Добірка наукової літератури з теми "Twisted waveguides"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Twisted waveguides".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Twisted waveguides"

1

Briet, Philippe, Hynek Kovařík, and Georgi Raikov. "Scattering in twisted waveguides." Journal of Functional Analysis 266, no. 1 (January 2014): 1–35. http://dx.doi.org/10.1016/j.jfa.2013.09.026.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kovařík, Hynek, and Andrea Sacchetti. "Resonances in twisted quantum waveguides." Journal of Physics A: Mathematical and Theoretical 40, no. 29 (July 3, 2007): 8371–84. http://dx.doi.org/10.1088/1751-8113/40/29/012.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Shyroki, Dzmitry M. "Exact Equivalent Straight Waveguide Model for Bent and Twisted Waveguides." IEEE Transactions on Microwave Theory and Techniques 56, no. 2 (2008): 414–19. http://dx.doi.org/10.1109/tmtt.2007.914637.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Wilson, J. L., Cheng Wang, A. E. Fathy, and Y. W. Kang. "Analysis of Rapidly Twisted Hollow Waveguides." IEEE Transactions on Microwave Theory and Techniques 57, no. 1 (January 2009): 130–39. http://dx.doi.org/10.1109/tmtt.2008.2009042.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ekholm, T., H. Kovařík, and D. Krejčiřík. "A Hardy Inequality in Twisted Waveguides." Archive for Rational Mechanics and Analysis 188, no. 2 (February 5, 2008): 245–64. http://dx.doi.org/10.1007/s00205-007-0106-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Briet, Philippe, Hiba Hammedi, and David Krejčiřík. "Hardy Inequalities in Globally Twisted Waveguides." Letters in Mathematical Physics 105, no. 7 (June 6, 2015): 939–58. http://dx.doi.org/10.1007/s11005-015-0768-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kirsch, Werner, David Krejčiřík, and Georgi Raikov. "Lifshits Tails for Randomly Twisted Quantum Waveguides." Journal of Statistical Physics 171, no. 3 (March 21, 2018): 383–99. http://dx.doi.org/10.1007/s10955-018-2001-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Bruneau, Vincent, Pablo Miranda, and Nicolas Popoff. "Resonances near thresholds in slightly twisted waveguides." Proceedings of the American Mathematical Society 146, no. 11 (July 23, 2018): 4801–12. http://dx.doi.org/10.1090/proc/14141.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Karpierz, M. A., K. A. Brzdąkiewicz, and Q. V. Nguyen. "Modeling of Spatial Solitons in Twisted Nematics Waveguides." Acta Physica Polonica A 103, no. 2-3 (February 2003): 169–75. http://dx.doi.org/10.12693/aphyspola.103.169.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Karpierz, Mirosław, Marek Sierakowski, and Tomasz Wolinski. "Light Beam Propagation in Twisted Nematics Nonlinear Waveguides." Molecular Crystals and Liquid Crystals 375 (2002): 313–20. http://dx.doi.org/10.1080/713738372.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Twisted waveguides"

1

Leclerc, Augustin. "Calculs de mοdes électrοmagnétiques guidés dans des guides d'οndes tοrsadés et οuverts". Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMIR28.

Повний текст джерела
Анотація:
Cette thèse explore la modélisation et le calcul des modes électromagnétiques (EM) dans des guides d'ondes de géométries complexes, notamment dans des câbles électriques torsadés en milieux ouverts. L'objectif est de développer des méthodes numériques pour résoudre les équations de Maxwell afin de mieux comprendre la propagation des champs électromagnétiques dans des configurations réalistes. Cette étude est motivée par les enjeux liés à la réduction du rayonnement électromagnétique et à l'amélioration des performances des câbles en termes de confinement des champs. Nous traitons deux principales configurations : les guides d’ondes droits et les guides d'ondes torsadés. Pour les guides droits, des méthodes semi-analytiques sont mises en œuvre, notamment pour les câbles coaxiaux, permettant de tester les modèles numériques. Nous étendons ces méthodes aux guides d'ondes ouverts, où des conditions aux limites absorbantes (CLA) sont introduites pour modéliser un environnement infini en limitant les réflexions parasites. Dans les câbles torsadés, une géométrie hélicoïdale est exploitée afin de reformuler les équations de propagation des ondes EM dans un cadre numérique adapté, permettant d'obtenir des simulations en basse fréquence. Un travail sur la construction de CLA dans ce cadre a également été initié. Les résultats obtenus fournissent une meilleure compréhension des phénomènes électromagnétiques à basse fréquence et ouvrent des perspectives pour la conception de dispositifs plus performants et l'étude des systèmes électromagnétiques dans des environnements hétérogènes réels
This thesis explores the modelling and calculation of electromagnetic (EM) modes in waveguides with complex geometries, particularly in twisted electric cables in open environments. The aim is to develop numerical methods for solving Maxwell's equations in order to better understand the propagation of electromagnetic fields in realistic configurations. This study is motivated by the challenges of reducing electromagnetic radiation and improving cable performance in terms of field containment. We deal with two main configurations: straight waveguides and twisted waveguides. For straight waveguides, semi-analytical methods are used, particularly for coaxial cables, to test numerical models by comparison with precise solutions. We extend these methods to open waveguides, where absorbing boundary conditions (ABC) are introduced to model an infinite environment while limiting spurious reflections. In twisted cables, a helical geometry is exploited to reformulate the EM wave propagation equations in a suitable numerical framework, enabling low-frequency simulations to be obtained. Work on the construction of ABCs within this framework has also been initiated. The results that we obtain provide a better understanding of low-frequency electromagnetic phenomena and open up prospects for the design of more efficient devices and the study of electromagnetic systems in real heterogeneous environments
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hammedi, Hiba. "Analyse spectrale des guides d'ondes "twistés"." Thesis, Toulon, 2016. http://www.theses.fr/2016TOUL0001/document.

Повний текст джерела
Анотація:
Dans cette thèse, nous étudions les propriétés spectrales des guides d'onde quantiques tridimensionnels (les tubes) perturbés. Nous considérons, principalement deux types différents de perturbation : Dans le premier type, il s’agit de la perturbation d’une déformation géométrique. Plus précisément, nous étudions l’opérateur de Laplace de Dirichlet défini dans un tube déformé à l’aide d’une torsion constante perturbée localement par une fonction de même signe (torsion répulsive).Le deuxième type de perturbation consiste à changer localement les conditions aux bords imposées sur la frontière du guide d’onde. En effet, il s’agit de l’étude du Laplacien avec des conditions aux bords mixtes.Nous imposons des conditions aux bords de Dirichlet par tout sur la frontière du guide d’onde, sauf sur une partie bornée où nous considérons des conditions aux bords de Neumann. D’une part, nous examinons les tubes droits (sans déformations géométriques) dans le but de comprendre l’effet de la perturbation des conditions aux bords. D’autre part, nous étudions les tubes torsadés afin d’établir une comparaison entre les effets opposés des deux perturbations (géométrique et des conditions aux bords)
In this thesis we study the spectral properties of perturbed 3D quantum waveguides (tubes). We mainly consider two types of perturbation:The first type is a geometric perturbation. More precisely, we study the Laplace operator with Dirichlet boundary conditions defined in a twisted tube. The twist that we consider is a constant one that has been locally perturbed by a function of same sign (a repulsive twist). The second type of perturbation is done by changing locally the boundary conditions. In fact, we study the Laplacian operator with Dirichlet conditions everywhere on the boundary of the tube except on a bounded part where we consider the Neumann conditions. In one hand we study the straight tubes (with no geometric perturbations) to figure out the effect of perturbation that occurred in the boundary conditions. In the other hand we study the twisted tubes to establish a comparison between the opposite effects of these two types of perturbation (the geometric one and the change that we imposed on the boundary conditions)
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Van, Gassen Kwinten. "Application of Twist Symmetry to a Cylindrical Dielectric Waveguide." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-286829.

Повний текст джерела
Анотація:
The application of higher order symmetry to waveguide design is an active field and is showing evidence of improvement over traditional waveguide designs. There are two forms of higher symmetry: glide symmetry and twist symmetry. Glide and twist symmetry have previously been applied to bounded waveguide, and a recent work applied glide symmetry to the design of a dielectric slab waveguide. This work is the first application of twist symmetry to the design of a dielectric waveguide. In this work a twist symmetric dielectric rod waveguide was designed and simulated using the eigenmode, truncated structure and multimode method. The twist symmetric dielectric rod waveguide is demonstrated to have stopbands, analogous to those demonstrated in metal waveguides based on glide symmetry. In addition the waveguide also shows circular polarization based birefringence and circular polarization based stopbands. A novel unit cell was created which demonstrates the phenomenology of dielectric twist symmetry in the X-band. The dispersion diagram of this structure is calculated using the eigenmode and multimode method and the S-parameters of the novel waveguide were calculated using the truncated structure method. There is strong agreement in the propagation and attenuation characteristics from all three computational methods. The novel unit cell has potential applications as an inline polarization based filter for the fundamental HE11 mode of dielectric rod waveguides. With potential applications to communication and sensing systems.
Användandet av högre symmetrier I vågledardesigner är ett aktivt forskningsfält och fördelar över traditionell vågledardesign har påvisats. Det finns två typer av högre symmetri: glid- och vridsymmetri. Glid- och vridsymmetri har tidigare applicerats på stängda vågledare och glidsymmetri har nyligen applicerats på en dielektrisk vågledare. I detta arbete appliceras vridsymmetri i designen av en dielektrisk vågledare för första gången. I det här arbetet designas och simuleras en vridsymmetrisk dielektrisk med hjälp av egenmods, trunkerad-struktur- och mutimods-metoderna. Den vridsymmetriska dielektriska vågledaren påvisar stoppband, liknande de som tidigare visats i glidsymmetriska strukturer. Vidare visar strukturen cirkulärpolariserad dubbelbrytning och olika stoppband för de två cirkulära polarisationerna. En ny enhetscell togs fram vilken påvisade fenomenen kopplade till dielektrisk vridsymmetri för X-bands frekvenser. Dispersionsdiagrammet för strukturen beräknades med hjälp av egenmods- och multimodsmetoderna, och S-parametrarna för vågledaren beräknades med en trunkerad struktur. Resultaten från de olika metoderna stämmer väl överens gällande propagering och försvagning. Enhetscellen finner användning som polarisationsfilter för den fundamentale HE11-moden av dielektriska cirkulära vågledare och kan appliceras i kommunikations- och avkänningssystem.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Wilson, Joshua Lee. "Investigation of Propagation Characteristics of Twisted Hollow Waveguides for Particle Accelerator Applications." 2008. http://trace.tennessee.edu/utk_graddiss/537.

Повний текст джерела
Анотація:
A new class of accelerating structures employing a uniformly twisted waveguide is investigated. Twisted waveguides of various cross-sectional geometries are considered and analyzed. It is shown that such a twisted waveguide can support waves that travel at a speed slower than the speed of light c. The slow-wave properties of twisted structures are of interest because these slow-wave electromagnetic fields can be used in applications such as electron traveling wave tubes and linear particle accelerators. Since there is no exact closed form solution for the electromagnetic fields within a twisted waveguide or cavity, several previously proposed approximate methods are examined, and more efficient approaches are developed. It is found that the existing perturbation theory methods yield adequate results for slowly twisted structures; however, our efforts here are geared toward analyzing rapidly twisted structures using modified finite difference methods specially suited for twisted structures. Although the method can handle general twisted structures, three particular cross sections are selected as representative cases for careful analysis. First, a slowly twisted rectangular cavity is analyzed as a reference case. This is because its shape is simple and perturbation theory already gives a good approximate solution for such slow twists rates. Secondly, a symmetrically notched circular cross section is investigated, since its longitudinal cross section is comparable to the well known disk-loaded cavity (used in many practical accelerator designs, including SLAC). Finally, a "dumbbell" shaped cross section is analyzed because of its similarity to the well-known TESLA-type accelerating cavity, which is of great importance because of its wide acceptance as a superconducting cavity. To validate the results of the developed theory and our extensive simulations, the newly developed numerical models are compared to commercial codes. Also, several prototypes are developed employing the three basic shapes discussed previously. Bench measurements are performed on the prototype cavities to evaluate dispersion by measuring the field distribution along these cavities. The measurement results are compared to the simulations and theoretical results, and good agreement is shown. Once validated, the developed models are used to design twisted accelerating structures with specific phase velocities and good accelerating performance.
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Twisted waveguides"

1

Liu, Peng, Jia-Lin Li, Zhi-Peng Li, and Wen-Jie Li. "Design of Double-Ridge-Waveguide Twist for Ultra-Wideband Application." In 2024 54th European Microwave Conference (EuMC), 200–203. IEEE, 2024. http://dx.doi.org/10.23919/eumc61614.2024.10732146.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

BRIET, P. "SPECTRAL ANALYSIS FOR TWISTED WAVEGUIDES." In Proceedings of the 30th Conference. WORLD SCIENTIFIC, 2011. http://dx.doi.org/10.1142/9789814338745_0006.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Morozko, Fyodor, Andrey Novitsky, and Alina Karabchevsky. "Modal theory for twisted waveguides." In Metamaterials XIII, edited by Kevin F. MacDonald, Anatoly V. Zayats, and Isabelle Staude. SPIE, 2022. http://dx.doi.org/10.1117/12.2620784.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Usuga, Mario A., Felipe Beltran-Mejia, Cristiano Cordeiro, and Idelfonso Tafur Monroy. "OAM mode converter in twisted fibers." In Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/bgpp.2014.jm5a.4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Vlasov, A. N., S. Cooke, B. Levush, T. M. Antonsen, and D. Chernin. "Transverse TWT with twisted hollow waveguides." In 2010 IEEE 37th International Conference on Plasma Sciences (ICOPS). IEEE, 2010. http://dx.doi.org/10.1109/plasma.2010.5534278.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Wilson, Joshua L., Yoon W. Kang, and Aly E. Fathy. "Twisted waveguides for particle accelerator applications." In 2009 IEEE MTT-S International Microwave Symposium Digest (MTT). IEEE, 2009. http://dx.doi.org/10.1109/mwsym.2009.5165649.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Chattopadhyay, Rik, and Shyamal Kumar Bhadra. "OAM carrying mode at Dirac point in Twisted Hollow core PCF." In Bragg Gratings, Photosensitivity and Poling in Glass Waveguides and Materials. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/bgppm.2018.jtu5a.71.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Derbov, Vladimir L., and Aleksey I. Bychenkov. "Astigmatic twisted beams: reducing the peak intensity in high-power waveguides." In Saratov Fall Meeting '99, edited by Vladimir L. Derbov, Leonid A. Melnikov, and Vladimir P. Ryabukho. SPIE, 2000. http://dx.doi.org/10.1117/12.380100.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Krautschik, Christof G., George I. Stegeman, and Roger H. Stolen. "Phase-sensitive switching in a rocking rotator fiber filter." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/oam.1992.tha3.

Повний текст джерела
Анотація:
To date all-optical switching experiments in fibers and channel waveguides have relied on having a high intensity beam switch itself between two waveguides or two polarization states or on switching a low intensity beam by a strong control beam. We demonstrate for the first time, to our knowledge, phase-sensitive switching in a periodically twisted birefringent fiber where the switching of a strong signal beam is controlled by the phase of a weak control beam. The switching was implemented by using 30 ps pulses from a dye laser tuned to the resonant filter wavelength of 590 nm. The fiber was cut to a coupling length of 185 cm, and a strong signal beam, which contained 90% of the input power, was launched along one of the two principal axes. The remaining 10% was coupled orthogonal to the signal polarization direction. The phase difference between the two polarization states was controlled by a Soleil–Babinet compensator. When the phase was varied between 0 and 2π, phase-sensitive switching was observed at input powers of 1.3 kW. The contrast of the bar state could be varied between 22% and 75% of the input power by using the configuration described above. The phase-sensitive process vanished at input powers much smaller than the critical power.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kang, Yoon W. "Twisted waveguide accelerating structure." In The ninth workshop on advanced accelerator concepts. AIP, 2001. http://dx.doi.org/10.1063/1.1384365.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Twisted waveguides"

1

Wilson, Joshua Lee. Investigation of Propagation Characteristics of Twisted Hollow Waveguides for Particle Accelerator Applications. Office of Scientific and Technical Information (OSTI), December 2008. http://dx.doi.org/10.2172/1010552.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії