Добірка наукової літератури з теми "TWO-QUDIT SYSTEM"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "TWO-QUDIT SYSTEM".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "TWO-QUDIT SYSTEM"

1

Mansour, M., M. Daoud, and L. Bouhouch. "Absolutely maximally entangled states from phase states." International Journal of Quantum Information 17, no. 01 (February 2019): 1950009. http://dx.doi.org/10.1142/s0219749919500096.

Повний текст джерела
Анотація:
We derive absolutely maximally entangled (AME) states from phase states for a multi-qudit system whose dynamics is governed by a two-qudit interaction Hamiltonian of Heisenberg type. AME states are characterized by being maximally entangled for all bipartitions of the multi-qudit system and present absolute multipartite entanglement. The key ingredient of this approach is the theory of phase states for finite-dimensional systems (qudits). We define further the unitary phase operators of [Formula: see text]-qudit systems and we give next the corresponding separable phase states. Using a qudit–qudit Hamiltonian acting as entangling operator on separable phase states, we generate entangled phase states. Finally, from the labeled entangled phase states, we derive the absolutely maximally entangled states.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Man’ko, V. I., and L. A. Markovich. "Deformed Entropic and Information Inequalities forX-States of Two-Qubit and Single Qudit States." Advances in Mathematical Physics 2015 (2015): 1–4. http://dx.doi.org/10.1155/2015/717621.

Повний текст джерела
Анотація:
Theq-deformed entropies of quantum and classical systems are discussed. Standard andq-deformed entropic inequalities forX-states of the two-qubit system and the state of single qudit withj=3/2are presented.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Man'ko, V. I., and L. A. Markovich. "New Minkowski type inequalities and entropic inequalities for quantum states of qudits." International Journal of Quantum Information 12, no. 07n08 (November 2014): 1560021. http://dx.doi.org/10.1142/s0219749915600217.

Повний текст джерела
Анотація:
The two-parameter Minkowski like inequality written for composite quantum system state is obtained for arbitrary Hermitian non-negative matrix with trace equal to unity. The inequality can be used as entropic and information inequality for density matrix of noncomposite finite quantum system, e.g. for a single qudit state. The analogs of strong subadditivity condition for the single qudit is discussed in context of obtained Minkowski like inequality.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ducuara, Andrés Felipe, Javier Madroñero, and John Henry Reina. "On the Activation of Quantum Nonlocality." Universitas Scientiarum 21, no. 2 (May 16, 2016): 129. http://dx.doi.org/10.11144/javeriana.sc21-2.otao.

Повний текст джерела
Анотація:
<p>We report on some quantum properties of physical systems, namely, entanglement, nonlocality, k-copy nonlocality (superactivation of nonlocality), hidden nonlocality (activation of nonlocality through local filtering) and the activation of nonlocality through tensoring and local filtering. The aim of this work is two-fold. First, we provide a review of the numerical procedures that must be followed in order to calculate the aforementioned properties, in particular, for any two-qubit system, and reproduce the bounds for two-qudit Werner states. Second, we use such numerical tools to calculate new bounds of these properties for two-qudit Isotropic states and two-qubit Hirsch states.</p>
Стилі APA, Harvard, Vancouver, ISO та ін.
5

FUJII, KAZUYUKI, KUNIO FUNAHASHI, and TAKAYUKI KOBAYASHI. "JARLSKOG'S PARAMETRIZATION OF UNITARY MATRICES AND QUDIT THEORY." International Journal of Geometric Methods in Modern Physics 03, no. 02 (March 2006): 269–83. http://dx.doi.org/10.1142/s0219887806001144.

Повний текст джерела
Анотація:
In the paper (math–ph/0504049) Jarlskog gave an interesting simple parametrization to unitary matrices, which was essentially the canonical coordinate of the second kind in the Lie group theory (math–ph/0505047). In this paper we apply the method to a quantum computation based on multilevel system (qudit theory). Namely, by considering that the parametrization gives a complete set of modules in qudit theory, we construct the generalized Pauli matrices, which play a central role in the theory and also make a comment on the exchange gate of two–qudit systems. Moreover, we give an explicit construction to the generalized Walsh–Hadamard matrix in the case of n = 3, 4, and 5. For the case of n = 5, its calculation is relatively complicated. In general, a calculation to construct it tends to become more and more complicated as n becomes large. To perform a quantum computation the generalized Walsh–Hadamard matrix must be constructed in a quick and clean manner. From our construction it may be possible to say that a qudit theory with n ≥ 5 is not realistic. This paper is an introduction toward Quantum Engineering.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Karakaş, Mikail Doğuş, and Azmi Gençten. "Construction of Two-Ququart Quantum Entanglement by Using Magnetic Resonance Selective Pulse Sequences." Zeitschrift für Naturforschung A 73, no. 10 (October 25, 2018): 911–18. http://dx.doi.org/10.1515/zna-2017-0441.

Повний текст джерела
Анотація:
AbstractA d-dimensional unit of information in quantum computing is called a qudit. For d = 4 there exist four magnetic quantum numbers of spin-3/2. These four levels can be called ququarts. Then, for the SI (S = 3/2, I = 3/2) spin system, 16 two-ququart states are obtained. In this study, first, two-ququart entangled states are constructed by using matrix representation of Hadamard and CNOT logic gates. Two-ququart entangled states are also constructed by using magnetic resonance selective pulse sequences of Hadamard and CNOT logic gates. Then, a generalised expression is obtained for the transformation of two-qudit entangled states between each other. This expression is applied for two-ququart entangled states.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Mansour, Mostafa, and Mohammed Daoud. "Stabilizer codes and equientangled bases from phase states." International Journal of Modern Physics B 31, no. 20 (August 10, 2017): 1750132. http://dx.doi.org/10.1142/s0217979217501326.

Повний текст джерела
Анотація:
We develop a comprehensive approach of stabilizer codes and provide a scheme generating equientangled basis interpolating between the product basis and maximally entangled basis. The key ingredient is the theory of phase states for finite-dimensional systems (qudits). In this respect, we derive entangled phase states for a multiqudit system whose dynamics is governed by a two-qudit interaction Hamiltonian. We construct the stabilizer codes for this family of entangled phase states. The stabilizer phase states are defined as the common eigenvectors of the stabilizer group generators which are explicitly specified. Furthermore, we construct equally entangled bases from bipartite as well as multipartite entangled qudit phase states.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

TIAN, XIU-LAO, GUO-FANG SHI, and Yong ZHAO. "QUANTUM CHANNELS OF THE QUTRIT STATE TELEPORTATION." International Journal of Quantum Information 09, no. 03 (April 2011): 893–901. http://dx.doi.org/10.1142/s0219749911007502.

Повний текст джерела
Анотація:
Qudit quantum system can carry more information than that of qubit, the teleportation of qudit state has significance in quantum information task. We propose a method to teleport a general qutrit state (three-level state) and discuss the necessary and sufficient condition for realizing a successful and perfect teleportation, which is determined by the measurement matrix Tα and the quantum channel parameter matrix (CPM) X. By using this method, we study the channels of two-qutrit state and three-qutrit state teleportation.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Achkir, O., M. Daoud, and M. Mansour. "Generalized graph states and mutually unbiased bases from multi-qudits phase states." Modern Physics Letters B 31, no. 17 (June 2017): 1750183. http://dx.doi.org/10.1142/s0217984917501834.

Повний текст джерела
Анотація:
The description of qudits in a formalism based on a generalized variant of Weyl–Heisenberg algebras is discussed. The unitary phase operators for a multi-qudit system and the corresponding phase states (the eigenstates of the phase operator) are constructed. We discuss the dynamics of multi-qudit phase states governed by a generalized Hamiltonian involving one- and two-body interactions which offer a remarkable connection between phase states, generalized graph states and the mutually unbiased bases. The entangled phase states are shown to possess the following properties simultaneously, namely the mutually unbiasedness of phase states resulting from the one-body generalized oscillator Hamiltonian and the entanglement properties of generalized graph states resulting from the two-body interaction Hamiltonian.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Zhou, Tao, Jing Xin Cui, Xiaohua Wu, and Gui Lu Long. "Multicopy programmable discriminators between two unknown qudit states with group-theoretic approach." Quantum Information and Computation 12, no. 11&12 (November 2012): 1017–33. http://dx.doi.org/10.26421/qic12.11-12-9.

Повний текст джерела
Анотація:
The discrimination between two unknown states can be performed by a universal programmable discriminator, where the copies of the two possible states are stored in two program systems respectively and the copies of data, which we want to confirm, are provided in the data system. In the present paper, we propose a group-theretic approach to the multi-copy programmable state discrimination problem. By equivalence of unknown pure states to known mixed states and with the representation theory of $U(n)$ group, we construct the Jordan basis to derive the analytical results for both the optimal unambiguous discrimination and minimum-error discrimination. The POVM operators for unambiguous discrimination and orthogonal measurement operators for minimum-error discrimination are obtained. We find that the optimal failure probability and minimum-error probability for the discrimination between the mean input mixd states are dependent on the dimension of the unknown qudit states. We applied the approach to generalize the results of He and Bergou (2007) from qubit to qudit case, and we further solve the problem of programmable dicriminators with arbitrary copies of unknown states in both program and data systems.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "TWO-QUDIT SYSTEM"

1

KALSON, SHWETA, and ANCHAL SINGH. "A FEW ENTANGLEMENT CRITERION FOR TWO-QUBIT AND TWO-QUDIT SYSTEMS BASED ON REALIGNMENT OPERATION." Thesis, 2022. http://dspace.dtu.ac.in:8080/jspui/handle/repository/19614.

Повний текст джерела
Анотація:
It is known that realignment crierion is necessary but not a sufficient criterion even for a two-qubit system. We have derived necessary and sufficient condition based on realignment operation for a particular class of two-qubit system and thus solved this problem partially for two-qubit system. We have shown that the lower bound of the trace norm of realigned form of the particular form of the density matrix exists if and only if the two-qubit state is entangled. The derived necessary and sufficient condition detects two-qubit entangled states, which are not detected by the realignment criterion. Further, we have obtained the upper bound of the minimum singular value of the realigned form of the density matrix for the d ⊗ d dimensional separable states. Moreover, we provide the geometrical interpretation of the derived separability criterion for d ⊗ d dimensional system. Moreover, we show that our criterion may also detect bound entangled state. Our criterion is beneficial in the sense that it requires to calculate only minimum singular value of the realigned matrix while on the other hand realignment criterion requires all singular values of the realigned matrix. Thus, our criterion has computational advantage over the realignment criterion.
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "TWO-QUDIT SYSTEM"

1

Türkyolu, Melike, and Azmi Gençten. "An investigation of SI (S=5/2, I=5/2) spin system as two qudit quantum states." In TURKISH PHYSICAL SOCIETY 35TH INTERNATIONAL PHYSICS CONGRESS (TPS35). AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5135424.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Schwarz, Sacha, Banz Bessire, Alberto Montina, Stefan Wolf, Yeong-Cherng Liang, and Andre Stefanov. "Nonlocal correlations in frequency entangled two-qudit systems." In 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC). IEEE, 2017. http://dx.doi.org/10.1109/cleoe-eqec.2017.8087314.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії