggest a regional-scale (105 km2) drainage network, which delivered sediment to the Maastrichtian coast followed by northwestward littoral transport and eventual mixing with Appalachian foreland-derived sediment in the northern Mississippi Embayment. This study further brackets drainage reorganization along the eastern Gulf Coastal Plain and demonstrates how simple chemical–age relationships, such as zircon Th/U values coupled with U-Pb ages, can be used to evaluate sediment provenance.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Gehrels, George. "Detrital Zircon U-Pb Geochronology Applied to Tectonics." Annual Review of Earth and Planetary Sciences 42, no. 1 (May 30, 2014): 127–49. http://dx.doi.org/10.1146/annurev-earth-050212-124012.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

McGuire, J. D., David Malone, John Craddock, and Shawn J. Malone. "Detrital Zircon U-Pb geochronology of the Ordovician Lander Sandstone, Bighorn." Mountain Geologist 56, no. 3 (August 1, 2019): 231–46. http://dx.doi.org/10.31582/rmag.mg.56.2.231.

Повний текст джерела
Анотація:
The Ordovician Lander Sandstone, which occurs unconformably above the Cambrian Gallatin Limestone and beneath the Bighorn Dolomite, occurs in the Bighorn, Powder, and Wind River basins of Wyoming. The Lander ranges from 0-10 m in thickness and consists of texturally and compositional mature, cross bedded quartz arenite. This study uses detrital zircon U-Pb geochronology to elucidate its provenance. Samples were collected from two localities along the eastern flank of the Bighorn Mountains near Buffalo, Wyoming: a roadcut on US 16 just west of the Clear Creek thrust and from along Crazy Woman Canyon Road. The results showed a statistical similarity between the two samples, and that zircon ages are predominantly Proterozoic in age (~75%) while the minority ages were Archean (25%). Probability density plots of the two-source areas show that the peak ages for Crazy Woman Canyon (n=90) are ~1840, 2075 and 2695 Ma and the US 16 peak ages (n=141) are ~1825, 2075, and 2725 Ma. The detrital zircon age spectra for these samples indicate that the Lander was not derived from local Archean basement and was not recycled from the underlying Cambrian. The Lander has a provenance in either the Trans-Hudson Province and adjacent rocks in present day Saskatchewan and Manitoba more than 1000 km to the north or from the Peace River Arch, an early Paleozoic highlands in northwestern Alberta and northeastern British Columbia. The Lander zircons have a similar provenance to eolian zircons in the Bighorn Dolomite and to other Ordovician sandstones on the Cordilleran Continental margin and central Idaho. The Lander provenance is distinct from the Ordovician St. Peter Sandstone, which occurs extensively east of the Transcontinental Arch. We interpret that the Lander was derived on the late Ordovician shoreline, and then transported via prevailing winds across the Laurentian shelf from east to west during sea level low stand, and then distributed throughout the shelf by currents.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

WANG, JIALIN, CHAODONG WU, ZHUANG LI, WEN ZHU, TIANQI ZHOU, JUN WU, and JUN WANG. "The tectonic evolution of the Bogda region from Late Carboniferous to Triassic time: evidence from detrital zircon U–Pb geochronology and sandstone petrography." Geological Magazine 155, no. 5 (January 16, 2017): 1063–88. http://dx.doi.org/10.1017/s0016756816001217.

Повний текст джерела
Анотація:
AbstractField-based mapping, sandstone petrology, palaeocurrent measurements and zircon cathodoluminescence images, as well as detrital zircon U–Pb geochronology were integrated to investigate the provenance of the Upper Carboniferous – Upper Triassic sedimentary rocks from the northern Bogda Mountains, and further to constrain their tectonic evolution. Variations in sandstone composition suggest that the Upper Carboniferous – Lower Triassic sediments displayed less sedimentary recycling than the Middle–Upper Triassic sediments. U–Pb isotopic dating using the LA-ICP-MS method on zircons from 12 sandstones exhibited similar zircon U–Pb age distribution patterns with major age groups at 360–320 Ma and 320–300 Ma, and with some grains giving ages of > 541 Ma, 541–360 Ma, 300–250 Ma and 250–200 Ma. Coupled with the compiled palaeocurrent data, the predominant sources were the Late Carboniferous volcanic rocks of the North Tianshan and Palaeozoic magmatic rocks of the Yili–Central Tianshan. There was also input from the Bogda Mountains in Middle–Late Triassic time. The comprehensive geological evidence indicates that the Upper Carboniferous – Lower Permian strata were probably deposited in an extensional context which was related to a rift or post-collision rather than arc-related setting. Conspicuously, the large range of U–Pb ages of the detrital zircons, increased sedimentary lithic fragments, fluvial deposits and contemporaneous Triassic zircon ages argue for a Middle–Late Triassic orogenic movement, which was considered to be the initial uplift of the Bogda Mountains.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Leary, Ryan J., M. Elliot Smith, and Paul Umhoefer. "Mixed eolian–longshore sediment transport in the late Paleozoic Arizona shelf and Pedregosa basin, U.S.A.: A case study in grain-size analysis of detrital-zircon datasets." Journal of Sedimentary Research 92, no. 8 (August 22, 2022): 676–94. http://dx.doi.org/10.2110/jsr.2021.101.

Повний текст джерела
Анотація:
ABSTRACT Detrital-zircon U–Pb geochronology has revolutionized sediment provenance studies over the last two decades, and zircon has been successfully analyzed from nearly all sedimentary lithologies, depositional environments, and sediment grain sizes. However, despite the ubiquity of this method and the far-reaching interpretations supported by detrital-zircon data, few studies have investigated the potential role of zircon grain size on age spectra and provenance interpretation. In this study, we investigate the connections between sample grain size, zircon grain size, U–Pb age spectra, and interpreted provenance using 18 detrital-zircon samples (4999 individual grains) collected from Pennsylvanian–Permian strata in central and southern Arizona, USA. In these samples, there is no clear correlation between sample grain size and zircon grain size and no clear correlation between sample grain size and age spectra. However, when all grains are grouped by zircon minimum long-axis dimension, the abundance of some age groups is correlated to zircon grain size. In Pennsylvanian samples, < 400 Ma grains and 2500–3000 Ma zircons are more abundant in the finer fractions, and 1400–1900 Ma zircons are more abundant in coarser fractions of both Pennsylvanian and Permian samples. In Permian samples, 500–800 Ma zircons are most abundant in the finer fractions, and 2500–3000 Ma grains are concentrated in the coarser fractions. Based on changes in abundance and grain-size distribution of 500–800 Ma grains, we interpret a change in zircon provenance across the Pennsylvanian–Permian boundary that reflects regional climate and paleogeographic changes driven in part by the northward drift of Laurentia across the equator. Specifically, we interpret the concentration of 500–800 Ma zircons in Permian samples in central and southern Arizona to indicate that these grains were: 1) sourced from Gondwana, 2) deposited in, and subsequently eroded (recycled) from, Mississippian–Pennsylvanian strata in the Arkoma, Anadarko, and Fort Worth basins at the margins of Laurentia, and 3) finally transported into the Arizona study area as loess by easterly trade winds. This study serves as a case study in the value and interpretive power of basic grain-size characterization of detrital-geochronology datasets.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Gehrels, George E. "Detrital zircon geochronology of the Taku terrane, southeast Alaska." Canadian Journal of Earth Sciences 39, no. 6 (June 1, 2002): 921–31. http://dx.doi.org/10.1139/e02-002.

Повний текст джерела
Анотація:
U–Pb geochronologic studies have been conducted on 60 detrital zircon grains from Permian(?) and Triassic metasandstones of the Taku terrane in central southeast Alaska. The resulting ages are mainly in the range 349–387 Ma, with five additional grains that yield probable ages ranging from ~906 to ~2643 Ma. These ages are similar to the ages of detrital zircons in Carboniferous and older rocks of the Yukon–Tanana terrane, which lies directly east of the Taku terrane. In contrast, these ages are different from the ages of detrital zircon grains in the Alexander terrane to the west. The data are accordingly consistent with models in which the Taku terrane is a western component of the Stikine and Yukon–Tanana terranes, and that this crustal fragment is separated by a fundamental tectonic boundary from rocks of the Alexander and Wrangellia terranes to the west.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Zhang, Shao-Hua, Wei-Qiang Ji, Hao Zhang, Guo-Hui Chen, Jian-Gang Wang, Zhong-Yu Meng, and Fu-Yuan Wu. "Identification of Forearc Sediments in the Milin-Zedong Region and Their Constraints on Tectonomagmatic Evolution of the Gangdese Arc, Southern Tibet." Lithosphere 2020, no. 1 (November 2, 2020): 1–20. http://dx.doi.org/10.2113/2020/8835259.

Повний текст джерела
Анотація:
Abstract The Xigaze forearc sediments revealed the part of the tectonomagmatic history of the Gangdese arc that the bedrocks did not record. However, the sediments’ development is restricted to the region around and west of Xigaze City. Whether the eastern segment of the arc had a corresponding forearc basin is yet to be resolved. In this study, a field-based stratigraphic study, detrital zircon U-Pb geochronology (15 samples), and Hf isotopic analyses (11 of the 15 samples) were carried out on four sections in the Milin-Zedong area, southeast Tibet. The analytical results revealed the existence of three distinct provenances. The lower sequence is characterized by fine-grained sandstone, interbedded mudstone, and some metamorphic rocks (e.g., gneiss and schist). The detrital zircon U-Pb age distribution of this sequence is analogous to those of the Carboniferous-Permian strata and metasediments of the Nyingtri group in the Lhasa terrane. The middle and upper sequences are predominantly composed of medium- to coarse-grained volcaniclastic/quartzose sandstones, which are generally interbedded with mudstone. The detrital zircon U-Pb ages and Hf isotope signatures indicate that the middle sequences are Jurassic to Early Cretaceous in age (~200–100 Ma) and show clear affinity with the Gangdese arc rocks, that is, positive εHft values. In contrast, the upper sequences are characterized by Mesozoic detrital zircons (150–100 Ma) and negative εHft values, indicative of derivation from the central Lhasa terrane. The overall compositions of the detrital zircon U-Pb ages and Hf isotopes of the middle to upper sequences resemble those of the Xigaze forearc sediments, implying that related forearc sediments may have been developed in the eastern part of the Gangdese arc. It is possible that the forearc equivalents were eroded or destroyed during the later orogenesis. Additionally, the detrital zircons from these forearc sediments indicate that this segment of the Gangdese arc experienced more active and continuous magmatism from the Early Jurassic to Early Cretaceous than its bedrock records indicate.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Scott, Matthew, Paul J. Sylvester, and Derek H. C. Wilton. "A Provenance Study of Upper Jurassic Hydrocarbon Source Rocks of the Flemish Pass Basin and Central Ridge, Offshore Newfoundland, Canada." Minerals 11, no. 3 (March 4, 2021): 265. http://dx.doi.org/10.3390/min11030265.

Повний текст джерела
Анотація:
A number of hydrocarbon discoveries have been made recently in the Flemish Pass Basin and Central Ridge, offshore Newfoundland, Canada, but there is only limited geological information available. The primary goal of this study was to determine the sedimentary provenance and paleodrainage patterns of mudstones and sandstones from the Upper Jurassic Rankin Formation, including the Upper and Lower Kimmeridgian Source Rock (organic-rich shale) members and Upper and Lower Tempest Sandstone Member reservoirs, in this area. A combination of heavy mineral analysis, whole-rock geochemistry and detrital zircon U-Pb geochronology was determined from cores and cuttings from four offshore wells in an attempt to decipher provenance. Detrital heavy minerals in 20 cuttings samples from the studied geologic units are dominated by either rutile + zircon + apatite ± chromite or rutile + apatite + tourmaline, with minor zircon, indicating diverse source lithologies. Whole rock Zr-Th-Sc trends suggest significant zircon recycling in both mudstones and sandstones. Detrital zircon U-Pb ages were determined in two mudstone and four sandstone samples from the four wells. Five major U-Pb age groups of grains were found: A Late Jurassic group that represents an unknown source of syn-sedimentary magmatism, a Permian–Carboniferous age group which is interpreted to be derived from Iberia, a Cambrian–Devonian group derived from the Central Mobile Belt of the Newfoundland–Ireland conjugate margin, and two older age groups (late Neoproterozoic and >1 Ga) linked to Avalonia. The Iberian detritus is abundant in the Central Ridge and southern Flemish Pass region and units containing sizable populations of these grains are interpreted to be derived from the east whereas units lacking this population are interpreted to be sourced from the northeast and possibly also the west. The Upper Tempest Sandstone contains Mesozoic zircons, which constrain the depositional age of this unit to be no older than Late Tithonian.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Meng, Xianghong, Yu Zhang, Duoyun Wang, and Xue Zhang. "Provenance analysis of the Late Triassic Yichuan Basin: constraints from zircon U-Pb geochronology." Open Geosciences 10, no. 1 (March 21, 2018): 34–44. http://dx.doi.org/10.1515/geo-2018-0003.

Повний текст джерела
Анотація:
AbstractLaser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) U-Pb dating has been performed on detrital zircons from the Chunshuyao Formation sandstone of Yichuan Basin. The ages of 85 detrital zircon grains are divided into three groups: 252-290 Ma, 1740-2000 Ma, and 2400-2600 Ma. The lack of Early Paleozoic and Neoproterozoic U-Pb ages indicates that there is no input from the Qinling Orogen, because the Qinling Orogen is characterized by Paleozoic and Neoproterozoic material. In combination with previous research, we suggest that the source of the Chunshuyao Formation is most likely recycled from previous sedimentary rocks from the North China Craton. In the Late Triassic, the Funiu ancient land was uplifted which prevented source material from the Qinling Orogen. Owing to the Indosinian orogeny, the strata to the east of the North China Craton were uplifted and eroded. The Yichuan Basin received detrital material from the North China Craton.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Zotto, S. C., D. P. Moecher, N. A. Niemi, J. R. Thigpen, and S. D. Samson. "Persistence of Grenvillian dominance in Laurentian detrital zircon age systematics explained by sedimentary recycling: Evidence from detrital zircon double dating and detrital monazite textures and geochronology." Geology 48, no. 8 (May 18, 2020): 792–97. http://dx.doi.org/10.1130/g47530.1.

Повний текст джерела
Анотація:
Abstract Grenvillian ages dominate Neoproterozoic to Paleozoic detrital zircon (DZ) populations across eastern Laurentia and persist through the present. The persistence of this dominance is inferred to result from recycling of DZ grains ultimately sourced from exceptionally Zr-rich and zircon-fertile Grenvillian granitoids. Pennsylvanian arenites of the Appalachian Basin (eastern United States) exhibit DZ U-Pb age distributions that are nearly identical to those of Neoproterozoic to Cambrian strata, and contain detrital diagenetic monazite grains formed via metamorphism or diagenesis of sedimentary rocks in the source region. Detrital zircon (U-Th)/He ages are mostly 475–300 Ma, yielding lag times [Δt = U-Pb age − (U-Th)/He age] of 500–1000 m.y. and 1200–2400 m.y. for Grenvillian and Paleoproterozoic to Archean DZ grains, respectively. Detrital monazite Th-Pb ages are comparable to (U-Th)/He cooling ages, reflecting formation of monazite during Paleozoic regional metamorphism of Neoproterozoic to Cambrian strata that reset the (U-Th)/He systematics of Grenvillian DZ grains within those metasediments. These results are either consistent with or prove recycling. Incorporation of other geological constraints permits definition of at least three (and potentially five) recycling events and their timing following initial post-Grenvillian exhumation and erosion (the “great Grenvillian sedimentation episode”). Recycling events include dispersal of post-Grenvillian sediment during deposition of Neoproterozoic to Cambrian strata (formation of the “Great Unconformity”: cycle 1), subsequent erosion of metamorphosed Neoproterozoic to Cambrian strata generating detritus for the Pennsylvanian arenites sampled here (cycle 2), and modern erosion of those arenites (cycle 3). Pancontinental river systems facilitated dispersal of sediment of ultimate Grenvillian age during or after each cycle.
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Syzdek, Joseph, David Malone, and John Craddock. "Detrital Zircon U-Pb Geochronology and Provenance of the Sundance Formation, Western Powder River Basin, Wyoming." Mountain Geologist 56, no. 3 (August 1, 2019): 295–317. http://dx.doi.org/10.31582/rmag.mg.56.3.295.

Повний текст джерела
Анотація:
This study uses detrital zircon U-Pb geochronology to investigate the provenance of the Jurassic Sundance Formation in the western Powder River Basin, Wyoming. Understanding the provenance of the Sundance Formation is critical as it was deposited during the transition from cratonic to synorogenic sedimentation derived from the Sevier-Laramide foreland. The Sundance in the western Powder River Basin consists of an oolitic limestone and green glauconitic sandstone at the base, green shales in the middle, and a yellow quartz arenite with coquina “oyster” beds at the top. U-Pb analyses of detrital zircons using LA-ICP-MS were conducted on two samples collected in the Bud Love Wildlife Habitat Management Area, 20 km northwest of Buffalo, WY. The two samples were taken from the upper and lower sandstone members of the Sundance Formation (n=289 concordant U-Pb zircon ages). The samples show a distinct difference in detrital zircon age spectra. The lower sandstone age spectrum ranges from 260-3172 Ma with 23% of the ages being Paleozoic, 71% being Proterozoic, and 6% being Archean. This lower stratum has detrital zircon age peaks at 343, 432, 686, 1039, 1431, 1662, 1748, 1941, 2433, and 3179 Ma. The lower sandstone shows an easterly Appalachian-Ouachita provenance, which persisted in the region beginning in the Carboniferous. In comparison to the upper strata, ages range from 157-2949 Ma and age peaks at 170, 243, 440, 545, 1082, 1467, 1681, and 1985 Ma. The maximum deposition age for the upper member is 160 Ma. Mesozoic aged grains make up 15.6% of the zircons, 14.7% were Paleozoic, 65.7% were Proterozoic, and 4% were Archean in age. The appearance of Mesozoic zircons in the upper sandstone marks the first significant appearance of westerly sourced zircons, and perhaps reflects the earliest uplift of the Sevier fold and thrust belt. Previous research has found this same signature in the Sundance but not in the underlying Triassic Chugwater Formation, resulting in a broad boundary of the change in sediment dispersal and the onset of the Sevier Orogeny between the Triassic and Jurassic. This study was conducted for a higher resolution to the provenance of the Sundance Formation and to further narrow the boundary of differing sedimentation from an eastern recycled to western synorogenic source.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Nair, Kajal, John Singleton, Christopher Holm-Denoma, and Sven Egenhoff. "Detrital Zircon Geochronology of Pennsylvanian-Permian Strata in Colorado: Evidence for Appalachian-Derived Sediment and Implications for the Timing of Ancestral Rocky Mountains Uplift." Mountain Geologist 55, no. 3 (July 2018): 119–40. http://dx.doi.org/10.31582/rmag.mg.55.3.119.

Повний текст джерела
Анотація:
Pennsylvanian-Permian time in north-central Colorado corresponds with uplift of the Ancestral Front Range and deposition of the Fountain, Ingleside, and Lyons Formations along its flanks. In southwestern Colorado, deposition of the Molas and Hermosa Formations along the flanks of the Uncompahgre Highlands largely represents Pennsylvanian time. We present new detrital zircon U-Pb geochronology data for the Ingleside and Lyons Formations in north-central Colorado and the Molas and Hermosa Formations in southwestern Colorado to understand sediment provenance and dispersal patterns. We determined U-Pb ages using LA-ICPMS on 120-150 zircon grains from five sandstone samples collected from shallow marine and eolian facies within the Ingleside, Lyons, Molas, and Hermosa Formations. All sandstone samples display a mixed Laurentian derivation, with age populations that record local and distal sediment sources. All samples also contain between 5% and 10% concordant Paleozoic-age zircon grains ranging from 330–490 Ma, coinciding with high magmatic flux during the Taconic and Acadian orogenies in the Appalachian orogen. Ultimate derivation from the Appalachians are also interpreted for zircon age populations ranging from 500-750 Ma and 1000-1300 Ma that likely originated from Pan-African and Grenville terranes respectively. This study detects the earliest documented appearance of Paleozoic zircons along the northern Ancestral Front Range, corresponding to deposition of the lower Ingleside Formation. We compare our data along the Front Range to previous detrital zircon studies from the underlying Fountain Formation to conclude that the Fountain-Ingleside transition was accompanied by a decrease in locally sourced detrital zircons, most likely marking the cessation of Ancestral Front Range uplift. Conversely, deposition across the Molas-Hermosa contact in southwestern Colorado was accompanied by an increase in locally-sourced detrital zircon grains, most likely marking the initiation of the Uncompahgre uplift.
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Martini, Michelangelo, Luigi Solari, Mariana Peña-Guerrero, Mildred Zepeda-MartÍnez, and Chiara Montomoli. "Guidelines for assessing the provenance of Mesozoic and Cenozoic clastic successions sourced by pre-Jurassic basement complexes in southernmost North America." Journal of Sedimentary Research 90, no. 5 (May 7, 2020): 513–32. http://dx.doi.org/10.2110/jsr.2020.30.

Повний текст джерела
Анотація:
ABSTRACT Mexico is an attractive place for provenance studies focused on reconstructing the tectonic evolution of North America. This is because Mexico hosts a well-preserved clastic record associated with some of the major Mesozoic and Cenozoic tectonic processes that shaped the face of this continent. However, the available information on Mexican pre-Mesozoic source terranes is presently insufficient for provenance analysis. With the aim of drawing the guidelines for provenance determination, we present here detrital modes, geochemical data, and zircon U-Pb ages for detritus derived from pre-Jurassic basement complexes of Mexico. Our data show that the various basement complexes produce distinctive detrital modes and supply diagnostic and compositionally different detrital heavy minerals that represent powerful provenance tracers. The Oaxacan Complex, Ayú Complex, and East Mexico Arc are the main sources of quartzo-feldspathic and feldspatho-quartzose detritus. Quartz with rutile needles, mesoperthitic K-feldspar, orthopyroxene, augitic to diopsidic clinopyroxene, and Mg- to Ca-rich almandine (Alm71–52Grs7–3Prp43–23Sps3–1Alm74–56Grs21–19Prp23–2Sps5–2) are common minerals in detritus from the Oaxacan Complex. The Ayú Complex supplies detritus marked by the occurrence of sagenitic biotite and white mica, as well as Mn-rich almandine (Alm69–66Grs4–3Prp18–11Sps19–10). Detritus from the East Mexico Arc contains any of these mineral phases ubiquitous in the Oaxacan and Ayú complexes. The Acatlán Complex is the main source of detritus dominated by metamorphic lithic grains and quartz, with minor amounts of feldspar. Lithic grains are rank 2–4 metabasitic, metapelitic, and metapsammitic–metafelsitic fragments. Diagnostic mineral phases are schorl–dravitic tourmaline, Na-amphibole, and helycitic garnet varying from a Ca- to Mn-rich almandine (Alm74–55Grs34–15Prp16–3Sps12–1-Alm70–46Grs20–15Prp3–1Sps32–12). Zircon U-Pb geochronology proves to have some virtues but also major limitations because: 1) the zircon U-Pb age signature of many different sources in Mexico is similar and 2) zircon documents a limited number of sources because of variations in zircon fertility.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

McGuire, Joseph D., John P. Craddock, David H. Malone, and Shawn J. Malone. "Detrital zircon U-Pb geochronology of the Ordovician Lander Sandstone, Bighorn Mountains, Wyoming." Mountain Geologist 56, no. 3 (August 1, 2019): 231–46. http://dx.doi.org/10.31582/rmag.mg.56.3.231.

Повний текст джерела
Анотація:
The Ordovician Lander Sandstone, which occurs unconformably above the Cambrian Gallatin Limestone and beneath the Bighorn Dolomite, occurs in the Bighorn, Powder, and Wind River basins of Wyoming. The Lander ranges from 0-10 m in thickness and consists of texturally and compositional mature, cross bedded quartz arenite. This study uses detrital zircon U-Pb geochronology to elucidate its provenance. Samples were collected from two localities along the eastern flank of the Bighorn Mountains near Buffalo, Wyoming: a roadcut on US 16 just west of the Clear Creek thrust and from along Crazy Woman Canyon Road. The results showed a statistical similarity between the two samples, and that zircon ages are predominantly Proterozoic in age (~75%) while the minority ages were Archean (25%). Probability density plots of the two-source areas show that the peak ages for Crazy Woman Canyon (n=90) are ~1840, 2075 and 2695 Ma and the US 16 peak ages (n=141) are ~1825, 2075, and 2725 Ma. The detrital zircon age spectra for these samples indicate that the Lander was not derived from local Archean basement and was not recycled from the underlying Cambrian. The Lander has a provenance in either the Trans-Hudson Province and adjacent rocks in present day Saskatchewan and Manitoba more than 1000 km to the north or from the Peace River Arch, an early Paleozoic highlands in northwestern Alberta and northeastern British Columbia. The Lander zircons have a similar provenance to eolian zircons in the Bighorn Dolomite and to other Ordovician sandstones on the Cordilleran Continental margin and central Idaho. The Lander provenance is distinct from the Ordovician St. Peter Sandstone, which occurs extensively east of the Transcontinental Arch. We interpret that the Lander was derived on the late Ordovician shoreline, and then transported via prevailing winds across the Laurentian shelf from east to west during sea level low stand, and then distributed throughout the shelf by currents.
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Ansdell, Kevin M., Karen A. Connors, Richard A. Stern, and Stephen B. Lucas. "Coeval sedimentation, magmatism, and fold-thrust belt development in the Trans-Hudson Orogen: geochronological evidence from the Wekusko Lake area, Manitoba, Canada." Canadian Journal of Earth Sciences 36, no. 2 (February 1, 1999): 293–312. http://dx.doi.org/10.1139/e98-082.

Повний текст джерела
Анотація:
Lithological and structural mapping in the east Wekusko Lake area of the Flin Flon Belt, Trans-Hudson Orogen, suggested an intimate relationship between magmatism, fluvial sedimentation, and initiation of fold and thrust belt deformation. Conventional U-Pb geochronology of volcanic rocks in fault-bounded assemblages provides a minimum age of 1876 ± 2 Ma for McCafferty Liftover back-arc basalts, and ages of between 1833 and 1836 Ma for the Herb Lake volcanic rocks. A rhyolite which unconformably overlies Western Missi Group fluvial sedimentary rocks has complex zircon systematics. This rock may be as old as about 1856 Ma or as young as 1830 Ma. The sedimentary rocks overlying this rhyolite are locally intercalated with 1834 Ma felsic volcanic rocks, and yield sensitive high resolution ion microprobe (SHRIMP) U-Pb and Pb-evaporation detrital zircon ages ranging from 1834 to 2004 Ma. The Eastern Missi Group is cut by an 1826 ± 4 Ma felsic dyke, and contains 1832-1911 Ma detrital zircons. The dominant source for detritus in the Missi Group was the Flin Flon accretionary collage and associated successor arc rocks. The fluvial sedimentary rocks and the Herb Lake volcanic rocks were essentially coeval, and were then incorporated into a southwest-directed fold and thrust belt which was initiated at about 1840 Ma and active until at least peak regional metamorphism.
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Gibson, Timothy M., Karol Faehnrich, James F. Busch, William C. McClelland, Mark D. Schmitz, and Justin V. Strauss. "A detrital zircon test of large-scale terrane displacement along the Arctic margin of North America." Geology 49, no. 5 (January 12, 2021): 545–50. http://dx.doi.org/10.1130/g48336.1.

Повний текст джерела
Анотація:
Abstract Detrital zircon U-Pb geochronology is one of the most common methods used to constrain the provenance of ancient sedimentary systems. Yet, its efficacy for precisely constraining paleogeographic reconstructions is often complicated by geological, analytical, and statistical uncertainties. To test the utility of this technique for reconstructing complex, margin-parallel terrane displacements, we compiled new and previously published U-Pb detrital zircon data (n = 7924; 70 samples) from Neoproterozoic–Cambrian marine sandstone-bearing units across the Porcupine shear zone of northern Yukon and Alaska, which separates the North Slope subterrane of Arctic Alaska from northwestern Laurentia (Yukon block). Contrasting tectonic models for the North Slope subterrane indicate it originated either near its current position as an autochthonous continuation of the Yukon block or from a position adjacent to the northeastern Laurentian margin prior to >1000 km of Paleozoic–Mesozoic translation. Our statistical results demonstrate that zircon U-Pb age distributions from the North Slope subterrane are consistently distinct from the Yukon block, thereby supporting a model of continent-scale strike-slip displacement along the Arctic margin of North America. Further examination of this dataset highlights important pitfalls associated with common methodological approaches using small sample sizes and reveals challenges in relying solely on detrital zircon age spectra for testing models of terranes displaced along the same continental margin from which they originated. Nevertheless, large-n detrital zircon datasets interpreted within a robust geologic framework can be effective for evaluating translation across complex tectonic boundaries.
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Fasulo, Cooper R., and Kenneth D. Ridgway. "Detrital zircon geochronology of modern river sediment in south-central Alaska: Provenance, magmatic, and tectonic insights into the Mesozoic and Cenozoic development of the southern Alaska convergent margin." Geosphere 17, no. 4 (June 10, 2021): 1248–67. http://dx.doi.org/10.1130/ges02270.1.

Повний текст джерела
Анотація:
Abstract New and previously published detrital zircon U-Pb ages from sediment in major rivers of south-central Alaska archive several major episodes of magmatism associated with the tectonic growth of this convergent margin. Analysis of detrital zircons from major trunk rivers of the Tanana, Matanuska-Susitna, and Copper River watersheds (N = 40, n = 4870) documents major <250 Ma age populations that are characteristic of the main phases of Mesozoic and Paleogene magmatism in the region as documented from limited U-Pb ages of igneous rocks. Key points from our detrital record include: (1) Major magmatic episodes occurred at 170, 150, 118, 95, 72, 58, and 36 Ma. The overall pattern of these ages suggests that felsic magmatism was episodic with periodicity ranging between ~14 and 32 m.y. with an average of ~22 m.y. (2) Magmatism in south-central Alaska shows similar age trends with both the Coast Mountains batholith and the along-strike Alaska Peninsula forearc basin strata, demonstrating a spatial and temporal relationship of felsic magmatism along the entire northern Cordilleran margin. (3) Topography and zircon fertility appear to influence the presence and/or absence of detrital zircon populations in individual watersheds. Results from this study indicate that regionally integrated detrital zircon populations from modern trunk rivers are faithful recorders of Mesozoic and Paleogene magmatic events along a convergent margin, but there appears to be a lag time for major rivers to record Neogene and ongoing magmatic events.
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Xie, Xiaofeng, Zhenning Yang, Huan Zhang, Ali Polat, Yang Xu, and Xin Deng. "Finding of Ca. 1.6 Ga Detrital Zircons from the Mesoproterozoic Dagushi Group, Northern Margin of the Yangtze Block." Minerals 11, no. 4 (March 31, 2021): 371. http://dx.doi.org/10.3390/min11040371.

Повний текст джерела
Анотація:
The middle Mesoproterozoic is a crucial time period for understanding the Precambrian tectonic evolutionary history of the northern Yangtze Block and its relationship with the supercontinent Columbia. The Dagushi Group (Gp) is one of the Mesoproterozoic strata rarely found at the northern margin of the Yangtze Block. U–Pb geochronology and Lu–Hf isotopic analyses of detrital zircons were analyzed for three metamorphic quartz sandstone samples collected from the Luohanling and Dangpuling formations of the Dagushi Gp. These metasandstones yielded major zircon populations at ~2.65 Ga and ~1.60 Ga, respectively. The ~1.60 Ga ages first discovered yield a narrow range of ɛHf(t) values from −1.8 to +1.8, which lie above the old crust evolutionary line of the Yangtze Block, suggesting the addition of mantle material. Trace element data indicate that ~1.60 Ga detrital zircons share a basic provenance, whereby they have low Hf/Th and high Nb/Yb ratios. Zircon discrimination diagrams suggest that the ~1.60 Ga detrital zircon source rocks formed in an intra-plate rifting environment. Dagushi Gp provenance studies indicate that the ~1.60 Ga detrital zircon was most likely sourced from the interior Yangtze Block. Thus, we suggest that the late Paleoproterozoic to early Mesoproterozoic continental break-up occurred at the northern margin of the Yangtze Block.
Стилі APA, Harvard, Vancouver, ISO та ін.
19

MAPEO, R. B. M., R. A. ARMSTRONG, and A. B. KAMPUNZU. "SHRIMP U–Pb zircon geochronology of gneisses from the Gweta borehole, northeast Botswana: implications for the Palaeoproterozoic Magondi Belt in southern Africa." Geological Magazine 138, no. 3 (May 2001): 299–308. http://dx.doi.org/10.1017/s001675680100526x.

Повний текст джерела
Анотація:
This paper presents new U–Pb zircon analyses from garnet–sillimanite paragneisses from the Gweta borehole in northeast Botswana. Concordant to near-concordant analyses of zircon from these rocks reveal a billion year history from 3015 ± 21 Ma for the oldest detrital grain measured, to the age of high-grade metamorphism, 2027 ± 8 Ma. The maximum age of sedimentation in the Magondi belt is constrained by the age of the youngest concordant detrital zircon at 2125 ± 6 Ma. This contrasts with the age of sedimentation in the Central Zone of the Limpopo belt which is Archaean. The comparison of our results with U–Pb zircon data from the Magondi belt in Zimbabwe suggests that the granulite-facies metamorphism in this belt extended between c. 2027–1960 Ma. Granulite-facies rocks with U–Pb zircon ages in this interval are also known in the Ubendian belt and lend support to the correlation of these two segments of Palaeoproterozoic belts in southern and central–eastern Africa. The granulite facies metamorphism in the Magondi belt is coeval with the high-grade metamorphism and granitoids documented further south in the Central Zone of the Limpopo Belt.
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Nelson, JoAnne, and George Gehrels. "Detrital zircon geochronology and provenance of the southeastern Yukon–Tanana terrane." Canadian Journal of Earth Sciences 44, no. 3 (March 1, 2007): 297–316. http://dx.doi.org/10.1139/e06-105.

Повний текст джерела
Анотація:
Two samples of late Paleozoic grit and Late Mississippian quartzite–chert conglomerate collected from southeastern Yukon–Tanana terrane (YTT) — a composite thrust sheet resting structurally above North American parautochthonous strata and intervening imbricate sheets of the late Paleozoic oceanic Slide Mountain terrane — yielded, respectively, 89 and 74 concordant or nearly concordant (<20% discordant) U–Pb ages on single detrital zircons. They provide constraints on the provenance of this allochthonous pericratonic terrane. Zircons in the grit range from 1770 to 2854 Ma, with a well-defined Early Proterozoic peak between 1800 and 2100 Ma. Precambrian zircons in the conglomerate also show a dominant peak between 1800 and 2100 Ma and smaller peaks between 2200 and 3200 Ma, with a few older grains, and younger grains with ages of 998, 1219, 1255, 1256, and 1417 Ma. The conglomerate also yielded three Devonian grains, with ages of 366 ± 23, 373 ± 12, and 379 ± 23 Ma. Their ages are approximately coeval with the oldest felsic to intermediate arc- and rift-related magmatism in the YTT. The age spectra from southeastern YTT units compare closely with those from Mississippian and older pericratonic units in the Coast Mountains, confirming correlations previously made on lithologic grounds. They also strongly resemble detrital zircon populations from craton-derived Paleozoic units of the northern North American autochthon. This robust U–Pb data set lends support to the idea that YTT once formed part of the outer, active margin of the North American continent, prior to Mississippian rifting and marginal ocean basin development.
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Jackson, Lily J., Brian K. Horton, and Cristian Vallejo. "Detrital zircon U-Pb geochronology of modern Andean rivers in Ecuador: Fingerprinting tectonic provinces and assessing downstream propagation of provenance signals." Geosphere 15, no. 6 (November 8, 2019): 1943–57. http://dx.doi.org/10.1130/ges02126.1.

Повний текст джерела
Анотація:
Abstract Recognizing detrital contributions from sediment source regions is fundamental to provenance studies of active and ancient orogenic settings. Detrital zircon U-Pb geochronology of unconsolidated sands from modern rivers that have source catchments with contrasting bedrock signatures provides insight into the fidelity of U-Pb age signatures in discriminating tectonic provenance and downstream propagation of environmental signals. We present 1705 new detrital zircon U-Pb ages for 15 samples of unconsolidated river sands from 12 modern rivers over a large spatial extent of Ecuador (∼1°N–5°S and ∼79°–77°W). Results show distinctive U-Pb age distributions with characteristic zircon age populations for various tectonic provinces along the Andean convergent margin, including the forearc, magmatic arc, and internal (hinterland) and external (foreland) segments of the fold-thrust belt. (1) Forearc and magmatic arc (Western Cordillera) river sands are characterized by Neogene–Quaternary age populations from magmatic sources. (2) Rivers in the hinterland (Eastern Cordillera) segment of the Andean fold-thrust belt have substantial populations of Proterozoic and Paleozoic ages, representing upper Paleozoic–Mesozoic sedimentary and metasedimentary rocks of ultimate cratonic origin. (3) River sands in the frontal fold-thrust belt (Subandean Zone to Oriente Basin) show distinctive bimodal Jurassic age populations, a secondary Triassic population, and subordinate Early Cretaceous ages representative of Mesozoic plutonic and metamorphic bedrock. Detrital zircon U-Pb results from a single regional watershed (Rio Pastaza) spanning the magmatic arc to foreland basin show drastic downstream variations, including the downstream loss of magmatic arc and hinterland signatures and abrupt introduction and dominance of selected sources within the fold-thrust belt. Disproportionate contributions from Mesozoic crystalline metamorphic rocks, which form high-elevation, high-relief areas subject to focused precipitation and active tectonic deformation, are likely the product of focused erosion and high volumes of local sediment input from the frontal fold-thrust belt, leading to dilution of upstream signatures from the hinterland and magmatic arc.
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Malone, David, John Craddock, Jessica Welch, and Brady Foreman. "Detrital Zircon U-Pb geochronology and provenance of the Eocene Willwood Formation, Northern Absaroka Basin, Wyoming." Mountain Geologist 54, no. 2 (April 2017): 104–24. http://dx.doi.org/10.31582/rmag.mg.54.2.104.

Повний текст джерела
Анотація:
We report the results of U-Pb ages from detrital zircon populations in the lower Eocene synorogenic Willwood Formation in the northern Absaroka Basin, Wyoming. Zircons (n=229) were extracted from three sandstone beds and one ash layer in the Willwood Formation at the base of Jim Mountain in the North Fork Shoshone River Valley. K-S statistical analysis indicates that the three sandstones, which were sampled from the base, middle, and top of the formation, have identical age spectra, indicating that the sandstone provenance remained the same during the duration of Willwood deposition. The zircon age spectra are dominated by Archean zircons (61%), with peak ages at 3270 and 2770 Ma. These sandstones also have very early Paleoproterozoic zircons (∼2450 Ma), which likely were derived from the Tobacco Root Mountains. The final significant age peak is ∼70 Ma, which is likely associated with the Cretaceous Tobacco Root batholith. The Jim Mountain ash, which occurs at the top of the succession, just beneath the allocthonous volcanic rocks of the Heart Mountain slide, has a maximum depositional age of ∼50 Ma. Between 49–50 Ma, as Eocene volcanism in the northern Absaroka Range became more prominent, stratovolcanoes grew and disrupted sediment transport into the Absaroka basin. Lower Wapiti sandstones to the southwest show a mix of Eocene, recycled Proterozoic and Archean grains. The coeval Crandall Conglomerate, which was dismembered by the emplacement of the Heart Mountain slide in the northern Absaroka Range, has a distinct detrital zircon age spectrum. Thus these stream systems that deposited the Crandall did not share the headwaters with the streams that supplied sediment to the Absaroka basin.
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Anfinson, Owen A., Daniel F. Stockli, Joseph C. Miller, Andreas Möller, and Fritz Schlunegger. "Tectonic exhumation of the Central Alps recorded by detrital zircon in the Molasse Basin, Switzerland." Solid Earth 11, no. 6 (November 23, 2020): 2197–220. http://dx.doi.org/10.5194/se-11-2197-2020.

Повний текст джерела
Анотація:
Abstract. Eocene to Miocene sedimentary strata of the Northern Alpine Molasse Basin in Switzerland are well studied, yet they lack robust geochronologic and geochemical analysis of detrital zircon for provenance tracing purposes. Here, we present detrital zircon U–Pb ages coupled with rare-earth and trace element geochemistry to provide insights into the sedimentary provenance and to elucidate the tectonic activity of the central Alpine Orogen from the late Eocene to mid Miocene. Between 35 and 22.5 ± 1 Ma, the detrital zircon U–Pb age signatures are dominated by age groups of 300–370, 380–490, and 500–710 Ma, with minor Proterozoic age contributions. In contrast, from 21 Ma to ∼ 13.5 Ma (youngest preserved sediments), the detrital zircon U–Pb age signatures were dominated by a 252–300 Ma age group, with a secondary abundance of the 380–490 Ma age group and only minor contributions of the 500–710 Ma age group. The Eo-Oligocene provenance signatures are consistent with interpretations that initial basin deposition primarily recorded unroofing of the Austroalpine orogenic lid and lesser contributions from underlying Penninic units (including the Lepontine dome), containing reworked detritus from Variscan, Caledonian–Sardic, Cadomian, and Pan-African orogenic cycles. In contrast, the dominant 252–300 Ma age group from early Miocene foreland deposits is indicative of the exhumation of Variscan-aged crystalline rocks from the Lepontine dome basement units. Noticeable is the lack of Alpine-aged detrital zircon in all samples with the exception of one late Eocene sample, which reflects Alpine volcanism linked to incipient continent–continent collision. In addition, detrital zircon rare-earth and trace element data, coupled with zircon morphology and U∕Th ratios, point to primarily igneous and rare metamorphic sources. The observed switch from Austroalpine to Penninic detrital provenance in the Molasse Basin at ∼ 21 Ma appears to mark the onset of synorogenic extension of the Central Alps. Synorogenic extension accommodated by the Simplon fault zone promoted updoming and exhumation the Penninic crystalline core of the Alpine Orogen. The lack of Alpine detrital zircon U–Pb ages in all Oligo-Miocene strata corroborate the interpretations that between ∼ 25 and 15 Ma, the exposed bedrock in the Lepontine dome comprised greenschist-facies rocks only, where temperatures were too low for allowing zircon rims to grow, and that the Molasse Basin drainage network did not access the prominent Alpine-age Periadriatic intrusions located in the area surrounding the Periadriatic Line.
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Flowerdew, Michael J., Edward J. Fleming, Andrew C. Morton, Dirk Frei, David M. Chew, and J. Stephen Daly. "Assessing mineral fertility and bias in sedimentary provenance studies: examples from the Barents Shelf." Geological Society, London, Special Publications 484, no. 1 (January 17, 2019): 255–74. http://dx.doi.org/10.1144/sp484.11.

Повний текст джерела
Анотація:
AbstractThe development of laser ablation techniques using inductively coupled plasma mass spectrometry has enabled the routine and fast acquisition of in situ U–Pb and Pb–Pb isotope ratio data from single detrital grains or parts of grains. Detrital zircon dating is a technique that is increasingly applied to sedimentary provenance studies. However, sand routing information using zircon analysis alone may be obscured by repeated sedimentary reworking cycles and mineral fertility variations. These biases are illustrated by two clear case studies from the Triassic–Jurassic of the Barents Shelf where the use of U–Pb geochronology on apatite and rutile and Pb–Pb isotopic data from K-feldspar is highly beneficial for provenance interpretations. In the first case study, U–Pb apatite ages from the (Induan – Norian) Havert, Kobbe and Snadd formations indicate an evolving provenance and identify possible episodes of storage within foreland basins prior to delivery onto the Barents Shelf. In the second case study, U–Pb rutile and Pb isotopic analyses of K-feldspar from the Norian–Pliensbachian Realgrunnen Subgroup provide a clear distinction between north Norwegian Caledonides and Fennoscandian Shield sources and suggest that a similar approach may be used to test competing models for sand dispersal for this Subgroup in regions farther north than this study.
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Greig, C. J., and G. E. Gehrels. "U–Pb zircon geochronology of Lower Jurassic and Paleozoic Stikinian strata and Tertiary intrusions, northwestern British Columbia." Canadian Journal of Earth Sciences 32, no. 8 (August 1, 1995): 1155–71. http://dx.doi.org/10.1139/e95-095.

Повний текст джерела
Анотація:
New U–Pb zircon ages are reported from western Stikinia. Devonian and Pennsylvanian ages of volcanic rocks at Oweegee dome confirm the presence of pre-Permian strata, and with Paleozoic and Triassic detrital zircons from Lower Jurassic sandstone, they help to demonstrate pre-Lower Jurassic deformation and uplift. The absence of pre-Paleozoic inherited zircon from all samples is consistent with Nd–Sr isotopic data which suggest that Stikinia consists mainly of juvenile crust. U–Pb ages for posttectonic intrusions suggest that structures in Skeena Fold Belt in the Kinskuch area formed prior to Eocene time. Five ages for felsic volcanic rocks from stratigraphically well-constrained upper parts of the Hazelton arc are approximately 196–199 Ma and suggest near-contemporaneity for cessation of volcanism in the areas studied. The Sinemurian or late Sinemurian – early Pliensbachian ages are older than previously reported U–Pb and biostratigraphic ages for presumed correlative rocks to the west, and westward-migrating volcanism is implied. Together with Toarcian fossils from overlying sandstone, the new ages suggest that a hiatus of moderate duration preceded regionally extensive sedimentation.
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Gehrels, George E., and Gerald M. Ross. "Detrital zircon geochronology of Neoproterozoic to Permian miogeoclinal strata in British Columbia and Alberta." Canadian Journal of Earth Sciences 35, no. 12 (December 1, 1998): 1380–401. http://dx.doi.org/10.1139/e98-071.

Повний текст джерела
Анотація:
U-Pb ages have been determined on 250 detrital zircon grains from Neoproterozoic through Permian miogeoclinal strata in British Columbia and Alberta. Most of the grains in these strata are >1.75 Ga and are interpreted to have been derived from nearby basement provinces (although most grains were probably cycled though one or more sedimentary units prior to final deposition). Important exceptions are Ordovician sandstones that contain grains derived from the Peace River arch, and upper Paleozoic strata with detrital zircons derived from the Franklinian orogen, Salmon River arch (northwestern U.S.A.), and (or) Grenville orogen. These provenance changes resulted in average detrital zircon ages that become progressively younger with time, and may also be reflected by previously reported shifts in the Nd isotopic signature of miogeoclinal strata. In addition to the grains that have identifiable sources, grains of ~1030, ~1053, 1750-1774, and 2344-2464 Ma are common in our samples, but igneous rocks of these ages have not been recognized in the western Canadian Shield. We speculate that unrecognized plutons of these ages may be present beneath strata of the western Canada sedimentary basin. Collectively, our data provide a record of the ages of detrital zircons that accumulated along the Canadian Cordilleran margin during much of Paleozoic time. Comparisons between this reference and the ages of detrital zircons in strata of potentially displaced outboard terranes may help reconstruct the paleogeography and accretionary history of the Cordilleran orogen.
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Mahoney, J. Brian, James W. Haggart, Marty Grove, David L. Kimbrough, Virginia Isava, Paul K. Link, Mark E. Pecha, and C. Mark Fanning. "Evolution of the Late Cretaceous Nanaimo Basin, British Columbia, Canada: Definitive provenance links to northern latitudes." Geosphere 17, no. 6 (November 8, 2021): 2197–233. http://dx.doi.org/10.1130/ges02394.1.

Повний текст джерела
Анотація:
Abstract Accurate reconstruction of the Late Cretaceous paleogeography and tectonic evolution of the western North American Cordilleran margin is required to resolve the long-standing debate over proposed large-scale, orogen-parallel terrane translation. The Nanaimo Basin (British Columbia, Canada) contains a high-fidelity record of orogenic exhumation and basin subsidence in the southwestern Canadian Cordillera that constrains the tectonic evolution of the region. Integration of detrital zircon U-Pb geochronology, conglomerate clast U-Pb geochronology, detrital muscovite 40Ar/39Ar thermochronology, and Lu-Hf isotopic analysis of detrital zircon defines a multidisciplinary provenance signature that provides a definitive linkage with sediment source regions north of the Sierra Nevada arc system (western United States). Analysis of spatial and temporal provenance variations within Nanaimo Group strata documents a bimodal sediment supply with a local source derived from the adjacent magmatic arc in the southern Coast Mountains batholith and an extra-regional source from the Mesoproterozoic Belt Supergroup and the Late Cretaceous Atlanta lobe of the Idaho batholith. Particularly robust linkages include: (1) juvenile (εHf &gt;+10) Late Cretaceous zircon derived from the southern Coast Mountains batholith; (2) a bimodal Proterozoic detrital zircon signature consistent with derivation from Belt Supergroup (1700–1720 Ma) and ca. 1380 Ma plutonic rocks intruding the Lemhi subbasin of central Idaho (northwestern United States); (3) quartzite clasts that are statistical matches for Mesoproterozoic and Cambrian strata in Montana and Idaho (northwestern United States) and southern British Columbia; and (4) syndepositional evolved (εHf &gt;−10) Late Cretaceous zircon and muscovite derived from the Atlanta lobe of the Idaho batholith. These provenance constraints support a tectonic restoration of the Nanaimo Basin, the southern Coast Mountains batholith, and Wrangellia to a position outboard of the Idaho batholith in Late Cretaceous time, consistent with proposed minimal- fault- offset models (&lt;~1000 km).
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Griffin, Brendan J., Duncan Forbes, and Neal J. McNaughton. "An Evaluation of Dating of Diagenetic Xenotime by Electron Microprobe." Microscopy and Microanalysis 6, S2 (August 2000): 408–9. http://dx.doi.org/10.1017/s143192760003453x.

Повний текст джерела
Анотація:
Xenotime is an igneous mineral commonly present in pegmatite and fractionated granite. Recent studies reveal that it also forms as a diagenetic mineral. Minute (0.1-5 μm) xenotime overgrowths typically crystallise on the surfaces of detrital zircon shortly after sedimentation, in a wide range of siliciclastic sedimentary units. For example, in backscattered electron (BSE) imaging using a scanning electron microscope (SEM), two minute, euhedral, pyramidal, xenotime overgrowths on an oscillatory-zoned detrital Ambergate zircon are evident (figure 1).Electron microprobe analysis (EMPA) geochronology is a chemical dating method that uses precisely measured concentrations of U, Th, and Pb, and the decay rates of U238, U235, and Th232, to calculate an age for a mineral. The EMPA dating method used in this study to date igneous xenotime and igneous-metamorphic monazite is the chemical isochron method (CHIME). EMPA geochronology is not a widely used technique because of the higher precision of isotopic geochronology.
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Corfu, Fernando, and Shoufa Lin. "Geology and U-Pb geochronology of the Island Lake greenstone belt, northwestern Superior Province, Manitoba." Canadian Journal of Earth Sciences 37, no. 9 (September 1, 2000): 1275–86. http://dx.doi.org/10.1139/e00-043.

Повний текст джерела
Анотація:
Mapping and U-Pb geochronology have been used to examine the tectonic and depositional history of the Archean Island Lake greenstone belt in the northwestern Superior Province. The Island Lake greenstone belt comprises two main supracrustal successions, the older Hayes River Group and the younger Island Lake Group. Zircon data for two volcanic units from the Hayes River Group provide identical ages of 2852 ± 1.5 Ma, whereas a turbidite of this group contains a detrital zircon population with ages between 2858 and 2847 Ma. Younger intrusive events include the emplacement of tonalite in the southern batholith at 2825 ± 2 Ma and the Whiteway Island gabbro at 2807 ± 1 Ma. A wacke at the base of the Island Lake Group is dominated by detrital zircon grains yielding ages between 2830 and 2821 Ma, the latter defining a maximum age of sedimentation. A relatively early time of deposition of the lower stratigraphic sections of the Island Lake Group is also supported by an age of 2744 ± 2 Ma obtained for a crosscutting tonalite. By contrast, two turbidite horizons from higher stratigraphic levels of the Island Lake Group contain detrital zircon populations with ages mostly younger than 2730 Ma, the youngest zircon grains providing maximum ages of sedimentation at 2722 and 2712 Ma, respectively. Our results confirm the protracted evolution of the greenstone belt and show in particular that major sedimentary processes were active throughout the main stages of volcanism of the belt. This pattern of protracted sedimentation is comparable to that observed in other greenstone belts of the northwestern Superior Province, all of which developed on pre-Kenoran crust.
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Vermeesch, Pieter. "On the treatment of discordant detrital zircon U–Pb data." Geochronology 3, no. 1 (April 29, 2021): 247–57. http://dx.doi.org/10.5194/gchron-3-247-2021.

Повний текст джерела
Анотація:
Abstract. Zircon U–Pb geochronology is a staple of crustal evolution studies and sedimentary provenance analysis. Constructing (detrital) U–Pb age spectra is straightforward for concordant 206Pb/238U and 207Pb/206Pb compositions. But unfortunately, many U–Pb datasets contain a significant proportion of discordant analyses. This paper investigates two decisions that must be made when analysing such discordant U–Pb data. First, the analyst must choose whether to use the 206Pb/238U or the 207Pb/206Pb date. The 206Pb/238U method is more precise for young samples, whereas the 207Pb/206Pb method is better suited for old samples. However there is no agreement which “cutoff” should be used to switch between the two. This subjective decision can be avoided by using single-grain concordia ages. These represent a kind of weighted mean between the 206Pb/238U and 207Pb/206Pb methods, which offers better precision than either of the latter two methods. A second subjective decision is how to define the discordance cutoff between “good” and “bad” data. Discordance is usually defined as (1) the relative age difference between the 206Pb/238U and 207Pb/206Pb dates. However, this paper shows that several other definitions are possible as well, including (2) the absolute age difference; (3) the common-Pb fraction according to the Stacey–Kramers mantle evolution model; (4) the p value of concordance; (5) the perpendicular log ratio (or “Aitchison”) distance to the concordia line; and (6) the log ratio distance to the maximum likelihood composition on the concordia line. Applying these six discordance filters to a 70 869-grain dataset of zircon U–Pb compositions reveals that (i) the relative age discordance filter tends to suppress the young age components in U–Pb age spectra, whilst inflating the older age components; (ii) the Stacey–Kramers discordance filter is more likely to reject old grains and less likely to reject young ones; (iii) the p-value-based discordance filter has the undesirable effect of biasing the results towards the least precise measurements; (iv) the log-ratio-based discordance filters are strictest for Proterozoic grains and more lenient for Phanerozoic and Archaean age components; (v) of all the methods, the log ratio distance to the concordia composition produces the best results, in the sense that it produces age spectra that most closely match those of the unfiltered data: it sharpens age spectra but does not change their shape. The popular relative age definition fares the worst according to this criterion. All the methods presented in this paper have been implemented in the IsoplotR toolbox for geochronology.
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Gehrels, George E., William C. McClelland, Scott D. Samson, and P. Jonathan Patchett. "U–Pb geochronology of detrital zircons from a continental margin assemblage in the northern Coast Mountains, southeastern Alaska." Canadian Journal of Earth Sciences 28, no. 8 (August 1, 1991): 1285–300. http://dx.doi.org/10.1139/e91-114.

Повний текст джерела
Анотація:
Metamorphic rocks within and west of the northern Coast Mountains in southeastern Alaska consist of an Upper Proterozoic(?) to upper Paleozoic continental margin assemblage that we interpret to belong to the Yukon-Tanana terrane. U–Pb geochronologic analyses of single detrital zircon grains from four samples of quartzite suggest that the zircons were shed from source regions containing rocks of ~495 Ma, ~750 Ma, 1.05–1.40 Ga, 1.75–2.00 Ga, ~2.3 Ga, 2.5–2.7 Ga, and ~3.0 Ga. Multigrain fractions from two samples yield upper intercepts between 2.0 and 2.3 Ga, but the scarcity of single grains of similar age suggests that these fractions comprise a mixture of < 2.0 and > 2.3 Ga grains. Zircons in these rocks generally overlap in age with (i) detrital zircons in metasedimentary rocks of the Yukon–Tanana terrane in eastern Alaska and Yukon, (ii) detrital zircons in strata of the Cordilleran miogeocline, and (iii) plutonic and gneissic rocks that intrude or are overlain by miogeoclinal strata. In addition, the pre-1.7 Ga grains overlap in age with dated crystalline rocks of the western Canadian Shield. These similarities raise the possibility that metaclastic rocks in the northern Coast Mountains accumulated in proximity to western North America. The younger zircon populations were likely shed from mid-Proterozoic to early Paleozoic igneous rocks that now occur locally (but may have been widespread) along the Cordilleran margin. Recognition of a continental margin assemblage of possible North American affinity in the Coast Mountains raises the possibility that some arc-type and oceanic terranes inboard of the Coast Mountains may be large klippen that have been thrust over the North American margin.
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Fasulo, Cooper R., Kenneth D. Ridgway, and Jeffrey M. Trop. "Detrital zircon geochronology and Hf isotope geochemistry of Mesozoic sedimentary basins in south-central Alaska: Insights into regional sediment transport, basin development, and tectonics along the NW Cordilleran margin." Geosphere 16, no. 5 (July 22, 2020): 1125–52. http://dx.doi.org/10.1130/ges02221.1.

Повний текст джерела
Анотація:
Abstract The Jurassic–Cretaceous Nutzotin, Wrangell Mountains, and Wellesly basins provide an archive of subduction and collisional processes along the southern Alaska convergent margin. This study presents U-Pb ages from each of the three basins, and Hf isotope compositions of detrital zircons from the Nutzotin and Wellesly basins. U-Pb detrital zircon ages from the Upper Jurassic–Lower Cretaceous Nutzotin Mountains sequence in the Nutzotin basin have unimodal populations between 155 and 133 Ma and primarily juvenile Hf isotope compositions. Detrital zircon ages from the Wrangell Mountains basin document unimodal peak ages between 159 and 152 Ma in Upper Jurassic–Lower Cretaceous strata and multimodal peak ages between 196 and 76 Ma for Upper Cretaceous strata. Detrital zircon ages from the Wellesly basin display multimodal peak ages between 216 and 124 Ma and juvenile to evolved Hf compositions. Detrital zircon data from the Wellesly basin are inconsistent with a previous interpretation that suggested the Wellesly and Nutzotin basins are proximal-to-distal equivalents. Our results suggest that Wellesly basin strata are more akin to the Kahiltna basin, which requires that these basins may have been offset ∼380 km along the Denali fault. Our findings from the Wrangell Mountains and Nutzotin basins are consistent with previous stratigraphic interpretations that suggest the two basins formed as a connected retroarc basin system. Integration of our data with previously published data documents a strong provenance and temporal link between depocenters along the southern Alaska convergent margin. Results of our study also have implications for the ongoing discussion concerning the polarity of subduction along the Mesozoic margin of western North America.
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Baral, Upendra, Ding Lin, Khum N. Paudayal, Deepak Chamlagain, and Qasim Muhammad. "Erosional unroofing of Himalaya in far western Nepal: a detrital zircon U-Pb geochronology and petrography study." Journal of Nepal Geological Society 53 (December 31, 2017): 1–8. http://dx.doi.org/10.3126/jngs.v53i0.23795.

Повний текст джерела
Анотація:
Since the collision between the Indian and Asian plates, several peripheral foreland basin were formed, and started to accumulate the sediments from the hinterland Himalayan orogeny. The sediments deposited at the northern tip of the Greater India have been uplifted, exhumed after the activation of several south propagating thrusts and finally transported to the foreland basin by southward flowing fluvial system. We present petrography and detrital zircon dating for the interpretation of possible provenance of the Neogene Siwalik foreland basin sediments in far western Nepal. The QFL ternary plot for provenance analysis show a 'recycled orogeny' field for the studied sandstone samples, indicating Tethys Himalaya, Higher Himalaya and Lesser Himalaya as the source of the foreland basin sediments. The detrital zircon U-Pb ages of the studied samples have shown that during the time of deposition there was dominant numbers of detritus supplied from the Tethys and upper Lesser Himalaya. Subsequently the amount of the Higher and Lower Lesser Himalaya increased during the time of deposition of the Middle Siwalik.
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Yin, Jianguo, Shuai Zhang, and Zhixiong Wu. "Provenance Analysis of the Paleogene Strata in the Northern Qaidam Basin, China: Evidences from Sediment Distribution, Heavy Mineral Assemblages and Detrital Zircon U‒Pb Geochronology." Minerals 10, no. 10 (September 27, 2020): 854. http://dx.doi.org/10.3390/min10100854.

Повний текст джерела
Анотація:
Using provenance analysis to build an accurate source-to-sink relationship is the key to infer mountain building scenarios around the Qaidam Basin, and also important to understanding the uplift and expansion of the Tibetan Plateau. However, some conflicting provenance inferences are caused by different interpretations for the prevalent existence of the late Paleozoic to early Mesozoic age group in detrital zircon U‒Pb age spectra of the Paleogene strata at the northern Qaidam Basin, and these need to be resolved. In this article, an integrated study of sediment distribution, heavy mineral assemblages, and detrital zircon U‒Pb geochronology is carried out to analyze provenance of the Paleogene strata at the northern Qaidam Basin. The decreasing trends of the net sand to gross thickness ratios and conglomerate percentages away from the Qilian Mountains and Altyn Tagh range to basin interior clearly support they are the provenance areas. Sedimentation of materials from the Altyn Tagh range is spatially confined to a small area in front of the mountains. A large sandy body with a uniform distribution of detrital zircon ages (containing a lot of the late Paleozoic to early Mesozoic zircon ages) and heavy mineral assemblages in the Xiaganchaigou Formation is supplied by the Qilian Mountains.
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Piper, David J. W., Georgia Pe-Piper, Mike Tubrett, Stavros Triantafyllidis, and Greg Strathdee. "Detrital zircon geochronology and polycyclic sediment sources, Upper Jurassic – Lower Cretaceous of the Scotian Basin, southeastern Canada 1This article is one of a series of papers published in this CJES Special Issue on the theme of Mesozoic–Cenozoic geology of the Scotian Basin." Canadian Journal of Earth Sciences 49, no. 12 (December 2012): 1540–57. http://dx.doi.org/10.1139/e2012-072.

Повний текст джерела
Анотація:
Sources of Tithonian–Albian sediment in the Scotian Basin are interpreted from detrital zircon geochronology to test previous hypotheses about the sources and pathways of sediment to thick deltaic successions that are important hydrocarbon reservoirs. Sediment provenance influences reservoir quality, but also provides information on tectonism during rifting of the North Atlantic Ocean. More than 760 zircons were dated by laser ablation U–Pb methods from nine offshore wells and one borehole on land and were characterized by external morphology, internal zoning, and Th/U ratio. A Meguma terrane source to the LaHave Platform was confirmed by peaks in detrital zircon abundance at 550–650 Ma, 1.0–1.2 Ga, and ∼2.1 Ga. Samples from the Sable Subbasin show a large peak in detrital zircon abundance at ∼1050 Ma, with lower peaks from 400–650, ∼1480, ∼1650, ∼1860 Ma and 2.7 Ga, characteristic of inboard Appalachian terranes of Laurentide affinity. Many late Paleozoic to Neoproterozoic zircons are euhedral or subhedral, and apparently first cycle, as are a few older zircons that indicate transport from the rising rift shoulder in southern Labrador as far north as the Makkovik Province (∼1860 Ma). About half the zircons are rounded and polycyclic. Samples from the Abenaki Subbasin are similar, but late Paleozoic to Neoproterozoic zircons are rare and ∼40% of the Mesoproterozoic zircons are subhedral, implying a different Laurentide source through the Humber valley. Euhedral–subhedral unzoned zircons yielded two groups of Cretaceous dates: ∼105 Ma from the Cree Member, and ∼120 Ma from the Missisauga Formation.
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Wang, Ce, Letian Zeng, Yaping Lei, Ming Su, and Xinquan Liang. "Tracking the Detrital Zircon Provenance of Early Miocene Sediments in the Continental Shelf of the Northwestern South China Sea." Minerals 10, no. 9 (August 25, 2020): 752. http://dx.doi.org/10.3390/min10090752.

Повний текст джерела
Анотація:
Sediment provenance studies have become a major theme for source-to-sink systems and provide an important tool for assessing paleogeographic reconstruction, characterizing the depositional system, and predicting reservoir quality. The lower Miocene is an important stratigraphic unit for deciphering sediment evolution in the continental shelf of the northwestern South China Sea, but the provenance characteristics of this strata remain unclear. In this study, detrital zircon U-Pb geochronology and Lu-Hf isotopes from the lower Miocene Sanya Formation in the Yinggehai-Song Hong Basin were examined to study the provenance and its variation in the early Miocene. U-Pb dating of detrital zircons yielded ages ranging from Archean to Cenozoic (3313 to 39 Ma) and displayed age distributions with multiple peaks and a wide range of εHf(t) values (from −27.2 to +8.5). Multi-proxy sediment provenance analysis indicates that the Red River system was the major source for the sediments in the northern basin, with additional contribution from central Vietnam, and the Hainan played the most important role in contributing detritus to the eastern margin of the basin in the middle Miocene. This paper highlights the provenance of early Miocene sediments and contributes to paleogeographic reconstruction and reservoir evaluation.
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Davies, Joshua H. F. L., Jörn-Frederik Wotzlaw, Alexander P. Wolfe, and Larry M. Heaman. "Assessing the age of the Late Cretaceous Danek Bonebed with U–Pb geochronology." Canadian Journal of Earth Sciences 51, no. 11 (November 2014): 982–86. http://dx.doi.org/10.1139/cjes-2014-0136.

Повний текст джерела
Анотація:
An ash-rich volcaniclastic sandstone immediately underlying dinosaur-rich material from the Danek Bonebed in the Horseshoe Canyon Formation (HCF), Edmonton, Alberta, Canada, contains accessory zircon, which have been dated employing U–Pb geochronology. Both laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and chemical abrasion isotope dilution thermal ionization mass spectrometry (ID-TIMS) U–Pb analyses have been conducted. The zircon age distributions are complex with U–Pb dates ranging from Precambrian to Cretaceous. We consider the youngest ID-TIMS 206Pb/238U date of 71.923 ± 0.068 Ma as the maximum deposition age of the ash-rich sandstone, placing the overlying Danek bonebed in the early Maastrichtian. This age is compatible with the paleontological assemblage from the Danek Bonebed and the regional stratigraphy. The zircon age distribution also implies that the HCF had a complex provenance of the detritus with some Archean and Proterozoic zircons, a group of Mesozoic, and a large compliment of Cretaceous grains. The results highlight the importance of high precision geochronology in constraining the age of important fossil deposits such as the Danek Bonebed.
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Lee, Hyojong, Min Gyu Kwon, Seungwon Shin, Hyeongseong Cho, Jong-Sun Kim, Yul Roh, Min Huh, and Taejin Choi. "Relationships between Alluvial Facies/Depositional Environments, Detrital Zircon U-Pb Geochronology, and Bulk-Rock Geochemistry in the Cretaceous Neungju Basin (Southwest Korea)." Minerals 10, no. 11 (November 17, 2020): 1023. http://dx.doi.org/10.3390/min10111023.

Повний текст джерела
Анотація:
Zircon U-Pb geochronology and bulk-rock geochemistry analyses were carried out to investigate their relationship with depositional environments of the non-marine Neungju Basin sediments in South Korea. The Neungju Basin was formed in an active continental margin setting during the Late Cretaceous with associated volcanism. Detrital zircon age distributions of the Neungju Basin reveal that the source rocks surrounding the basin supplied sediments into the basin from all directions, making different zircon age populations according to the depositional environments. Mudstone geochemistry with support of detrital zircon U-Pb age data reveals how the heterogeneity affects the geochemical characteristics of tectonic setting and weathering intensity. The sediments in the proximal (alluvial fan to sandflat) and distal (playa lake) environments differ compositionally because sediment mixing occurred exclusively in the distal environment. The proximal deposits show a passive margin signature, reflecting their derivation from the adjacent metamorphic and granitic basement rocks. The distal deposits properly indicate an active continental margin setting due to the additional supply of reworked volcaniclastic sediments. The proximal deposits indicate a minor degree of chemical weathering corresponding to fossil and sedimentological records of the basin, whereas the distal deposits show lower weathering intensity by reworking of unaltered volcaniclastic detritus from unstable volcanic and volcaniclastic terranes. Overall, this study highlights that compositional data obtained from a specific location and depositional environments may not describe the overall characteristic of the basin.
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Barnes, Christopher J., Jarosław Majka, Michał Bukała, Erika Nääs, and Sabine Rousku. "Detrital zircon U-Pb geochronology of a metasomatic calc-silicate in the Tsäkkok Lens, Scandinavian Caledonides." Geology, Geophysics and Environment 47, no. 1 (April 23, 2021): 21–31. http://dx.doi.org/10.7494/geol.2021.47.1.21.

Повний текст джерела
Анотація:
The Tsäkkok Lens of the Seve Nappe Complex in the Scandinavian Caledonides comprises eclogite bodies hosted within metasedimentary rocks. These rocks are thought to be derived from the outermost margin of Baltica along the periphery of the Iapetus Ocean, but detrital records from the sedimentary rocks are lacking.Many metasedimentary outcrops within the lens expose both well-foliated metapelitic rocks and massive calc-silicates. The contacts between these two lithologies are irregular and are observed to trend at all angles to the high-pressure foliation in the metapelites. Where folding is present in the metapelites, the calc-silicate rocks are also locally folded. These relationships suggest metasomatism of the metapelites during the Caledonian orogenesis. Zircon U-Pb geochronology was conducted on sixty-one zircon grains from a calc-silicate sample to investigate if they recorded the metasomatic event and to assess the detrital zircon populations. Zircon grains predominantly show oscillatory zoning, sometimes with thin, homogeneous rims that have embayed contacts with the oscillatory-zoned cores. The zircon cores yielded prominent early Stenian, Calymmian, and Statherian populations with a subordinate number of Tonian grains. The zircon rims exhibit dissolution-reprecipitation of the cores or new growth and provide ages that span similar time frames, indicating overprinting of successive tectonic events. Altogether, the zircon record of the calc-silicate suggests that the Tsäkkok Lens may be correlated to Neoproterozoic basins that are preserved in allochthonous positions within the northern extents of the Caledonian Orogen.
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Huang, Renbo, Zhiyuan He, and Johan De Grave. "Did a Late Paleoproterozoic-Early Mesoproterozoic Landmass Exist in the Eastern Cathaysia Block? New Evidence from Detrital Zircon U-Pb Geochronology and Sedimentary Indicators." Minerals 12, no. 10 (September 23, 2022): 1199. http://dx.doi.org/10.3390/min12101199.

Повний текст джерела
Анотація:
The South China Craton comprises the Yangtze and Cathaysia blocks and is one of the largest Precambrian continental blocks in East Asia. However, the early geological and geographical evolution of the Cathaysia block is relatively poorly understood, due to the sparse exposure of pre-Neoproterozoic rocks and reworking during Phanerozoic polyphase magmatism and metamorphism. In this contribution, we carried out detrital zircon U-Pb geochronology and sedimentary analyses on five Proterozoic meta-sedimentary rocks collected from the northeastern Cathaysia block, which belong to the previously defined Chencai, Mayuan, and Mamianshan Groups (strata). LA-ICP-MS U-Pb dating results of the detrital zircons show various ~1.85–1.35 Ga maximum depositional ages. They are significantly older than the previously constrained Neoproterozoic formation ages of these Proterozoic strata of northeastern Cathaysia, suggesting that their deposition and formation were probably initiated as early as the late Paleoproterozoic. Provenance analyses reveal that the late Paleoproterozoic to early Mesoproterozoic detrital zircons with igneous-origin were derived from in situ contemporary crystalline basements in eastern Cathaysia. In addition, by implication, the easternmost part of Cathaysia was probably an emerged area (i.e., the “proto-Cathaysia Land”) under active erosion. It had a ~NWW orientation and provided detrital sediments to the neighboring marine basin (i.e., the Cathaysia Sea) during the late Paleoproterozoic to early Mesoproterozoic. Finally, the Paleoproterozoic evolution of Cathaysia was involved in the assembly of the Nuna supercontinent. Our results, together with the published data, reveal a distinct late Paleoproterozoic (~1.8 Ga) detrital zircon age peak, which seems to support the view that eastern Cathaysia had close tectonic affinities with terranes such as the Precambrian terranes of current northern India, in the framework of the Nuna supercontinent reconstruction.
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Malone, David, John Craddock, Kacey Garber, and Jarek Trela. "Detrital zircon geochronology of the Aycross Formation (Eocene) near Togwotee Pass, western Wind River Basin, Wyoming." Mountain Geologist 54, no. 2 (April 2017): 69–85. http://dx.doi.org/10.31582/rmag.mg.54.2.69.

Повний текст джерела
Анотація:
The Aycross Formation is the basal unit of the Absaroka Volcanic Supergroup in the southern Absaroka Range and consists of volcanic sandstone, mudstone, breccia, tuff and conglomerate. The Aycross was deposited during the waning stages of the Laramide Orogeny and the earliest phases of volcanism in the Absaroka Range. U-Pb geo-chronology using laser ablation multicollector inductively coupled plasma mass spectrometry LA-ICP-MS was performed on detrital zircons collected from an Aycross sandstone bed at Falls Campground east of Togwotee Pass. The detrital zircon age spectrum ranged fom ca 47 to 2856 Ma. Peak ages, as indicated by the zircon age probability density plot are ca. 51, 61, and 72 Ma. Tertiary zircons were the most numerous (n = 32), accounting for 42% of the zircon ages spectrum. Of these 19 are Eocene, and 13 are Paleocene, which are unusual ages in the Wyoming-Idaho-Montana area. Mesozoic zircons (n = 21) comprise 27% of the age spectrum and range in age from 68–126 Ma; all but one being late Cretaceous in age. No Paleozoic zircons are present. Proterozoic zircons range in age from 1196–2483 Ma, and also consist of 27% of the age spectrum. The maximum depositional age of the Aycross Formation is estimated to be 50.05 +/− 0.65 Ma based on weighted mean of the eight youngest grains. The Aycross Formation detrital zircon age spectrum is distinct from that of other 49–50 Ma rocks in northwest Wyoming, which include the Hominy Peak and Wapiti Formations and Crandall Conglomerate. The Aycross must have been derived largely from distal westerly source areas, which include the late Cretaceous and Paleocene Bitteroot Lobe of the Idaho Batholith. In contrast, the middle Eocene units further to the north must have been derived from erosion of the Archean basement-cored uplift of the Laramide Foreland in southwest Montana.
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Malone, David, John Craddock, Eric Deck, Tenley Banik, and Brian Hampton. "Detrital zircon geochronology of quartzite clasts in the Permian Abo Formation, Sacramento Mountains, New Mexico, USA." Mountain Geologist 54, no. 2 (April 2017): 53–68. http://dx.doi.org/10.31582/rmag.mg.54.2.53.

Повний текст джерела
Анотація:
More than 2500 m of Paleozoic strata, ranging in age from Cambrian to Permian occur in the Sacramento Mountains of New Mexico, making these rocks the largest and most complete exposures of Paleozoic strata in North America. The core of the Sacramento Mountains reveals compressional structures associated with the Pennsylvanian-Permian Ancestral Rocky Mountain orogeny. The Permian Abo Formation is 120–450 m in thickness, and consists of interbedded sandstone, conglomerate, limestone and shale and rests above the Ancestral Rocky Mountain unconformity. U-Pb analysis of detrital zircons extracted from quartzite clasts in basal conglomerates reveal a maximum depositional age of their protolith to be 1110 ± 15 Ma. Most (∼40%) of the detrital zircon age spectrum is Grenville (1000–1300 Ma) in age, with a peak age of 1209 Ma. Midcontinent Granite-Rhyolite (1300–1500 Ma) ages comprise about 33% of the data, and have a peak age of 1431 Ma. Smaller age populations of Yavapai-Mazatzal (1600–1800 Ma; age peak =1676 Ma), Trans-Hudson (1800–2000 Ma; peak age = 1820 Ma), and Archean (>2.5 Ga, age peak = 2819 Ma) also are present. U-Pb detrital zircon ages from these quartzite clasts indicate that they were likely derived from the Proterozoic Lanoria Formation, which is exposed now in the Franklin Mountains >150 km to the south. The Lanoria is identical to the Abo clasts in terms of maximum depositional age and detrital zircon age peaks. The protolith sandstone of these quartzite clasts and quartzites of the Lanoria were derived from the Grenville high-lands of the Llano region of central Texas, and then transported west to the Rodinian continental margin at ∼1110 Ma, where they were eventually buried and metamorphosed to quartzite. These quartzites were subsequently uplifted and eroded during the Ancestral Rocky Mountain orogeny and transported north and west along the Pedernal Uplift to the adjacent Orogrande Basin during the early Permian.
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Barbeau, David L., Mihai N. Ducea, George E. Gehrels, Steven Kidder, Paul H. Wetmore, and Jason B. Saleeby. "U-Pb detrital-zircon geochronology of northern Salinian basement and cover rocks." Geological Society of America Bulletin 117, no. 3 (2005): 466. http://dx.doi.org/10.1130/b25496.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Awais, Muhammad, Muhammad Qasim, Javed Iqbal Tanoli, Lin Ding, Maryam Sattar, Mirza Shahid Baig, and Shahab Pervaiz. "Detrital Zircon Provenance of the Cenozoic Sequence, Kotli, Northwestern Himalaya, Pakistan; Implications for India–Asia Collision." Minerals 11, no. 12 (December 11, 2021): 1399. http://dx.doi.org/10.3390/min11121399.

Повний текст джерела
Анотація:
This study reported the detrital zircon U-Pb geochronology of the Cenozoic sequence exposed in Kotli, northwestern Himalaya, Pakistan, which forms part of the Kashmir foreland basin. The U-Pb detrital age patterns of the Paleocene Patala Formation show a major age cluster between ~130–290 Ma, ~500–1000 Ma and ~1000–1500 Ma, which mainly resembles the lesser and higher Himalayan sequence. However, the younger age pattern (~130–290 Ma) can be matched to the ages of the ophiolites exposed along the Indus–Tsangpo suture zone. In addition, two younger grains with 57 Ma and 55 Ma ages may indicate a contribution from the Kohistan-Ladakh arc. The detrital zircons in the upper Tertiary sequence show the increased input of younger detrital ages <100 Ma, with more pronounced peaks at ~36–58 Ma, ~72–94 Ma and ~102–166 Ma, indicating the strong resemblance to the Asian sources including the Kohistan–Ladakh arc, Karakoram block and Gangdese batholith. This provenance shift, recorded in the upper portion of Patala Formation and becoming more visible in the upper Tertiary clastic sequence (Kuldana and Murree formations), is related to the collision of the Indian and Asian plates in the northwestern Himalayas. Considering the age of the Patala Formation, we suggest that the Indian and Asian plates collided during 57–55 Ma in the northwestern Himalayas, Pakistan.
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Ross, Gerald M., and Randall R. Parrish. "Detrital zircon geochronology of metasedimentary rocks in the southern Omineca Belt, Canadian Cordillera." Canadian Journal of Earth Sciences 28, no. 8 (August 1, 1991): 1254–70. http://dx.doi.org/10.1139/e91-112.

Повний текст джерела
Анотація:
We address two problems of Cordilleran geology in this study using U–Pb dating of single detrital zircon grains from metasedimentary rocks: the provenance of the Windermere Supergroup, and the age and correlation of metasedimentary rocks within the Shuswap Complex that are at high metamorphic grade. Because some of these rocks are clearly of North American affinity, the ages of zircons provide indirect constraints on the age and distribution of continental basement from which the zircons were derived.A consistent pattern emerges from ages of about 50 grains from six rocks. Nearly all samples analyzed (48–53°N) are characterized by a bimodal distribution of zircon ages of 1.65–2.16 Ga and > 2.5 Ga, with a distinct lack of ages between 2.1 and 2.5 Ga. Exceptions to this pattern are young zircons from two samples, from Valhalla and Grand Forks – Kettle complexes of southeastern British Columbia, that have grains 1435 ± 35 and 650 ± 15 Ma, respectively. These younger grains are inferred to have been derived from magmatic rocks, and they have no obvious source in either the Canadian Shield or the Alberta subsurface basement to the east. The Early Proterozoic and Archean ages of detrital zircons resemble those of dated basement rocks beneath the Alberta Basin as well as basement exposed within the Cordilleran hinterland (gneisses of Thor–Odin, Frenchman Cap, and Malton regions). However, 2.1–2.4 Ga rocks that are extensive in the subsurface of northern Alberta are not represented in the inventory of detrital zircon ages presented in this paper.This pattern suggests that much of the Cordilleran basement between these latitudes is underlain by Archean crust of the Hearne–Wyoming provinces that may be mantled to the west by an orogenic–magmatic belt of Early Proterozoic (1.7–1.9 Ga) age which may largely have been parallel to the present Cordilleran orogen.
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Verhaegen, Jasper, Hilmar von Eynatten, István Dunkl, and Gert Jan Weltje. "Detrital zircon geochronology and heavy mineral analysis as complementary provenance tools in the presence of extensive weathering, reworking and recycling: the Neogene of the southern North Sea Basin." Geological Magazine 158, no. 9 (March 30, 2021): 1572–84. http://dx.doi.org/10.1017/s0016756821000133.

Повний текст джерела
Анотація:
AbstractHeavy mineral analysis is a long-standing and valuable tool for sedimentary provenance analysis. Many studies have indicated that heavy mineral data can also be significantly affected by hydraulic sorting, weathering and reworking or recycling, leading to incomplete or erroneous provenance interpretations if they are used in isolation. By combining zircon U–Pb geochronology with heavy mineral data for the southern North Sea Basin, this study shows that the classic model of sediment mixing between a northern and a southern source throughout the Neogene is more complex. In contrast to the strongly variable heavy mineral composition, the zircon U–Pb age spectra are mostly constant for the studied samples. This provides a strong indication that most zircons had an initial similar northern source, yet the sediment has undergone intense chemical weathering on top of the Brabant Massif and Ardennes in the south. This weathered sediment was later recycled into the southern North Sea Basin through local rivers and the Meuse, leading to a weathered southern heavy mineral signature and a fresh northern heavy mineral signature, yet exhibiting a constant zircon U–Pb age signature. Thus, this study highlights the necessity of combining multiple provenance proxies to correctly account for weathering, reworking and recycling.
Стилі APA, Harvard, Vancouver, ISO та ін.
47

BRADSHAW, JOHN D., ALAN P. M. VAUGHAN, IAN L. MILLAR, MICHAEL J. FLOWERDEW, RUDOLPH A. J. TROUW, C. MARK FANNING, and MARTIN J. WHITEHOUSE. "Permo-Carboniferous conglomerates in the Trinity Peninsula Group at View Point, Antarctic Peninsula: sedimentology, geochronology and isotope evidence for provenance and tectonic setting in Gondwana." Geological Magazine 149, no. 4 (October 24, 2011): 626–44. http://dx.doi.org/10.1017/s001675681100080x.

Повний текст джерела
Анотація:
AbstractField observations from the Trinity Peninsula Group at View Point on the Antarctic Peninsula indicate that thick, southward-younging and overturned clastic sedimentary rocks, comprising unusually coarse conglomeratic lenses within a succession of fine-grained sandstone–mudstone couplets, are the deposits of debris and turbidity flows on or at the foot of a submarine slope. Three detrital zircons from the sandstone–mudstone couplets date deposition at 302 ± 3 Ma, at or shortly after the Carboniferous–Permian boundary. Conglomerates predominantly consist of quartzite and granite and contain boulders exceeding 500 mm in diameter. Zircons from granitoid clasts and a silicic volcanic clast yield U–Pb ages of 466 ± 3 Ma, 373 ± 5 Ma and 487 ± 4 Ma, respectively and have corresponding average εHft values between +0.3 and +7.6. A quartzite clast, conglomerate matrix and sandstone interbedded with the conglomerate units have broadly similar detrital zircon age distributions and Hf isotope compositions. The clast and detrital zircon ages match well with sources within Patagonia; however, the age of one granite clast and the εHf characteristics of some detrital zircons point to a lesser South Africa or Ellsworth Mountain-like contribution, and the quartzite and granite-dominated composition of the conglomerates is similar to upper Palaeozoic diamictites in the Ellsworth Mountains. Unlike detrital zircons, large conglomerate clasts limit possible transport distance, and suggest sedimentation took place on or near the edge of continental crust. Comparison with other upper Palaeozoic to Mesozoic sediments in the Antarctic Peninsula and Patagonia, including detrital zircon composition and the style of deformation, suggests deposition of the Trinity Peninsula Group in an upper plate basin on an active margin, rather than a subduction-related accretionary setting, with slow extension and rifting punctuated by short periods of compression.
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Gartmair, Gisela, Milo Barham, and Christopher L. Kirkland. "Detrital Zircon Perspectives on Heavy Mineral Sand Systems, Eucla Basin, Australia." Economic Geology 117, no. 2 (March 1, 2022): 383–99. http://dx.doi.org/10.5382/econgeo.4871.

Повний текст джерела
Анотація:
Abstract Southern Australia’s Cenozoic Eucla basin contains world-class strandline heavy mineral deposits. This study links detrital zircon U-Pb geochronology and heavy mineral compositions from four mineral sand prospects, and a suite of published deposits, to bounding Archean to Neoproterozoic crustal areas. A variable number of distinct sediment sources is recorded from each prospect’s detrital zircon age spectrum. This variability in zircon ages, quantified using a Shannon-Weaver test, serves as a metric of source region heterogeneity. Greater zircon age heterogeneity correlates with heavy mineral enrichment. Enhanced heavy mineral yields reflect retention of resistate over labile minerals—a function of greater sediment transport, reworking, and upgrading processes that parallel those that result in detrital zircon age polymodality. In this case study, greater reworking in intermediate storage sites and transport by longshore processes, eastward along the ~1,000 km spanned by the study sites, corresponds to the direction of progressive heavy mineral enrichment identified in zircon ages and mineral compositions. This approach is a proxy for the duration minerals have spent in the sedimentary system and provides an important perspective for understanding heavy mineral sands.
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Xiong, Chen, Yaoling Niu, Hongde Chen, Anqing Chen, Chenggong Zhang, Feng Li, Shuai Yang, and Shenglin Xu. "Detrital zircon U–Pb geochronology and geochemistry of late Neoproterozoic – early Cambrian sedimentary rocks in the Cathaysia Block: constraint on its palaeo-position in Gondwana supercontinent." Geological Magazine 156, no. 9 (March 6, 2019): 1587–604. http://dx.doi.org/10.1017/s0016756819000013.

Повний текст джерела
Анотація:
AbstractWe present updated U–Pb ages and Hf isotopic compositions of detrital zircons and whole-rock geochemical data to investigate the provenance and tectonic setting of late Neoproterozoic and early Cambrian sandstones from the Cathaysia Block, in order to offer new constraints on its tectonic evolution and its palaeo-position within the supercontinent. The source rocks for the studied sandstones were dominated by felsic–intermediate materials with moderate weathering history. U–Pb dating results show major populations atc. 2500 Ma, 1000–900 Ma and 870–716 Ma with subordinate peaks at 655–532 Ma, consistent with the global Neoarchean continental crust growth, assembly and break-up of Rodinia, and Pan-African Event associated with the formation of Gondwana. Zircon U–Pb ages and Hf isotopic data suggest that most derived from exotic terranes once connected to the Cathaysia Block. Using whole-rock geochemical analysis, it was determined that the studied sedimentary rocks were deposited in a passive continental margin and the Cathaysia and Yangtze blocks were part of the same continent; no Cambrian ocean existed between them. Compiling a detrital zircon dataset from Qiangtang, northern India, the Lhasa Terrane and Western Australia, the Cathaysia Block seems to be more similar to the Qiangtang and western part of the northern India margin, instead of having a direct connection with the Lhasa Terrane and Western Australia in the Gondwana reconstruction during the late Neoproterozoic and Cambrian eons.
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Zhu, Bowen, and Zhigang Zeng. "Detrital Zircon Provenance in the Sediments in the Southern Okinawa Trough." Journal of Marine Science and Engineering 10, no. 2 (January 21, 2022): 142. http://dx.doi.org/10.3390/jmse10020142.

Повний текст джерела
Анотація:
The provenance of sediments in the Southern Okinawa Trough since the late Holocene has been a controversial scientific issue during the past 20 years. Previous studies based on isotope proxies generally indicated Taiwanese rivers as the primary source in the Southern Okinawa Trough since the late Holocene. Based on the zircon U-Pb geochronology, this study identified how sediments from the Yangtze River/East China Sea shelf had contributed significantly to the Southern Okinawa Trough in the past 624 a BP. Notably, this study found two Paleoarchean zircon grains, which indicated they originated from older orogenic belts. These data shed new light on the provenance of sediments, and a partial supply from the mainland of China cannot be excluded.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії