Добірка наукової літератури з теми "Twisted waveguides"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Twisted waveguides".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Twisted waveguides"
Briet, Philippe, Hynek Kovařík, and Georgi Raikov. "Scattering in twisted waveguides." Journal of Functional Analysis 266, no. 1 (January 2014): 1–35. http://dx.doi.org/10.1016/j.jfa.2013.09.026.
Повний текст джерелаKovařík, Hynek, and Andrea Sacchetti. "Resonances in twisted quantum waveguides." Journal of Physics A: Mathematical and Theoretical 40, no. 29 (July 3, 2007): 8371–84. http://dx.doi.org/10.1088/1751-8113/40/29/012.
Повний текст джерелаShyroki, Dzmitry M. "Exact Equivalent Straight Waveguide Model for Bent and Twisted Waveguides." IEEE Transactions on Microwave Theory and Techniques 56, no. 2 (2008): 414–19. http://dx.doi.org/10.1109/tmtt.2007.914637.
Повний текст джерелаWilson, J. L., Cheng Wang, A. E. Fathy, and Y. W. Kang. "Analysis of Rapidly Twisted Hollow Waveguides." IEEE Transactions on Microwave Theory and Techniques 57, no. 1 (January 2009): 130–39. http://dx.doi.org/10.1109/tmtt.2008.2009042.
Повний текст джерелаEkholm, T., H. Kovařík, and D. Krejčiřík. "A Hardy Inequality in Twisted Waveguides." Archive for Rational Mechanics and Analysis 188, no. 2 (February 5, 2008): 245–64. http://dx.doi.org/10.1007/s00205-007-0106-0.
Повний текст джерелаBriet, Philippe, Hiba Hammedi, and David Krejčiřík. "Hardy Inequalities in Globally Twisted Waveguides." Letters in Mathematical Physics 105, no. 7 (June 6, 2015): 939–58. http://dx.doi.org/10.1007/s11005-015-0768-8.
Повний текст джерелаKirsch, Werner, David Krejčiřík, and Georgi Raikov. "Lifshits Tails for Randomly Twisted Quantum Waveguides." Journal of Statistical Physics 171, no. 3 (March 21, 2018): 383–99. http://dx.doi.org/10.1007/s10955-018-2001-5.
Повний текст джерелаBruneau, Vincent, Pablo Miranda, and Nicolas Popoff. "Resonances near thresholds in slightly twisted waveguides." Proceedings of the American Mathematical Society 146, no. 11 (July 23, 2018): 4801–12. http://dx.doi.org/10.1090/proc/14141.
Повний текст джерелаKarpierz, M. A., K. A. Brzdąkiewicz, and Q. V. Nguyen. "Modeling of Spatial Solitons in Twisted Nematics Waveguides." Acta Physica Polonica A 103, no. 2-3 (February 2003): 169–75. http://dx.doi.org/10.12693/aphyspola.103.169.
Повний текст джерелаKarpierz, Mirosław, Marek Sierakowski, and Tomasz Wolinski. "Light Beam Propagation in Twisted Nematics Nonlinear Waveguides." Molecular Crystals and Liquid Crystals 375 (2002): 313–20. http://dx.doi.org/10.1080/713738372.
Повний текст джерелаДисертації з теми "Twisted waveguides"
Leclerc, Augustin. "Calculs de mοdes électrοmagnétiques guidés dans des guides d'οndes tοrsadés et οuverts". Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMIR28.
Повний текст джерелаThis thesis explores the modelling and calculation of electromagnetic (EM) modes in waveguides with complex geometries, particularly in twisted electric cables in open environments. The aim is to develop numerical methods for solving Maxwell's equations in order to better understand the propagation of electromagnetic fields in realistic configurations. This study is motivated by the challenges of reducing electromagnetic radiation and improving cable performance in terms of field containment. We deal with two main configurations: straight waveguides and twisted waveguides. For straight waveguides, semi-analytical methods are used, particularly for coaxial cables, to test numerical models by comparison with precise solutions. We extend these methods to open waveguides, where absorbing boundary conditions (ABC) are introduced to model an infinite environment while limiting spurious reflections. In twisted cables, a helical geometry is exploited to reformulate the EM wave propagation equations in a suitable numerical framework, enabling low-frequency simulations to be obtained. Work on the construction of ABCs within this framework has also been initiated. The results that we obtain provide a better understanding of low-frequency electromagnetic phenomena and open up prospects for the design of more efficient devices and the study of electromagnetic systems in real heterogeneous environments
Hammedi, Hiba. "Analyse spectrale des guides d'ondes "twistés"." Thesis, Toulon, 2016. http://www.theses.fr/2016TOUL0001/document.
Повний текст джерелаIn this thesis we study the spectral properties of perturbed 3D quantum waveguides (tubes). We mainly consider two types of perturbation:The first type is a geometric perturbation. More precisely, we study the Laplace operator with Dirichlet boundary conditions defined in a twisted tube. The twist that we consider is a constant one that has been locally perturbed by a function of same sign (a repulsive twist). The second type of perturbation is done by changing locally the boundary conditions. In fact, we study the Laplacian operator with Dirichlet conditions everywhere on the boundary of the tube except on a bounded part where we consider the Neumann conditions. In one hand we study the straight tubes (with no geometric perturbations) to figure out the effect of perturbation that occurred in the boundary conditions. In the other hand we study the twisted tubes to establish a comparison between the opposite effects of these two types of perturbation (the geometric one and the change that we imposed on the boundary conditions)
Van, Gassen Kwinten. "Application of Twist Symmetry to a Cylindrical Dielectric Waveguide." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-286829.
Повний текст джерелаAnvändandet av högre symmetrier I vågledardesigner är ett aktivt forskningsfält och fördelar över traditionell vågledardesign har påvisats. Det finns två typer av högre symmetri: glid- och vridsymmetri. Glid- och vridsymmetri har tidigare applicerats på stängda vågledare och glidsymmetri har nyligen applicerats på en dielektrisk vågledare. I detta arbete appliceras vridsymmetri i designen av en dielektrisk vågledare för första gången. I det här arbetet designas och simuleras en vridsymmetrisk dielektrisk med hjälp av egenmods, trunkerad-struktur- och mutimods-metoderna. Den vridsymmetriska dielektriska vågledaren påvisar stoppband, liknande de som tidigare visats i glidsymmetriska strukturer. Vidare visar strukturen cirkulärpolariserad dubbelbrytning och olika stoppband för de två cirkulära polarisationerna. En ny enhetscell togs fram vilken påvisade fenomenen kopplade till dielektrisk vridsymmetri för X-bands frekvenser. Dispersionsdiagrammet för strukturen beräknades med hjälp av egenmods- och multimodsmetoderna, och S-parametrarna för vågledaren beräknades med en trunkerad struktur. Resultaten från de olika metoderna stämmer väl överens gällande propagering och försvagning. Enhetscellen finner användning som polarisationsfilter för den fundamentale HE11-moden av dielektriska cirkulära vågledare och kan appliceras i kommunikations- och avkänningssystem.
Wilson, Joshua Lee. "Investigation of Propagation Characteristics of Twisted Hollow Waveguides for Particle Accelerator Applications." 2008. http://trace.tennessee.edu/utk_graddiss/537.
Повний текст джерелаТези доповідей конференцій з теми "Twisted waveguides"
Liu, Peng, Jia-Lin Li, Zhi-Peng Li, and Wen-Jie Li. "Design of Double-Ridge-Waveguide Twist for Ultra-Wideband Application." In 2024 54th European Microwave Conference (EuMC), 200–203. IEEE, 2024. http://dx.doi.org/10.23919/eumc61614.2024.10732146.
Повний текст джерелаBRIET, P. "SPECTRAL ANALYSIS FOR TWISTED WAVEGUIDES." In Proceedings of the 30th Conference. WORLD SCIENTIFIC, 2011. http://dx.doi.org/10.1142/9789814338745_0006.
Повний текст джерелаMorozko, Fyodor, Andrey Novitsky, and Alina Karabchevsky. "Modal theory for twisted waveguides." In Metamaterials XIII, edited by Kevin F. MacDonald, Anatoly V. Zayats, and Isabelle Staude. SPIE, 2022. http://dx.doi.org/10.1117/12.2620784.
Повний текст джерелаUsuga, Mario A., Felipe Beltran-Mejia, Cristiano Cordeiro, and Idelfonso Tafur Monroy. "OAM mode converter in twisted fibers." In Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/bgpp.2014.jm5a.4.
Повний текст джерелаVlasov, A. N., S. Cooke, B. Levush, T. M. Antonsen, and D. Chernin. "Transverse TWT with twisted hollow waveguides." In 2010 IEEE 37th International Conference on Plasma Sciences (ICOPS). IEEE, 2010. http://dx.doi.org/10.1109/plasma.2010.5534278.
Повний текст джерелаWilson, Joshua L., Yoon W. Kang, and Aly E. Fathy. "Twisted waveguides for particle accelerator applications." In 2009 IEEE MTT-S International Microwave Symposium Digest (MTT). IEEE, 2009. http://dx.doi.org/10.1109/mwsym.2009.5165649.
Повний текст джерелаChattopadhyay, Rik, and Shyamal Kumar Bhadra. "OAM carrying mode at Dirac point in Twisted Hollow core PCF." In Bragg Gratings, Photosensitivity and Poling in Glass Waveguides and Materials. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/bgppm.2018.jtu5a.71.
Повний текст джерелаDerbov, Vladimir L., and Aleksey I. Bychenkov. "Astigmatic twisted beams: reducing the peak intensity in high-power waveguides." In Saratov Fall Meeting '99, edited by Vladimir L. Derbov, Leonid A. Melnikov, and Vladimir P. Ryabukho. SPIE, 2000. http://dx.doi.org/10.1117/12.380100.
Повний текст джерелаKrautschik, Christof G., George I. Stegeman, and Roger H. Stolen. "Phase-sensitive switching in a rocking rotator fiber filter." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/oam.1992.tha3.
Повний текст джерелаKang, Yoon W. "Twisted waveguide accelerating structure." In The ninth workshop on advanced accelerator concepts. AIP, 2001. http://dx.doi.org/10.1063/1.1384365.
Повний текст джерелаЗвіти організацій з теми "Twisted waveguides"
Wilson, Joshua Lee. Investigation of Propagation Characteristics of Twisted Hollow Waveguides for Particle Accelerator Applications. Office of Scientific and Technical Information (OSTI), December 2008. http://dx.doi.org/10.2172/1010552.
Повний текст джерела