Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Tunable photonic crystals.

Статті в журналах з теми "Tunable photonic crystals"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Tunable photonic crystals".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Kitzerow, Heinz. "Tunable photonic crystals." Liquid Crystals Today 11, no. 4 (December 2002): 3–7. http://dx.doi.org/10.1080/1464518021000069229.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kuai, Su-Lan, Georges Bader, and P. V. Ashrit. "Tunable electrochromic photonic crystals." Applied Physics Letters 86, no. 22 (May 30, 2005): 221110. http://dx.doi.org/10.1063/1.1929079.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Park, Won, and J. B. Lee. "Mechanically Tunable Photonic Crystals." Optics and Photonics News 20, no. 1 (January 1, 2009): 40. http://dx.doi.org/10.1364/opn.20.1.000040.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Gao, Kuangya, Yueqiang Liang, Chengyu Liu, Yafeng He, Weili Fan, and Fucheng Liu. "Structural Tunable Plasma Photonic Crystals in Dielectric Barrier Discharge." Applied Sciences 10, no. 16 (August 12, 2020): 5572. http://dx.doi.org/10.3390/app10165572.

Повний текст джерела
Анотація:
We demonstrate a kind of structural tunable plasma photonic crystal in a dielectric barrier discharge by self-organization of the plasma filaments. The symmetry, the lattice constant and the orientations of different plasma photonic crystals can be deliberately controlled by changing the applied voltage. The plasma structures can be tuned from a square lattice to a triangular lattice, the lattice constant is reduced and the crystal orientation varies π6 when the applied voltage is increased. The band diagrams of the plasma photonic crystals under a transverse-magnetic wave have been studied, which shows that the positions and sizes of the band gaps change significantly for different plasma structures. We suggest a flexible way for the fabrication of tunable plasma photonic crystals, which may find wide application in the manipulation of microwaves or terahertz waves.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Woliński, Tomasz, Sławomir Ertman, Katarzyna Rutkowska, Daniel Budaszewski, Marzena Sala-Tefelska, Miłosz Chychłowski, Kamil Orzechowski, Karolina Bednarska, and Piotr Lesiak. "Photonic Liquid Crystal Fibers – 15 years of research activities at Warsaw University of Technology." Photonics Letters of Poland 11, no. 2 (July 1, 2019): 22. http://dx.doi.org/10.4302/plp.v11i2.907.

Повний текст джерела
Анотація:
Research activities in the area of photonic liquid crystal fibers carried out over the last 15 years at Warsaw University of Technology (WUT) have been reviewed and current research directions that include metallic nanoparticles doping to enhance electro-optical properties of the photonic liquid crystal fibers are presented. Full Text: PDF ReferencesT.R. Woliński et al., "Propagation effects in a photonic crystal fiber filled with a low-birefringence liquid crystal", Proc. SPIE, 5518, 232-237 (2004). CrossRef F. Du, Y-Q. Lu, S.-T. Wu, "Electrically tunable liquid-crystal photonic crystal fiber", Appl. Phys. Lett. 85, 2181-2183 (2004). CrossRef T.T. Larsen, A. Bjraklev, D.S. Hermann, J. Broeng, "Optical devices based on liquid crystal photonic bandgap fibres", Opt. Express, 11, 20, 2589-2596 (2003). CrossRef T.R. Woliński et al., "Tunable properties of light propagation in photonic liquid crystal fibers", Opto-Electron. Rev. 13, 2, 59-64 (2005). CrossRef M. Chychłowski, S. Ertman, T.R. Woliński, "Splay orientation in a capillary", Phot. Lett. Pol. 2, 1, 31-33 (2010). CrossRef T.R. Woliński et al., "Photonic liquid crystal fibers — a new challenge for fiber optics and liquid crystals photonics", Opto-Electron. Rev. 14, 4, 329-334 (2006). CrossRef T.R. Woliński et al., "Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres", Meas. Sci. Technol. 17, 985-991 (2006). CrossRef T.R. Woliński et al., "Photonic Liquid Crystal Fibers for Sensing Applications", IEEE Trans. Inst. Meas. 57, 8, 1796-1802 (2008). CrossRef T.R. Woliński, et al., "Multi-Parameter Sensing Based on Photonic Liquid Crystal Fibers", Mol. Cryst. Liq. Cryst. 502: 220-234., (2009). CrossRef T.R. Woliński, Xiao G and Bock WJ Photonics sensing: principle and applications for safety and security monitoring, (New Jersey, Wiley, 147-181, 2012). CrossRef T.R. Woliński et al., "Propagation effects in a polymer-based photonic liquid crystal fiber", Appl. Phys. A 115, 2, 569-574 (2014). CrossRef S. Ertman et al., "Optofluidic Photonic Crystal Fiber-Based Sensors", J. Lightwave Technol., 35, 16, 3399-3405 (2017). CrossRef S. Ertman et al., "Recent Progress in Liquid-Crystal Optical Fibers and Their Applications in Photonics", J. Lightwave Technol., 37, 11, 2516-2526 (2019). CrossRef M.M. Tefelska et al., "Electric Field Sensing With Photonic Liquid Crystal Fibers Based on Micro-Electrodes Systems", J. Lightwave Technol., 33, 2, 2405-2411, (2015). CrossRef S. Ertman et al., "Index Guiding Photonic Liquid Crystal Fibers for Practical Applications", J. Lightwave Technol., 30, 8, 1208-1214 (2012). CrossRef K. Mileńko, S. Ertman, T. R. Woliński, "Numerical analysis of birefringence tuning in high index microstructured fiber selectively filled with liquid crystal", Proc. SPIE - The International Society for Optical Engineering, 8794 (2013). CrossRef O. Jaworska and S. Ertman, "Photonic bandgaps in selectively filled photonic crystal fibers", Phot. Lett. Pol., 9, 3, 79-81 (2017). CrossRef I.C. Khoo, S.T.Wu, "Optics and Nonlinear Optics of Liquid Crystals", World Scientific (1993). CrossRef P. Lesiak et al., "Thermal optical nonlinearity in photonic crystal fibers filled with nematic liquid crystals doped with gold nanoparticles", Proc. SPIE 10228, 102280N (2017). CrossRef K. Rutkowska, T. Woliński, "Modeling of light propagation in photonic liquid crystal fibers", Photon. Lett. Poland 2, 3, 107 (2010). CrossRef K. Rutkowska, L-W. Wei, "Assessment on the applicability of finite difference methods to model light propagation in photonic liquid crystal fibers", Photon. Lett. Poland 4, 4, 161 (2012). CrossRef K. Rutkowska, U. Laudyn, P. Jung, "Nonlinear discrete light propagation in photonic liquid crystal fibers", Photon. Lett. Poland 5, 1, 17 (2013). CrossRef M. Murek, K. Rutkowska, "Two laser beams interaction in photonic crystal fibers infiltrated with highly nonlinear materials", Photon. Lett. Poland 6, 2, 74 (2014). CrossRef M.M. Tefelska et al., "Photonic Band Gap Fibers with Novel Chiral Nematic and Low-Birefringence Nematic Liquid Crystals", Mol. Cryst. Liq. Cryst., 558, 184-193, (2012). CrossRef M.M. Tefelska et al., "Propagation Effects in Photonic Liquid Crystal Fibers with a Complex Structure", Acta Phys. Pol. A, 118, 1259-1261 (2010). CrossRef K. Orzechowski et al., "Polarization properties of cubic blue phases of a cholesteric liquid crystal", Opt. Mater. 69, 259-264 (2017). CrossRef H. Yoshida et al., "Heavy meson spectroscopy under strong magnetic field", Phys. Rev. E 94, 042703 (2016). CrossRef J. Yan et al., "Extended Kerr effect of polymer-stabilized blue-phase liquid crystals", Appl. Phys. Lett. 96, 071105 (2010). CrossRef C.-W. Chen et al., "Random lasing in blue phase liquid crystals", Opt. Express 20, 23978-23984 (2012). CrossRef C.-H. Lee et al., "Polarization-independent bistable light valve in blue phase liquid crystal filled photonic crystal fiber", Appl. Opt. 52, 4849-4853 (2013). CrossRef D. Poudereux et al., "Infiltration of a photonic crystal fiber with cholesteric liquid crystal and blue phase", Proc. SPIE 9290 (2014). CrossRef K. Orzechowski et al., "Optical properties of cubic blue phase liquid crystal in photonic microstructures", Opt. Express 27, 10, 14270-14282 (2019). CrossRef M. Wahle, J. Ebel, D. Wilkes, H.S. Kitzerow, "Asymmetric band gap shift in electrically addressed blue phase photonic crystal fibers", Opt. Express 24, 20, 22718-22729 (2016). CrossRef K. Orzechowski et al., "Investigation of the Kerr effect in a blue phase liquid crystal using a wedge-cell technique", Phot. Lett. Pol. 9, 2, 54-56 (2017). CrossRef M.M. Sala-Tefelska et al., "Influence of cylindrical geometry and alignment layers on the growth process and selective reflection of blue phase domains", Opt. Mater. 75, 211-215 (2018). CrossRef M.M. Sala-Tefelska et al., "The influence of orienting layers on blue phase liquid crystals in rectangular geometries", Phot. Lett. Pol. 10, 4, 100-102 (2018). CrossRef P. G. de Gennes JP. The Physics of Liquid Crystals. (Oxford University Press 1995). CrossRef L.M. Blinov and V.G. Chigrinov, Electrooptic Effects in Liquid Crystal Materials (New York, NY: Springer New York 1994). CrossRef D. Budaszewski, A.J. Srivastava, V.G. Chigrinov, T.R. Woliński, "Electro-optical properties of photo-aligned photonic ferroelectric liquid crystal fibres", Liq. Cryst., 46 2, 272-280 (2019). CrossRef V. G. Chigrinov, V. M. Kozenkov, H-S. Kwok. Photoalignment of Liquid Crystalline Materials (Chichester, UK: John Wiley & Sons, Ltd 2008). CrossRef M. Schadt et al., "Surface-Induced Parallel Alignment of Liquid Crystals by Linearly Polymerized Photopolymers", Jpn. J. Appl. Phys.31, 2155-2164 (1992). CrossRef D. Budaszewski et al., "Photo-aligned ferroelectric liquid crystals in microchannels", Opt. Lett. 39, 4679 (2014). CrossRef D. Budaszewski, et al., "Photo‐aligned photonic ferroelectric liquid crystal fibers", J. Soc. Inf. Disp. 23, 196-201 (2015). CrossRef O. Stamatoiu, J. Mirzaei, X. Feng, T. Hegmann, "Nanoparticles in Liquid Crystals and Liquid Crystalline Nanoparticles", Top Curr Chem 318, 331-392 (2012). CrossRef A. Siarkowska et al., "Titanium nanoparticles doping of 5CB infiltrated microstructured optical fibers", Photonics Lett. Pol. 8 1, 29-31 (2016). CrossRef A. Siarkowska et al., "Thermo- and electro-optical properties of photonic liquid crystal fibers doped with gold nanoparticles", Beilstein J. Nanotechnol. 8, 2790-2801 (2017). CrossRef D. Budaszewski et al., "Nanoparticles-enhanced photonic liquid crystal fibers", J. Mol. Liq. 267, 271-278 (2018). CrossRef D. Budaszewski et al., "Enhanced efficiency of electric field tunability in photonic liquid crystal fibers doped with gold nanoparticles", Opt. Exp. 27, 10, 14260-14269 (2019). CrossRef
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Schmidt, M., M. Eich, U. Huebner, and R. Boucher. "Electro-optically tunable photonic crystals." Applied Physics Letters 87, no. 12 (September 19, 2005): 121110. http://dx.doi.org/10.1063/1.2039994.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Figotin, Alex, Yuri A. Godin, and Ilia Vitebsky. "Two-dimensional tunable photonic crystals." Physical Review B 57, no. 5 (February 1, 1998): 2841–48. http://dx.doi.org/10.1103/physrevb.57.2841.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Rehammar, R., and J. M. Kinaret. "Nanowire-based tunable photonic crystals." Optics Express 16, no. 26 (December 16, 2008): 21682. http://dx.doi.org/10.1364/oe.16.021682.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Akamatsu, N., K. Hisano, R. Tatsumi, M. Aizawa, C. J. Barrett, and A. Shishido. "Thermo-, photo-, and mechano-responsive liquid crystal networks enable tunable photonic crystals." Soft Matter 13, no. 41 (2017): 7486–91. http://dx.doi.org/10.1039/c7sm01287j.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Budaszewski, Daniel, and Tomasz R. Woliński. "Light propagation in a photonic crystal fiber infiltrated with mesogenic azobenzene dyes." Photonics Letters of Poland 9, no. 2 (July 1, 2017): 51. http://dx.doi.org/10.4302/plp.v9i2.730.

Повний текст джерела
Анотація:
In this paper, light propagation in an isotropic photonic crystal fiber as well in a silica-glass microcapillary infiltrated with a mesogenic azobenzene dye has been investigated. It appeared that light spectrum guided inside the photonic crystal fiber infiltrated with the investigated azobenzene dye depends on the illuminating wavelength of the absorption band and on linear polarization. Also, alignment of the mesogenic azobenzene dye molecules inside silica glass microcapillaries and photonic crystal fibers has been investigated. Results obtained may lead to a new design of optically tunable photonic devices. Full Text: PDF ReferencesP. Russell. St. J. "Photonic-Crystal Fibers", J. Lightwave Technol. 24, 4729 (2006). CrossRef T. Larsen, A. Bjarklev, D. Hermann, J. Broeng, "Optical devices based on liquid crystal photonic bandgap fibres", Opt. Exp. 11, 2589 (2003). CrossRef D. C. Zografopoulos, A. Asquini, E. E. Kriezis, A. d'Alessandro, R. Beccherelli, "Guided-wave liquid-crystal photonics", Lab Chip, 12, 3598 (2012). CrossRef F. Du, Y-Q. Lu, S-T. Wu, "Electrically tunable liquid-crystal photonic crystal fiber", Appl. Phys. Lett 85, 2181 (2004) CrossRef D. C. Zografopoulos, E. E. Kriezis, "Tunable Polarization Properties of Hybrid-Guiding Liquid-Crystal Photonic Crystal Fibers", J. Lightwave Technol. 27 (6), 773 (2009) CrossRef S. Ertman, M. Tefelska, M. Chychłowski, A. Rodriquez, D. Pysz, R. Buczyński, E. Nowinowski-Kruszelnicki, R. Dąbrowski, T. R. Woliński. "Index Guiding Photonic Liquid Crystal Fibers for Practical Applications", J. Lightwave Technol. 30, 1208 (2012). CrossRef D. Noordegraaf, L. Scolari, J. Laegsgaard, L. Rindorf, T. T. Alkeskjold, "Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers", Opt. Expr. 15, 7901 (2007) CrossRef M. M. Tefelska, M. S. Chychlowski, T. R. Wolinski, R. Dabrowski, W. Rejmer, E. Nowinowski-Kruszelnicki, P. Mergo, "Photonic Band Gap Fibers with Novel Chiral Nematic and Low-Birefringence Nematic Liquid Crystals", Mol. Cryst. Liq. Cryst. 558(1), 184 (2012). CrossRef S. Mathews, Y. Semenova, G. Farrell, "Electronic tunability of ferroelectric liquid crystal infiltrated photonic crystal fibre", Electronics Letters, 45(12), 617 (2009). CrossRef V. Chigrinov, H-S Kwok, H. Takada, H. Takatsu, "Photo-aligning by azo-dyes: Physics and applications", Liquid Crystals Today, 14:4, 1-15, (2005) CrossRef A. Siarkowska, M. Jóźwik, S. Ertman, T.R. Woliński, V.G. Chigrinov, "Photo-alignment of liquid crystals in micro capillaries with point-by-point irradiation", Opto-Electon. Rev. 22, 178 (2014); CrossRef D. Budaszewski, A. K. Srivastava, A. M. W. Tam, T. R. Woliński, V. G. Chigrinov, H-S. Kwok, "Photo-aligned ferroelectric liquid crystals in microchannels", Opt. Lett. 39, 16 (2014) CrossRef J-H Liou, T-H. Chang, T. Lin, Ch-P. Yu, "Reversible photo-induced long-period fiber gratings in photonic liquid crystal fibers", Opt. Expr. 19, (7), 6756, (2011) CrossRef T. T. Alkeskjold, J. Laegsgaard, A. Bjarklev, D. S. Hermann, J. Broeng, J. Li, S-T. Wu, "All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers", Opt. Exp, 12 (24), 5857 (2004) CrossRef K. Ichimura, Y. Suzuki, T. Seki, A. Hosoki, K. Aoki, "Reversible change in alignment mode of nematic liquid crystals regulated photochemically by command surfaces modified with an azobenzene monolayer", Langmuir, 4, 1214 (1988) CrossRef http://www.beamco.com/Azobenzene-liquid-crystals DirectLink K. A. Rutkowska, K. Orzechowski, M. Sierakowski, "Wedge-cell technique as a simple and effective method for chromatic dispersion determination of liquid crystals", Phot. Lett, Poland, 8(2), 51 (2016). CrossRef L. Deng, H.-K. Liu, "Nonlinear optical limiting of the azo dye methyl-red doped nematic liquid crystalline films", Opt. Eng. 42, 2936-2941 (2003). CrossRef J. Si, J. Qiu, J. Guo, M. Wang, K. Hirao, "Photoinduced birefringence of azodye-doped materials by a femtosecond laser", Appl. Opt., 42, 7170-7173 (2008). CrossRef
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Qi, YongLe, XiaoHong Sun, Shuai Wang, WenYang Li, and ZhongYong Wang. "Design of an Electrically Tunable Micro-Lens Based on Graded Photonic Crystal." Crystals 8, no. 7 (July 23, 2018): 303. http://dx.doi.org/10.3390/cryst8070303.

Повний текст джерела
Анотація:
A micro-lens with an adjustable focal length (FL) is designed by using Graded Photonic Crystal (GPC) structures and a Polymer Dispersed Liquid Crystal (PDLC) material. The GPCs are formed by gradually changing the radius of the polymer rods in the Photonic Crystal (PC) with square lattices of polymer rods in the background of Liquid Crystals (LCs). The electrically tunable focusing characteristics of the micro-lens are investigated by loading a continuous voltage source to change the LC rotation angle. The sensitivity of the focal shift in terms of LCs tilting angle is 0.152 λ(nm/deg). Moreover, the effect of the defects and deviations on the focusing characteristics are also analyzed. This research is crucial for future applications of the proposed device in the integrated photonics and adaptive optics.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

SUMMERS, C. J., E. GRAUGNARD, D. P. GAILLOT, and J. S. KING. "LUMINESCENT AND TUNABLE 3D PHOTONIC CRYSTAL STRUCTURES." Journal of Nonlinear Optical Physics & Materials 15, no. 02 (June 2006): 203–18. http://dx.doi.org/10.1142/s0218863506003207.

Повний текст джерела
Анотація:
We report an investigation of luminescent and tunable photonic crystal structures formed by the infiltration and inversion of opal templates with high index and luminescent materials. Protocols are reported for the deposition of these materials and the properties of the resulting structures investigated by conventional structural and optical measurements. The properties of multi-layered and backfilled structures are reported and demonstrate the potential to modulate and statically tune the luminescence from photonic crystals.
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Kim, Sungwon, and Venkatraman Gopalan. "Strain-tunable photonic band gap crystals." Applied Physics Letters 78, no. 20 (May 14, 2001): 3015–17. http://dx.doi.org/10.1063/1.1371786.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Kee, Chul-Sik, Jae-Eun Kim, Hae Yong Park, Ikmo Park, and H. Lim. "Two-dimensional tunable magnetic photonic crystals." Physical Review B 61, no. 23 (June 15, 2000): 15523–25. http://dx.doi.org/10.1103/physrevb.61.15523.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Halevi, P., and F. Ramos-Mendieta. "Tunable Photonic Crystals with Semiconducting Constituents." Physical Review Letters 85, no. 9 (August 28, 2000): 1875–78. http://dx.doi.org/10.1103/physrevlett.85.1875.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Chen, Yan-bin, Chao Zhang, Yong-yuan Zhu, Shi-ning Zhu, and Nai-ben Ming. "Tunable photonic crystals with superconductor constituents." Materials Letters 55, no. 1-2 (July 2002): 12–16. http://dx.doi.org/10.1016/s0167-577x(01)00610-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Li, Jian, Yang Wu, Jun Fu, Yang Cong, Juan Peng, and Yanchun Han. "Reversibly strain-tunable elastomeric photonic crystals." Chemical Physics Letters 390, no. 1-3 (May 2004): 285–89. http://dx.doi.org/10.1016/j.cplett.2004.04.028.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Li, Jian, Weihuan Huang, and Yanchun Han. "Tunable photonic crystals by mixed liquids." Colloids and Surfaces A: Physicochemical and Engineering Aspects 279, no. 1-3 (May 2006): 213–17. http://dx.doi.org/10.1016/j.colsurfa.2006.01.006.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Glöckler, F., S. Peters, U. Lemmer, and M. Gerken. "Tunable superprism effect in photonic crystals." physica status solidi (a) 204, no. 11 (November 2007): 3790–804. http://dx.doi.org/10.1002/pssa.200776408.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Ge, Jianping, Yongxing Hu, and Yadong Yin. "Highly Tunable Superparamagnetic Colloidal Photonic Crystals." Angewandte Chemie 119, no. 39 (October 1, 2007): 7572–75. http://dx.doi.org/10.1002/ange.200701992.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Ge, Jianping, Yongxing Hu, and Yadong Yin. "Highly Tunable Superparamagnetic Colloidal Photonic Crystals." Angewandte Chemie International Edition 46, no. 39 (October 1, 2007): 7428–31. http://dx.doi.org/10.1002/anie.200701992.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Urbas, A., R. Sharp, Y. Fink, E. L. Thomas, M. Xenidou, and L. J. Fetters. "Tunable Block Copolymer/Homopolymer Photonic Crystals." Advanced Materials 12, no. 11 (June 2000): 812–14. http://dx.doi.org/10.1002/(sici)1521-4095(200006)12:11<812::aid-adma812>3.0.co;2-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Wang, Gang, Ji Ping Huang, and Kin Wah Yu. "Tunable photonic Bloch oscillations in electrically modulated photonic crystals." Optics Letters 33, no. 19 (September 25, 2008): 2200. http://dx.doi.org/10.1364/ol.33.002200.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Stimulak, Mitja, and Miha Ravnik. "Tunable photonic crystals with partial bandgaps from blue phase colloidal crystals and dielectric-doped blue phases." Soft Matter 10, no. 33 (2014): 6339–46. http://dx.doi.org/10.1039/c4sm00419a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Leonard, S. W., J. P. Mondia, H. M. van Driel, O. Toader, S. John, K. Busch, A. Birner, U. Gösele, and V. Lehmann. "Tunable two-dimensional photonic crystals using liquid crystal infiltration." Physical Review B 61, no. 4 (January 15, 2000): R2389—R2392. http://dx.doi.org/10.1103/physrevb.61.r2389.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Liu, C. Y., and L. W. Chen. "Tunable Photonic Crystal Waveguide Coupler With Nematic Liquid Crystals." IEEE Photonics Technology Letters 16, no. 8 (August 2004): 1849–51. http://dx.doi.org/10.1109/lpt.2004.831267.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Liu, Y. J., and X. W. Sun. "Holographic Polymer-Dispersed Liquid Crystals: Materials, Formation, and Applications." Advances in OptoElectronics 2008 (April 27, 2008): 1–52. http://dx.doi.org/10.1155/2008/684349.

Повний текст джерела
Анотація:
By combining polymer-dispersed liquid crystal (PDLC) and holography, holographic PDLC (H-PDLC) has emerged as a new composite material for switchable or tunable optical devices. Generally, H-PDLC structures are created in a liquid crystal cell filled with polymer-dispersed liquid crystal materials by recording the interference pattern generated by two or more coherent laser beams which is a fast and single-step fabrication. With a relatively ideal phase separation between liquid crystals and polymers, periodic refractive index profile is formed in the cell and thus light can be diffracted. Under a suitable electric field, the light diffraction behavior disappears due to the index matching between liquid crystals and polymers. H-PDLCs show a fast switching time due to the small size of the liquid crystal droplets. So far, H-PDLCs have been applied in many promising applications in photonics, such as flat panel displays, switchable gratings, switchable lasers, switchable microlenses, and switchable photonic crystals. In this paper, we review the current state-of-the-art of H-PDLCs including the materials used to date, the grating formation dynamics and simulations, the optimization of electro-optical properties, the photonic applications, and the issues existed in H-PDLCs.
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Chang, Hyung-Kwan, and Jungyul Park. "Electrically Tunable Photonic Crystals: Flexible All-Solid-State Electrically Tunable Photonic Crystals (Advanced Optical Materials 23/2018)." Advanced Optical Materials 6, no. 23 (December 2018): 1870092. http://dx.doi.org/10.1002/adom.201870092.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

YANG Ming-wei, 杨明玮, 肖峻 XIAO Jun, and 李锐 LI Rui. "Tunable Negative Refraction Photonic Crystals Filled with Liquid Crystals." ACTA PHOTONICA SINICA 42, no. 2 (2013): 176–80. http://dx.doi.org/10.3788/gzxb20134202.0176.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Wang, Yao-Yu, and Lien-Wen Chen. "Tunable negative refraction photonic crystals achieved by liquid crystals." Optics Express 14, no. 22 (2006): 10580. http://dx.doi.org/10.1364/oe.14.010580.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Moscardi, Liliana, Guglielmo Lanzani, Giuseppe M. Paternò, and Francesco Scotognella. "Stimuli-Responsive Photonic Crystals." Applied Sciences 11, no. 5 (February 27, 2021): 2119. http://dx.doi.org/10.3390/app11052119.

Повний текст джерела
Анотація:
Recently, tunable photonic crystals (PhCs) have received great research interest, thanks to the wide range of applications in which they can be employed, such as light emission and sensing, among others. In addition, the versatility and ease of fabrication of PhCs allow for the integration of a large range of responsive elements that, in turn, can permit active tuning of PhC optical properties upon application of external stimuli, e.g., physical, chemical or even biological triggers. In this work, we summarize the most employed theoretical tools used for the design of optical properties of responsive PhCs and the most used fabrication techniques. Furthermore, we collect the most relevant results related to this field, with particular emphasis on electrochromic devices.
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Golosovsky, M., Y. Neve-Oz, and D. Davidov. "Magnetic-field tunable photonic stop band in metallodielectric photonic crystals." Synthetic Metals 139, no. 3 (October 2003): 705–9. http://dx.doi.org/10.1016/s0379-6779(03)00331-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Ciobanu, M., L. Preda, D. Savastru, M. Mihailescu, and M. Tautan. "Modeling Tunable Microwave Antenna with Photonic Crystals." Journal of Computational and Theoretical Nanoscience 9, no. 6 (June 1, 2012): 778–82. http://dx.doi.org/10.1166/jctn.2012.2095.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Wang, Hai-Xiao, Huanyang Chen, Jian-Hua Jiang, and Guang-Yu Guo. "Tunable edge states in reconfigurable photonic crystals." Journal of Applied Physics 126, no. 19 (November 21, 2019): 193105. http://dx.doi.org/10.1063/1.5124893.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Fan, Fei, ShengJiang Chang, and Yu Hou. "Metallic photonic crystals for terahertz tunable filters." Science China Information Sciences 55, no. 1 (December 30, 2011): 72–78. http://dx.doi.org/10.1007/s11432-011-4485-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Fleischhaker, F., A. C. Arsenault, Z. Wang, V. Kitaev, F. C. Peiris, G. von Freymann, I. Manners, R. Zentel, and G. A. Ozin. "Redox-Tunable Defects in Colloidal Photonic Crystals." Advanced Materials 17, no. 20 (October 17, 2005): 2455–58. http://dx.doi.org/10.1002/adma.200501055.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Li, Jian-Feng, Jian Wang, Xiao-Tian Wang, Xiao-Gang Wang, Yan Li, and Cheng-Wei Wang. "Bandgap engineering of TiO2 nanotube photonic crystals for enhancement of photocatalytic capability." CrystEngComm 22, no. 11 (2020): 1929–38. http://dx.doi.org/10.1039/c9ce01828j.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

ZHOU Jian-wei, 周建伟, 梁静秋 LIANG Jing-qiu, 梁中翥 LIANG Zhong-zhu, and 王维彪 WANG Wei-biao. "Tunable Two-dimensional Photonic Crystals Cavity Attenuator Using Liquid-crystal." Chinese Journal of Luminescence 34, no. 2 (2013): 245–50. http://dx.doi.org/10.3788/fgxb20133402.0245.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Gaillot, Davy P., Elton Graugnard, Jeffrey S. King, and Christopher J. Summers. "Tunable Bragg peak response in liquid-crystal-infiltrated photonic crystals." Journal of the Optical Society of America B 24, no. 4 (March 15, 2007): 990. http://dx.doi.org/10.1364/josab.24.000990.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Cos, Joaquín, Josep Ferré-Borrull, Josep Pallarès, and Lluís F. Marsal. "Tunable waveguides based on liquid crystal-infiltrated silicon photonic crystals." physica status solidi (c) 8, no. 3 (February 1, 2011): 1075–78. http://dx.doi.org/10.1002/pssc.201000414.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Nucara, Luca, Francesco Greco, and Virgilio Mattoli. "Electrically responsive photonic crystals: a review." Journal of Materials Chemistry C 3, no. 33 (2015): 8449–67. http://dx.doi.org/10.1039/c5tc00773a.

Повний текст джерела
Анотація:
Tunable photonic crystals (TPCs) represent an important class of intelligent materials, which can be used as optically active components and as functional technology to change an object's colour. Here, we review progresses in electrically responsive PCs: a subclass of these smart materials which employs electrical stimulation as direct or indirect trigger for tuning optical properties.
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Palffy-Muhoray, Peter, Wenyi Cao, Michele Moreira, Bahman Taheri, and Antonio Munoz. "Photonics and lasing in liquid crystal materials." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 364, no. 1847 (August 21, 2006): 2747–61. http://dx.doi.org/10.1098/rsta.2006.1851.

Повний текст джерела
Анотація:
Owing to fundamental reasons of symmetry, liquid crystals are soft materials. This softness allows long length-scales, large susceptibilities and the existence of modulated phases, which respond readily to external fields. Liquid crystals with such phases are tunable, self-assembled, photonic band gap materials; they offer exciting opportunities both in basic science and in technology. Since the density of photon states is suppressed in the stop band and is enhanced at the band edges, these materials may be used as switchable filters or as mirrorless lasers. Disordered periodic liquid crystal structures can show random lasing. We highlight recent advances in this rapidly growing area, and discuss future prospects in emerging liquid crystal materials. Liquid crystal elastomers and orientationally ordered nanoparticle assemblies are of particular interest.
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Liu, Chen-Yang, and Lien-Wen Chen. "Tunable Channel Drop Filter in a Two-Dimensional Photonic Crystal Modulated by a Nematic Liquid Crystal." Journal of Nanomaterials 2006 (2006): 1–6. http://dx.doi.org/10.1155/jnm/2006/52946.

Повний текст джерела
Анотація:
Photonic crystals (PCs) have many potential applications because of their ability to control light-wave propagation and because PC-based waveguides may be integrated into optical circuits. We propose a novel tunable PC channel drop filter based on nematic liquid crystals and investigate its properties numerically by using the finite-difference time-domain (FDTD) method. The refractive indices of liquid crystals can be actively modulated after infiltrating nematic liquid crystals into the microcavity in PC waveguides with square lattices. Then we can control light propagation in a PC waveguide. We analyze theQ-factors and resonance frequencies of a tunable PC channel drop filter by considering various indices modulation of liquid crystals. The novel component can be used as wavelength division multiplexing in photonic integrated circuits.
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Yadav, Ashish, Neha Yadav, Vikash Agrawal, Sergey P. Polyutov, Alexey S. Tsipotan, Sergei V. Karpov, Vitaliy V. Slabko, et al. "State-of-art plasmonic photonic crystals based on self-assembled nanostructures." Journal of Materials Chemistry C 9, no. 10 (2021): 3368–83. http://dx.doi.org/10.1039/d0tc05254j.

Повний текст джерела
Анотація:
Controlled self-assembly of plasmonic photonic nanostructures provides a cost-effective and efficient methodology to expand plasmonic photonic nano-platforms with unique, tunable, and coupled optical characteristics.
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Misawa, Hiroaki, Yoshiaki Nishijima, Keisei Ueno, Saulius Juodkazis, Vygantas Mizeikis, Mitsuru Maeda, and Masashi Minaki. "Tunable single-mode photonic lasing from zirconia inverse opal photonic crystals." Optics Express 16, no. 18 (August 20, 2008): 13676. http://dx.doi.org/10.1364/oe.16.013676.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

He, Wan-Li, Ya-Qian Zhang, Wen-Tuo Hu, Hui-Min Zhou, Zhou Yang, Hui Cao, and Dong Wang. "Ionic Chiral Ferrocene Doped Cholesteric Liquid Crystal with Electronically Tunable Reflective Bandwidth performance." Materials 15, no. 24 (December 8, 2022): 8749. http://dx.doi.org/10.3390/ma15248749.

Повний текст джерела
Анотація:
Cholesteric liquid crystals (CLC) were widely used in optical devices as one-dimensional photonic crystals. However, their reflective bands cannot be adjusted, which limits their wide application in many fields. In this paper, a series of ionic chiral ferrocene derivatives (CD-Fc+) as dopants were designed and prepared, and their doping into negative liquid crystal matrix was investigated to develop cholesteric response liquid crystal composites with electrically tunable reflective bands. The effects of electric field frequency, voltage, retention time of voltage and molecular structure on the broadening of reflection bandwidth were investigated in detail.
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Liu Jiang-Tao, Xiao Wen-Bo, Huang Jie-Hui, Yu Tian-Bao, and Deng Xin-Hua. "Tunable pass band of anomalous dispersion photonic crystals." Acta Physica Sinica 59, no. 3 (2010): 1665. http://dx.doi.org/10.7498/aps.59.1665.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Liu, Xufei, and Xiaohui Li. "Study on Tunable Self-Collimation in Photonic Crystals." Journal of Nanoelectronics and Optoelectronics 12, no. 6 (June 1, 2017): 575–79. http://dx.doi.org/10.1166/jno.2017.2069.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Panoiu, Nicolae C., Mayank Bahl, and Richard M. Osgood, Jr. "Optically tunable superprism effect in nonlinear photonic crystals." Optics Letters 28, no. 24 (December 15, 2003): 2503. http://dx.doi.org/10.1364/ol.28.002503.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Jing, Weiping. "MOEMS tunable optical filter based on photonic crystals." Journal of Micro/Nanolithography, MEMS, and MOEMS 4, no. 4 (October 1, 2005): 041301. http://dx.doi.org/10.1117/1.2109792.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії