Добірка наукової літератури з теми "Tunable photonic crystals"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Tunable photonic crystals".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Tunable photonic crystals"

1

Kitzerow, Heinz. "Tunable photonic crystals." Liquid Crystals Today 11, no. 4 (December 2002): 3–7. http://dx.doi.org/10.1080/1464518021000069229.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kuai, Su-Lan, Georges Bader, and P. V. Ashrit. "Tunable electrochromic photonic crystals." Applied Physics Letters 86, no. 22 (May 30, 2005): 221110. http://dx.doi.org/10.1063/1.1929079.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Park, Won, and J. B. Lee. "Mechanically Tunable Photonic Crystals." Optics and Photonics News 20, no. 1 (January 1, 2009): 40. http://dx.doi.org/10.1364/opn.20.1.000040.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Gao, Kuangya, Yueqiang Liang, Chengyu Liu, Yafeng He, Weili Fan, and Fucheng Liu. "Structural Tunable Plasma Photonic Crystals in Dielectric Barrier Discharge." Applied Sciences 10, no. 16 (August 12, 2020): 5572. http://dx.doi.org/10.3390/app10165572.

Повний текст джерела
Анотація:
We demonstrate a kind of structural tunable plasma photonic crystal in a dielectric barrier discharge by self-organization of the plasma filaments. The symmetry, the lattice constant and the orientations of different plasma photonic crystals can be deliberately controlled by changing the applied voltage. The plasma structures can be tuned from a square lattice to a triangular lattice, the lattice constant is reduced and the crystal orientation varies π6 when the applied voltage is increased. The band diagrams of the plasma photonic crystals under a transverse-magnetic wave have been studied, which shows that the positions and sizes of the band gaps change significantly for different plasma structures. We suggest a flexible way for the fabrication of tunable plasma photonic crystals, which may find wide application in the manipulation of microwaves or terahertz waves.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Woliński, Tomasz, Sławomir Ertman, Katarzyna Rutkowska, Daniel Budaszewski, Marzena Sala-Tefelska, Miłosz Chychłowski, Kamil Orzechowski, Karolina Bednarska, and Piotr Lesiak. "Photonic Liquid Crystal Fibers – 15 years of research activities at Warsaw University of Technology." Photonics Letters of Poland 11, no. 2 (July 1, 2019): 22. http://dx.doi.org/10.4302/plp.v11i2.907.

Повний текст джерела
Анотація:
Research activities in the area of photonic liquid crystal fibers carried out over the last 15 years at Warsaw University of Technology (WUT) have been reviewed and current research directions that include metallic nanoparticles doping to enhance electro-optical properties of the photonic liquid crystal fibers are presented. Full Text: PDF ReferencesT.R. Woliński et al., "Propagation effects in a photonic crystal fiber filled with a low-birefringence liquid crystal", Proc. SPIE, 5518, 232-237 (2004). CrossRef F. Du, Y-Q. Lu, S.-T. Wu, "Electrically tunable liquid-crystal photonic crystal fiber", Appl. Phys. Lett. 85, 2181-2183 (2004). CrossRef T.T. Larsen, A. Bjraklev, D.S. Hermann, J. Broeng, "Optical devices based on liquid crystal photonic bandgap fibres", Opt. Express, 11, 20, 2589-2596 (2003). CrossRef T.R. Woliński et al., "Tunable properties of light propagation in photonic liquid crystal fibers", Opto-Electron. Rev. 13, 2, 59-64 (2005). CrossRef M. Chychłowski, S. Ertman, T.R. Woliński, "Splay orientation in a capillary", Phot. Lett. Pol. 2, 1, 31-33 (2010). CrossRef T.R. Woliński et al., "Photonic liquid crystal fibers — a new challenge for fiber optics and liquid crystals photonics", Opto-Electron. Rev. 14, 4, 329-334 (2006). CrossRef T.R. Woliński et al., "Influence of temperature and electrical fields on propagation properties of photonic liquid-crystal fibres", Meas. Sci. Technol. 17, 985-991 (2006). CrossRef T.R. Woliński et al., "Photonic Liquid Crystal Fibers for Sensing Applications", IEEE Trans. Inst. Meas. 57, 8, 1796-1802 (2008). CrossRef T.R. Woliński, et al., "Multi-Parameter Sensing Based on Photonic Liquid Crystal Fibers", Mol. Cryst. Liq. Cryst. 502: 220-234., (2009). CrossRef T.R. Woliński, Xiao G and Bock WJ Photonics sensing: principle and applications for safety and security monitoring, (New Jersey, Wiley, 147-181, 2012). CrossRef T.R. Woliński et al., "Propagation effects in a polymer-based photonic liquid crystal fiber", Appl. Phys. A 115, 2, 569-574 (2014). CrossRef S. Ertman et al., "Optofluidic Photonic Crystal Fiber-Based Sensors", J. Lightwave Technol., 35, 16, 3399-3405 (2017). CrossRef S. Ertman et al., "Recent Progress in Liquid-Crystal Optical Fibers and Their Applications in Photonics", J. Lightwave Technol., 37, 11, 2516-2526 (2019). CrossRef M.M. Tefelska et al., "Electric Field Sensing With Photonic Liquid Crystal Fibers Based on Micro-Electrodes Systems", J. Lightwave Technol., 33, 2, 2405-2411, (2015). CrossRef S. Ertman et al., "Index Guiding Photonic Liquid Crystal Fibers for Practical Applications", J. Lightwave Technol., 30, 8, 1208-1214 (2012). CrossRef K. Mileńko, S. Ertman, T. R. Woliński, "Numerical analysis of birefringence tuning in high index microstructured fiber selectively filled with liquid crystal", Proc. SPIE - The International Society for Optical Engineering, 8794 (2013). CrossRef O. Jaworska and S. Ertman, "Photonic bandgaps in selectively filled photonic crystal fibers", Phot. Lett. Pol., 9, 3, 79-81 (2017). CrossRef I.C. Khoo, S.T.Wu, "Optics and Nonlinear Optics of Liquid Crystals", World Scientific (1993). CrossRef P. Lesiak et al., "Thermal optical nonlinearity in photonic crystal fibers filled with nematic liquid crystals doped with gold nanoparticles", Proc. SPIE 10228, 102280N (2017). CrossRef K. Rutkowska, T. Woliński, "Modeling of light propagation in photonic liquid crystal fibers", Photon. Lett. Poland 2, 3, 107 (2010). CrossRef K. Rutkowska, L-W. Wei, "Assessment on the applicability of finite difference methods to model light propagation in photonic liquid crystal fibers", Photon. Lett. Poland 4, 4, 161 (2012). CrossRef K. Rutkowska, U. Laudyn, P. Jung, "Nonlinear discrete light propagation in photonic liquid crystal fibers", Photon. Lett. Poland 5, 1, 17 (2013). CrossRef M. Murek, K. Rutkowska, "Two laser beams interaction in photonic crystal fibers infiltrated with highly nonlinear materials", Photon. Lett. Poland 6, 2, 74 (2014). CrossRef M.M. Tefelska et al., "Photonic Band Gap Fibers with Novel Chiral Nematic and Low-Birefringence Nematic Liquid Crystals", Mol. Cryst. Liq. Cryst., 558, 184-193, (2012). CrossRef M.M. Tefelska et al., "Propagation Effects in Photonic Liquid Crystal Fibers with a Complex Structure", Acta Phys. Pol. A, 118, 1259-1261 (2010). CrossRef K. Orzechowski et al., "Polarization properties of cubic blue phases of a cholesteric liquid crystal", Opt. Mater. 69, 259-264 (2017). CrossRef H. Yoshida et al., "Heavy meson spectroscopy under strong magnetic field", Phys. Rev. E 94, 042703 (2016). CrossRef J. Yan et al., "Extended Kerr effect of polymer-stabilized blue-phase liquid crystals", Appl. Phys. Lett. 96, 071105 (2010). CrossRef C.-W. Chen et al., "Random lasing in blue phase liquid crystals", Opt. Express 20, 23978-23984 (2012). CrossRef C.-H. Lee et al., "Polarization-independent bistable light valve in blue phase liquid crystal filled photonic crystal fiber", Appl. Opt. 52, 4849-4853 (2013). CrossRef D. Poudereux et al., "Infiltration of a photonic crystal fiber with cholesteric liquid crystal and blue phase", Proc. SPIE 9290 (2014). CrossRef K. Orzechowski et al., "Optical properties of cubic blue phase liquid crystal in photonic microstructures", Opt. Express 27, 10, 14270-14282 (2019). CrossRef M. Wahle, J. Ebel, D. Wilkes, H.S. Kitzerow, "Asymmetric band gap shift in electrically addressed blue phase photonic crystal fibers", Opt. Express 24, 20, 22718-22729 (2016). CrossRef K. Orzechowski et al., "Investigation of the Kerr effect in a blue phase liquid crystal using a wedge-cell technique", Phot. Lett. Pol. 9, 2, 54-56 (2017). CrossRef M.M. Sala-Tefelska et al., "Influence of cylindrical geometry and alignment layers on the growth process and selective reflection of blue phase domains", Opt. Mater. 75, 211-215 (2018). CrossRef M.M. Sala-Tefelska et al., "The influence of orienting layers on blue phase liquid crystals in rectangular geometries", Phot. Lett. Pol. 10, 4, 100-102 (2018). CrossRef P. G. de Gennes JP. The Physics of Liquid Crystals. (Oxford University Press 1995). CrossRef L.M. Blinov and V.G. Chigrinov, Electrooptic Effects in Liquid Crystal Materials (New York, NY: Springer New York 1994). CrossRef D. Budaszewski, A.J. Srivastava, V.G. Chigrinov, T.R. Woliński, "Electro-optical properties of photo-aligned photonic ferroelectric liquid crystal fibres", Liq. Cryst., 46 2, 272-280 (2019). CrossRef V. G. Chigrinov, V. M. Kozenkov, H-S. Kwok. Photoalignment of Liquid Crystalline Materials (Chichester, UK: John Wiley & Sons, Ltd 2008). CrossRef M. Schadt et al., "Surface-Induced Parallel Alignment of Liquid Crystals by Linearly Polymerized Photopolymers", Jpn. J. Appl. Phys.31, 2155-2164 (1992). CrossRef D. Budaszewski et al., "Photo-aligned ferroelectric liquid crystals in microchannels", Opt. Lett. 39, 4679 (2014). CrossRef D. Budaszewski, et al., "Photo‐aligned photonic ferroelectric liquid crystal fibers", J. Soc. Inf. Disp. 23, 196-201 (2015). CrossRef O. Stamatoiu, J. Mirzaei, X. Feng, T. Hegmann, "Nanoparticles in Liquid Crystals and Liquid Crystalline Nanoparticles", Top Curr Chem 318, 331-392 (2012). CrossRef A. Siarkowska et al., "Titanium nanoparticles doping of 5CB infiltrated microstructured optical fibers", Photonics Lett. Pol. 8 1, 29-31 (2016). CrossRef A. Siarkowska et al., "Thermo- and electro-optical properties of photonic liquid crystal fibers doped with gold nanoparticles", Beilstein J. Nanotechnol. 8, 2790-2801 (2017). CrossRef D. Budaszewski et al., "Nanoparticles-enhanced photonic liquid crystal fibers", J. Mol. Liq. 267, 271-278 (2018). CrossRef D. Budaszewski et al., "Enhanced efficiency of electric field tunability in photonic liquid crystal fibers doped with gold nanoparticles", Opt. Exp. 27, 10, 14260-14269 (2019). CrossRef
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Schmidt, M., M. Eich, U. Huebner, and R. Boucher. "Electro-optically tunable photonic crystals." Applied Physics Letters 87, no. 12 (September 19, 2005): 121110. http://dx.doi.org/10.1063/1.2039994.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Figotin, Alex, Yuri A. Godin, and Ilia Vitebsky. "Two-dimensional tunable photonic crystals." Physical Review B 57, no. 5 (February 1, 1998): 2841–48. http://dx.doi.org/10.1103/physrevb.57.2841.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Rehammar, R., and J. M. Kinaret. "Nanowire-based tunable photonic crystals." Optics Express 16, no. 26 (December 16, 2008): 21682. http://dx.doi.org/10.1364/oe.16.021682.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Akamatsu, N., K. Hisano, R. Tatsumi, M. Aizawa, C. J. Barrett, and A. Shishido. "Thermo-, photo-, and mechano-responsive liquid crystal networks enable tunable photonic crystals." Soft Matter 13, no. 41 (2017): 7486–91. http://dx.doi.org/10.1039/c7sm01287j.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Budaszewski, Daniel, and Tomasz R. Woliński. "Light propagation in a photonic crystal fiber infiltrated with mesogenic azobenzene dyes." Photonics Letters of Poland 9, no. 2 (July 1, 2017): 51. http://dx.doi.org/10.4302/plp.v9i2.730.

Повний текст джерела
Анотація:
In this paper, light propagation in an isotropic photonic crystal fiber as well in a silica-glass microcapillary infiltrated with a mesogenic azobenzene dye has been investigated. It appeared that light spectrum guided inside the photonic crystal fiber infiltrated with the investigated azobenzene dye depends on the illuminating wavelength of the absorption band and on linear polarization. Also, alignment of the mesogenic azobenzene dye molecules inside silica glass microcapillaries and photonic crystal fibers has been investigated. Results obtained may lead to a new design of optically tunable photonic devices. Full Text: PDF ReferencesP. Russell. St. J. "Photonic-Crystal Fibers", J. Lightwave Technol. 24, 4729 (2006). CrossRef T. Larsen, A. Bjarklev, D. Hermann, J. Broeng, "Optical devices based on liquid crystal photonic bandgap fibres", Opt. Exp. 11, 2589 (2003). CrossRef D. C. Zografopoulos, A. Asquini, E. E. Kriezis, A. d'Alessandro, R. Beccherelli, "Guided-wave liquid-crystal photonics", Lab Chip, 12, 3598 (2012). CrossRef F. Du, Y-Q. Lu, S-T. Wu, "Electrically tunable liquid-crystal photonic crystal fiber", Appl. Phys. Lett 85, 2181 (2004) CrossRef D. C. Zografopoulos, E. E. Kriezis, "Tunable Polarization Properties of Hybrid-Guiding Liquid-Crystal Photonic Crystal Fibers", J. Lightwave Technol. 27 (6), 773 (2009) CrossRef S. Ertman, M. Tefelska, M. Chychłowski, A. Rodriquez, D. Pysz, R. Buczyński, E. Nowinowski-Kruszelnicki, R. Dąbrowski, T. R. Woliński. "Index Guiding Photonic Liquid Crystal Fibers for Practical Applications", J. Lightwave Technol. 30, 1208 (2012). CrossRef D. Noordegraaf, L. Scolari, J. Laegsgaard, L. Rindorf, T. T. Alkeskjold, "Electrically and mechanically induced long period gratings in liquid crystal photonic bandgap fibers", Opt. Expr. 15, 7901 (2007) CrossRef M. M. Tefelska, M. S. Chychlowski, T. R. Wolinski, R. Dabrowski, W. Rejmer, E. Nowinowski-Kruszelnicki, P. Mergo, "Photonic Band Gap Fibers with Novel Chiral Nematic and Low-Birefringence Nematic Liquid Crystals", Mol. Cryst. Liq. Cryst. 558(1), 184 (2012). CrossRef S. Mathews, Y. Semenova, G. Farrell, "Electronic tunability of ferroelectric liquid crystal infiltrated photonic crystal fibre", Electronics Letters, 45(12), 617 (2009). CrossRef V. Chigrinov, H-S Kwok, H. Takada, H. Takatsu, "Photo-aligning by azo-dyes: Physics and applications", Liquid Crystals Today, 14:4, 1-15, (2005) CrossRef A. Siarkowska, M. Jóźwik, S. Ertman, T.R. Woliński, V.G. Chigrinov, "Photo-alignment of liquid crystals in micro capillaries with point-by-point irradiation", Opto-Electon. Rev. 22, 178 (2014); CrossRef D. Budaszewski, A. K. Srivastava, A. M. W. Tam, T. R. Woliński, V. G. Chigrinov, H-S. Kwok, "Photo-aligned ferroelectric liquid crystals in microchannels", Opt. Lett. 39, 16 (2014) CrossRef J-H Liou, T-H. Chang, T. Lin, Ch-P. Yu, "Reversible photo-induced long-period fiber gratings in photonic liquid crystal fibers", Opt. Expr. 19, (7), 6756, (2011) CrossRef T. T. Alkeskjold, J. Laegsgaard, A. Bjarklev, D. S. Hermann, J. Broeng, J. Li, S-T. Wu, "All-optical modulation in dye-doped nematic liquid crystal photonic bandgap fibers", Opt. Exp, 12 (24), 5857 (2004) CrossRef K. Ichimura, Y. Suzuki, T. Seki, A. Hosoki, K. Aoki, "Reversible change in alignment mode of nematic liquid crystals regulated photochemically by command surfaces modified with an azobenzene monolayer", Langmuir, 4, 1214 (1988) CrossRef http://www.beamco.com/Azobenzene-liquid-crystals DirectLink K. A. Rutkowska, K. Orzechowski, M. Sierakowski, "Wedge-cell technique as a simple and effective method for chromatic dispersion determination of liquid crystals", Phot. Lett, Poland, 8(2), 51 (2016). CrossRef L. Deng, H.-K. Liu, "Nonlinear optical limiting of the azo dye methyl-red doped nematic liquid crystalline films", Opt. Eng. 42, 2936-2941 (2003). CrossRef J. Si, J. Qiu, J. Guo, M. Wang, K. Hirao, "Photoinduced birefringence of azodye-doped materials by a femtosecond laser", Appl. Opt., 42, 7170-7173 (2008). CrossRef
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Tunable photonic crystals"

1

Fan, Yun-Hsing. "TUNABLE LIQUID CRYSTAL PHOTONIC DEVICES." Doctoral diss., University of Central Florida, 2005. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/3926.

Повний текст джерела
Анотація:
Liquid crystal (LC)-based adaptive optics are important for information processing, optical interconnections, photonics, integrated optics, and optical communications due to their tunable optical properties. In this dissertation, we describe novel liquid crystal photonic devices and their fabrication methods. The devices presented include inhomogeneous polymer-dispersed liquid crystal (PDLC), polymer network liquid crystals (PNLC) and phase-separated composite film (PSCOF). Liquid crystal/polymer composites could exist in different forms depending on the fabrication conditions. In Chap. 3, we demonstrate a novel nanoscale PDLC device that has inhomogeneous droplet size distribution. In such a PDLC, the inhomogeneous droplet size distribution is obtained by exposing the LC/monomer with a non-uniform ultraviolet (UV) light. An electrically tunable-efficiency Fresnel lens is devised for the first time using nanoscale PDLC. The tunable Fresnel lens is very desirable to eliminate the need of external spatial light modulator. Different gradient profiles are obtained by using different photomasks. The nanoscale LC droplets are randomly distributed within the polymer matrix, so that the devices are polarization independent and exhibit a fast response time. Because of the small droplet sizes, the operating voltage is higher than 100 Vrms. To lower the driving voltage, in Chap. 2 and Chap. 3, we have investigated a polymer-network liquid crystal (PNLC) using a rod-like monomer structure. Since the monomer concentration is only about 5%, the operating voltage is below 10 Vrms. The PNLC devices are polarization dependent. To overcome this shortcoming, stacking two cells with orthogonal alignment directions is a possibility. In Chap. 3, another approach to lower the operating voltage is to use phase-separated composite film (PSCOF) where the LC and polymer are separated completely to form two layers. Without multi-domain formed in the LC cell, PSCOF is free from light scattering. Using PNLC and PSCOF, we also demonstrated LC blazed grating and Fresnel lens. The diffraction efficiency of these devices is continuously controlled by the electric field. Besides Fresnel lens, another critical need for imaging and display is to develop a system with continuously tunable focal length. A conventional zooming system controls the lens distance by mechanical motion along the optical axis. This mechanical zooming system is bulky and power hungry. To overcome the bulkiness, in Chap. 4 we developed an electrically tunable-focus flat LC spherical lens which consists of a spherical electrode imbedded in the top flat substrates while a planar electrode on the bottom substrate. The electric field from the spherical and planar electrodes induces a centrosymmetric gradient refractive index distribution within the LC layer which, in turn, causes the focusing effect. The focal length is tunable by the applied voltage. A tunable range from 0.6 m to infinity is achieved. Microlens array is an attractive device for optical communications and projection displays. In Chap. 5, we describe a LC microlens array whose focal length can be switched from positive to negative or vise versa by the applied voltage. The top spherical electrode glass substrate is flattened with a polymer layer. The top convex substrate and LC layer work together like a zoom lens. By tuning the refractive index profile of the LC layer, the focal length of the microlens array can be switched from positive to negative or vise versa. The tunable LC microlens array would be a great replacement of a conventional microlens array which can be moved by mechanical elements. The fast response time feature of our LC microlens array will be very helpful in developing 3-D animated images. A special feature for LC/polymer composites is light scattering. The concept is analogous to the light scattering of clouds which consist of water droplets. In Chap. 6, we demonstrate polymer network liquid crystals for switchable polarizers and optical shutters. The PNLC can present anisotropic or isotropic light scattering behavior depending on the fabrication methods. The use of dual-frequency liquid crystal and special driving scheme leads to a sub-millisecond response time. The applications for display, light shutters, and switchable windows are emphasized. Although polymer networks help to reduce liquid crystal response time, they tend to scatter light. In Chap. 7, for the first time, we demonstrate a fast-response and scattering-free homogeneously-aligned PNLC light modulator. Light scattering in the near-infrared region is suppressed by optimizing the polymer concentration such that the network domain sizes are smaller than the wavelength. As a result, the PNLC response time is ~300X faster than that of a pure LC mixture except that the threshold voltage is increased by ~25X. The PNLC cell also holds promise for mid and long infrared applications where response time is a critical issue.
Ph.D.
Other
Optics and Photonics
Optics
Стилі APA, Harvard, Vancouver, ISO та ін.
2

González, Xavier (Xavier R. González Barrios). "Edible photonic crystals tunable within the visible regime." Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/112496.

Повний текст джерела
Анотація:
Thesis: S.B., Massachusetts Institute of Technology, Department of Materials Science and Engineering, 2010.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 50-52).
An experimental study was performed to design and fabricate an edible photonic crystal made of alternating layers of food grade titanium dioxide and agar that is able to selectively reflect wavelengths of light within the visible spectrum and allow for dynamic color changes through the tuning mechanism of swelling its agar layers with the addition of edible solvents. After doing a literature search to discover which materials were available to create this edible photonic structure, a trial and error process was conducted using deposition and film thickness characterization techniques to optimize the physical and optical characteristics of the layers composing the photonic structure. The materials selected for the layers in the structure yield a high refractive index contrast, which allows for high reflectivity with a reduced amount of total layers. The multilayer stack can be designed to reflect particular wavelengths by selecting the thickness of the layers accordingly. Thin film characterization took place through the use of profilometry, ellipsometry, and atomic force microscopy. The feasibility and practicality of two manufacturing techniques, spin-coating and RF-sputtering, were analyzed in the process of learning how to assemble an edible multilayer stack for molecular gastronomy applications.
by Xavier González/
S.B.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Wong, Chee Wei 1975. "Strain-tuning of periodic optical devices : tunable gratings and photonic crystals." Thesis, Massachusetts Institute of Technology, 2003. http://hdl.handle.net/1721.1/17008.

Повний текст джерела
Анотація:
Thesis (Sc. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2003.
Includes bibliographical references (p. [161]-173).
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
The advancement of micro- and nano-scale optical devices has heralded micromirrors, semiconductor micro- and nano-lasers, and photonic crystals, among many. Broadly defined with the field of microphotonics and microelectromechanical systems, these innovations have targeted applications in integrated photonic chips and optical telecommunications. To further advance the state-of-the-art, dynamically tunable devices are required not only for demand-based reconfiguration of the optical response, but also for compensation to external disturbances and tight device fabrication tolerances. In this thesis, specific implementations of strain-tunability in two photonic devices will be discussed: the fundamental diffractive grating element, and a photonic band gap microcavity waveguide. For the first part, we demonstrate high-resolution analog tunability in microscale diffractive optics. The design concept consists of a diffractive grating defined onto a piezoelectric-driven deformable membrane, microfabricated through a combination of surface and bulk micromachining. The grating is strain-tuned through actuation of high-quality thin-film piezoelectric actuators. Device characterization shows grating period tunability on the order of a nanometer, limited by measurement uncertainty and noise. The results are in good agreement with analytical theory and numerical models, and present immediate implications in research and industry. For the second part, we generalize the piezoelectric strain-tunable membrane platform for strain-tuning of a silicon photonic band gap microcavity waveguide. Additional motivation for this strain-tuning approach in silicon photonic crystals lies in:
(cont.) (a) the virtual absence of electro-optic effects in silicon, and (b) the ability to achieve tuning with low power requirements through piezoelectric actuation. Compared to current thermo-optics methods, piezoelectric actuation affords faster and more localized tuning in high-density integrated optics. The small-strain perturbation on the optical resonance is analyzed through perturbation theory on unperturbed full 3D finite-difference time-domain numerical models. Device fabrication involves X-ray nanolithography and multi-scale integration of micro- and nano-fabrication methods. Experimental characterization achieved dynamically-tunable resonances with 1.54 nm tunable range (at 1.55 Mum optical wavelengths), in good agreement with theory. This is the first demonstration of strain tunability in photonic crystals and contributes to the development of smart micro- and nano-scale photonics.
by Chee Wei Wong.
Sc.D.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Rey, Isabella H. "Active slow light in silicon photonic crystals : tunable delay and Raman gain." Thesis, University of St Andrews, 2012. http://hdl.handle.net/10023/3356.

Повний текст джерела
Анотація:
In the past decade, great research effort was inspired by the need to realise active optical functionalities in silicon, in order to develop the full potential of silicon as a photonic platform. In this thesis we explore the possibility of achieving tunable delay and optical gain in silicon, taking advantage of the unique dispersion capabilities of photonic crystals. To achieve tunable optical delay, we adopt a wavelength conversion and group velocity dispersion approach in a miniaturised engineered slow light photonic crystal waveguide. Our scheme is equivalent to a two-step indirect photonic transition, involving an alteration of both the frequency and momentum of an optical pulse, where the former is modified by the adiabatic tuning possibilities enabled by slow light. We apply this concept in a demonstration of continuous tunability of the delay of pulses, and exploit the ultrafast nature of the tuning process to demonstrate manipulation of a single pulse in a train of two pulses. In order to address the propagation loss intrinsic to slow light structures, with a prospect for improving the performance of the tunable delay device, we also investigate the nonlinear effect of stimulated Raman scattering as a means of introducing optical gain in silicon. We study the influence of slowdown factors and pump-induced losses on the evolution of a signal beam along the waveguide, as well as the role of linear propagation loss and mode profile changes typical of realistic photonic crystal structures. We then describe the work conducted for the experimental demonstration of such effect and its enhancement due to slow light. Finally, as the Raman nonlinearity may become useful also in photonic crystal nanocavities, which confine light in very small volumes, we discuss the design and realisation of structures which satisfy the basic requirements on the resonant modes needed for improving Raman scattering.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Lu, Shin-Ying. "Electrically-tunable Colors of Chiral Liquid Crystals for Photonic and Display Applications." Kent State University / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=kent1279299037.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Welna, Karl P. "Electrically injected photonic-crystal nanocavities." Thesis, University of St Andrews, 2011. http://hdl.handle.net/10023/2528.

Повний текст джерела
Анотація:
Nano-emitters are the new generation of laser devices. A photonic-crystal cavity, which highly confines light in small volumes, in combination with quantum-dots can enhance the efficiency and lower the threshold of this device. The practical realisation of a reliable, electrically pumped photonic-crystal laser at room-temperature is, however, challenging. In this project, a design for such a laser was established. Its properties are split up into electrical, optical and thermal tasks that are individually investigated via various device simulations. The resulting device performance showed that with our design the quantum-dots can be pumped in order to provide gain and to overcome the loss of the system. Threshold currents can be as low as 10’s of μA and Q-factors in the range of 1000’s. Gallium arsenide wafers were grown according to our specifications and their diode behaviour confirmed. Photonic-crystal cavities were fabricated through a newly developed process based on a TiOₓ hard-mask. Beside membraned cavities, also cavities on oxidised AlGaAs were fabricated with help to a unique hard-mask removal method. The cavities were measured with a self-made micro-photoluminescence setup with the highest Q-factor of 4000 for the membrane cavity and a remarkable 2200 for the oxide cavity. The fabrication steps, regarding the electrically pumped photonic-crystal laser, were developed and it was shown that this device can be fabricated. During this project, a novel type of gentle confinement cavity was developed, based on the adaption of the dispersion curve (DA cavity) of a photonic-crystal waveguide. Q-factors of as high as 600.000 were measured for these cavities made in Silicon.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Li, Jun. "REFRACTIVE INDICES OF LIQUID CRYSTALS AND THEIR APPLICATIONS IN DISPLAY AND PHOTONIC DEVICES." Doctoral diss., University of Central Florida, 2005. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/2200.

Повний текст джерела
Анотація:
Liquid crystals (LCs) are important materials for flat panel display and photonic devices. Most LC devices use electrical field-, magnetic field-, or temperature-induced refractive index change to modulate the incident light. Molecular constituents, wavelength, and temperature are the three primary factors determining the liquid crystal refractive indices: ne and no for the extraordinary and ordinary rays, respectively. In this dissertation, we derive several physical models for describing the wavelength and temperature effects on liquid crystal refractive indices, average refractive index, and birefringence. Based on these models, we develop some high temperature gradient refractive index LC mixtures for photonic applications, such as thermal tunable liquid crystal photonic crystal fibers and thermal solitons. Liquid crystal refractive indices decrease as the wavelength increase. Both ne and no saturate in the infrared region. Wavelength effect on LC refractive indices is important for the design of direct-view displays. In Chapter 2, we derive the extended Cauchy models for describing the wavelength effect on liquid crystal refractive indices in the visible and infrared spectral regions based on the three-band model. The three-coefficient Cauchy model could be used for describing the refractive indices of liquid crystals with low, medium, and high birefringence, whereas the two-coefficient Cauchy model is more suitable for low birefringence liquid crystals. The critical value of the birefringence is deltan~0.12. Temperature is another important factor affecting the LC refractive indices. The thermal effect originated from the lamp of projection display would affect the performance of the employed liquid crystal. In Chapter 3, we derive the four-parameter and three-parameter parabolic models for describing the temperature effect on the LC refractive indices based on Vuks model and Haller equation. We validate the empirical Haller equation quantitatively. We also validate that the average refractive index of liquid crystal decreases linearly as the temperature increases. Liquid crystals exhibit a large thermal nonlinearity which is attractive for new photonic applications using photonic crystal fibers. We derive the physical models for describing the temperature gradient of the LC refractive indices, ne and no, based on the four-parameter model. We find that LC exhibits a crossover temperature To at which dno/dT is equal to zero. The physical models of the temperature gradient indicate that ne, the extraordinary refractive index, always decreases as the temperature increases since dne/dT is always negative, whereas no, the ordinary refractive index, decreases as the temperature increases when the temperature is lower than the crossover temperature (dno/dT<0 when the temperature is lower than To) and increases as the temperature increases when the temperature is higher than the crossover temperature (dno/dT>0 when the temperature is higher than To ). Measurements of LC refractive indices play an important role for validating the physical models and the device design. Liquid crystal is anisotropic and the incident linearly polarized light encounters two different refractive indices when the polarization is parallel or perpendicular to the optic axis. The measurement is more complicated than that for an isotropic medium. In Chapter 4, we use a multi-wavelength Abbe refractometer to measure the LC refractive indices in the visible light region. We measured the LC refractive indices at six wavelengths, lamda=450, 486, 546, 589, 633 and 656 nm by changing the filters. We use a circulating constant temperature bath to control the temperature of the sample. The temperature range is from 10 to 55 oC. The refractive index data measured include five low-birefringence liquid crystals, MLC-9200-000, MLC-9200-100, MLC-6608 (delta_epsilon=-4.2), MLC-6241-000, and UCF-280 (delta_epsilon=-4); four middle-birefringence liquid crystals, 5CB, 5PCH, E7, E48 and BL003; four high-birefringence liquid crystals, BL006, BL038, E44 and UCF-35, and two liquid crystals with high dno/dT at room temperature, UCF-1 and UCF-2. The refractive indices of E7 at two infrared wavelengths lamda=1.55 and 10.6 um are measured by the wedged-cell refractometer method. The UV absorption spectra of several liquid crystals, MLC-9200-000, MLC-9200-100, MLC-6608 and TL-216 are measured, too. In section 6.5, we also measure the refractive index of cured optical films of NOA65 and NOA81 using the multi-wavelength Abbe refractometer. In Chapter 5, we use the experimental data measured in Chapter 4 to validate the physical models we derived, the extended three-coefficient and two-coefficient Cauchy models, the four-parameter and three-parameter parabolic models. For the first time, we validate the Vuks model using the experimental data of liquid crystals directly. We also validate the empirical Haller equation for the LC birefringence delta_n and the linear equation for the LC average refractive index . The study of the LC refractive indices explores several new photonic applications for liquid crystals such as high temperature gradient liquid crystals, high thermal tunable liquid crystal photonic crystal fibers, the laser induced 2D+1 thermal solitons in nematic crystals, determination for the infrared refractive indices of liquid crystals, comparative study for refractive index between liquid crystals and photopolymers for polymer dispersed liquid crystal (PDLC) applications, and so on. In Chapter 6, we introduce these applications one by one. First, we formulate two novel liquid crystals, UCF-1 and UCF-2, with high dno/dT at room temperature. The dno/dT of UCF-1 is about 4X higher than that of 5CB at room temperature. Second, we infiltrate UCF-1 into the micro holes around the silica core of a section of three-rod core PCF and set up a highly thermal tunable liquid crystal photonic crystal fiber. The guided mode has an effective area of 440 ƒÝm2 with an insertion loss of less than 0.5dB. The loss is mainly attributed to coupling losses between the index-guided section and the bandgap-guided section. The thermal tuning sensitivity of the spectral position of the bandgap was measured to be 27 nm/degree around room temperature, which is 4.6 times higher than that using the commercial E7 LC mixture operated at a temperature above 50 degree C. Third, the novel liquid crystals UCF-1 and UCF-2 are preferred to trigger the laser-induced thermal solitons in nematic liquid crystal confined in a capillary because of the high positive temperature gradient at room temperature. Fourth, we extrapolate the refractive index data measured at the visible light region to the near and far infrared region basing on the extended Cauchy model and four-parameter model. The extrapolation method is validated by the experimental data measured at the visible light and infrared light regions. Knowing the LC refractive indices at the infrared region is important for some photonic devices operated in this light region. Finally, we make a completely comparative study for refractive index between two photocurable polymers (NOA65 and NOA81) and two series of Merck liquid crystals, E-series (E44, E48, and E7) and BL-series (BL038, BL003 and BL006) in order to optimize the performance of polymer dispersed liquid crystals (PDLC). Among the LC materials we studied, BL038 and E48 are good candidates for making PDLC system incorporating NOA65. The BL038 PDLC cell shows a higher contrast ratio than the E48 cell because BL038 has a better matched ordinary refractive index, higher birefringence, and similar miscibility as compared to E48. Liquid crystals having a good miscibility with polymer, matched ordinary refractive index, and higher birefringence help to improve the PDLC contrast ratio for display applications. In Chapter 7, we give a general summary for the dissertation.
Ph.D.
Optics and Photonics
Optics
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kovalevich, Tatiana. "Tunable Bloch surface waves devices." Thesis, Bourgogne Franche-Comté, 2017. http://www.theses.fr/2017UBFCD022/document.

Повний текст джерела
Анотація:
Cette thèse est consacrée au développement de dispositifs accordables sur la base de cristaux photoniques unidimensionnels qui peuvent supporter des ondes de surface de Bloch (BSW). Tout d'abord, nous explorons les possibilités de contrôler la direction de propagation des BSW par le biais de la polarisation de la lumière incidente. Dans ce cas, nous gravons sur le dessus du cristal photonique 1D des structures passives de type réseau, qui permettent à la fois de coupler la lumière incidente aux BSWs et de se comporter comme une lame séparatrice ultracompacte contrôlée par la polarisation lumineuse. Nous avons testé ce type de coupleur sur des cristaux photoniques 1D fonctionnant dans l’air et dans l’eau. Ensuite, nous démontrons l'accordabilité des BSWs en ajoutant une fine couche active dans la structure photonique multicouche. Il s’agit d’un film mince de niobate de lithium monocristallin qui permet d’introduire des propriétés anisotropes dans le cristal photonique 1D. Différentes façons de fabriquer des cristaux photoniques 1D contenant du niobate de lithium monocristallin ont été développées dans le cadre de ce travail. Ces travaux nous ont permis d’explorer le concept de contrôle électro-optique des BSWs
This thesis is devoted to develop tunable devices on the base of one-dimensional photonic crystals (1DPhC) which can sustain Bloch surface waves (BSWs).First, we explore the possibilities to control the BSW propagation direction with polarization of incident light. In this case we manufacture additional passive structures such as gratings on the top of the 1DPhC, which are working both as a BSW launcher and polarization–controlled “wave-splitters”. We test this type of launcher in air and in water as an external medium. Then, we demonstrate the tunability of the BSW by adding an active layers into the multilayer stack. Here a crystalline X-cut thin film lithium niobate (TFLN) is used to introduce anisotropic properties to the whole 1DPhC. Different ways to manufacture 1D PhCs with LiNbO3 on the top would be described. Finally, we explore the concept of the electro-optically tuned BSW
Стилі APA, Harvard, Vancouver, ISO та ін.
9

John, Jimmy. "VO2 nanostructures for dynamically tunable nanophotonic devices." Thesis, Lyon, 2020. http://www.theses.fr/2020LYSEI044.

Повний текст джерела
Анотація:
L'information est devenue le bien le plus précieux au monde. Ce mouvement vers la nouvelle ère de l'information a été propulsé par la capacité à transmettre l'information plus rapidement, à la vitesse de la lumière. Il est donc apparu nécessaire de mener des recherches plus poussées pour contrôler plus efficacement les supports d'information. Avec les progrès réalisés dans ce secteur, la plupart des technologies actuelles de contrôle de la lumière se heurtent à certains obstacles tels que la taille et la consommation d'énergie et sont conçues pour être passives ou sont limitées technologiquement pour être moins actives (technologie Si-back). Même si rien ne voyage plus vite que la lumière, la vitesse réelle à laquelle les informations peuvent être transportées par la lumière est la vitesse à laquelle nous pouvons la moduler ou la contrôler. Ma tâche dans cette thèse visait à étudier le potentiel du VO2, un matériau à changement de phase, pour la nano-photonique, avec un accent particulier sur la façon de contourner les inconvénients du matériau et de concevoir et démontrer des dispositifs intégrés efficaces pour une manipulation efficace de la lumière à la fois dans les télécommunications et le spectre visible. En outre, nous démontrons expérimentalement que les résonances multipolaires supportées par les nanocristaux de VO2 (NC) peuvent être réglées et commutées dynamiquement en exploitant la propriété de changement de phase du VO2. Et ainsi atteindre l'objectif d'adaptation de la propriété intrinsèque basée sur le formalisme de Mie en réduisant les dimensions des structures de VO2 comparables à la longueur d'onde de fonctionnement, créant un champ d'application pour un métamatériau accordable défini par l'utilisateur
Information has become the most valuable commodity in the world. This drive to the new information age has been propelled by the ability to transmit information faster, at the speed of light. This erupted the need for finer researches on controlling the information carriers more efficiently. With the advancement in this sector, majority of the current technology for controlling the light, face certain roadblocks like size, power consumption and are built to be passive or are restrained technologically to be less active (Si- backed technology). Even though nothing travels faster than light, the real speed at which information can be carried by light is the speed at which we can modulate or control it. My task in this thesis aimed at investigating the potential of VO2, a phase change material, for nano-photonics, with a specific emphasis on how to circumvent the drawbacks of the material and to design and demonstrate efficient integrated devices for efficient manipulation of light both in telecommunication and visible spectrum. In addition to that we experimentally demonstrate the multipolar resonances supported by VO2 nanocrystals (NCs) can be dynamically tuned and switched leveraging phase change property of VO2. And thus achieving the target tailoring of intrinsic property based on Mie formalism by reducing the dimensions of VO2 structures comparable to the wavelength of operation, creating a scope for user defined tunable metamaterial
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Dorjgotov, Enkh-Amgalan. "Tunable Liquid Crystal Etalon and Photonic Devices." Kent State University / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=kent1278035084.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Tunable photonic crystals"

1

Zhang, Lei. Ultra-Broadly Tunable Light Sources Based on the Nonlinear Effects in Photonic Crystal Fibers. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-48360-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Zhang, Lei. Ultra-Broadly Tunable Light Sources Based on the Nonlinear Effects in Photonic Crystal Fibers. Springer Berlin / Heidelberg, 2015.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Zhang, Lei. Ultra-Broadly Tunable Light Sources Based on the Nonlinear Effects in Photonic Crystal Fibers. Springer, 2016.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Zhang, Lei. Ultra-Broadly Tunable Light Sources Based on the Nonlinear Effects in Photonic Crystal Fibers. Springer, 2015.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Tunable photonic crystals"

1

Busch, Kurt, and Sajeev John. "Tunable Photonic Crystals." In Photonic Crystals and Light Localization in the 21st Century, 41–57. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0738-2_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kitzerow, Heinz-Siegfried, and Johann-Peter Reithmaier. "Tunable Photonic Crystals Using Liquid Crystals." In Photonic Crystals, 174–97. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2006. http://dx.doi.org/10.1002/3527602593.ch9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ruda, Harry E., and Naomi Matsuura. "Nano-Engineered Tunable Photonic Crystals." In Springer Handbook of Electronic and Photonic Materials, 1. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-48933-9_39.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Ozaki, Ryotaro, Masanori Ozaki, and Katsumi Yoshino. "CHAPTER 5. Optical Properties of Tunable Photonic Crystals Using Liquid Crystals." In Responsive Photonic Nanostructures, 91–118. Cambridge: Royal Society of Chemistry, 2013. http://dx.doi.org/10.1039/9781849737760-00091.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kanai, Toshimitsu. "Gel-Immobilized Colloidal Photonic Crystals with Tunable Properties." In Organic and Hybrid Photonic Crystals, 431–50. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16580-6_19.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kanai, Toshimitsu. "CHAPTER 6. Tunable Colloidal Crystals Immobilized in Soft Hydrogels." In Responsive Photonic Nanostructures, 119–49. Cambridge: Royal Society of Chemistry, 2013. http://dx.doi.org/10.1039/9781849737760-00119.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Jia, Xiaolu, Haiying Tan, and Jintao Zhu. "Responsive Photonic Crystals with Tunable Structural Color." In Polymer-Engineered Nanostructures for Advanced Energy Applications, 151–72. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57003-7_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Amos, R. M., D. M. Taylor, T. J. Shepherd, J. G. Rarity, and P. Tapster. "Tunable Shear-Ordered Face-Centered Cubic Photonic Crystals." In Photonic Crystals and Light Localization in the 21st Century, 263–78. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0738-2_20.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Fudouzi, Hiroshi, Yu Lu, and Younan Xia. "Photonic Papers: Colloidal Crystals with Tunable Optical Properties." In ACS Symposium Series, 329–37. Washington, DC: American Chemical Society, 2004. http://dx.doi.org/10.1021/bk-2005-0888.ch025.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Sharma, Sanjeev, Vipin Kumar, and Shradha Gupta. "Tunable Transmittance Using Temperature Dependence ZnS-Based ID Photonic Crystals." In Advances in Smart Communication and Imaging Systems, 325–30. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9938-5_31.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Tunable photonic crystals"

1

Malkova, N., D. Scrymgeour, S. Kim, and V. Gopalan. "Tunable Photonic Crystals." In Integrated Photonics Research. Washington, D.C.: OSA, 2003. http://dx.doi.org/10.1364/ipr.2003.imd1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Schmidt, Markus, Gunnar Boettger, Christian Liguda, Alexander Petrov, Karolin Mellert, Manfred Eich, Uwe Huebner, Wolfgang Morgenroth, and Hans G. Meyer. "Tunable polymer photonic crystals." In Optical Science and Technology, SPIE's 48th Annual Meeting, edited by Mark G. Kuzyk, Manfred Eich, and Robert A. Norwood. SPIE, 2003. http://dx.doi.org/10.1117/12.505613.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Snoswell, D. R. E., P. Ivanov, M. J. Cryan, N. Elsner, J. G. Rarity, C. L. Bower, and B. Vincent. "Electronically tunable photonic crystals." In 2007 Quantum Electronics and Laser Science Conference. IEEE, 2007. http://dx.doi.org/10.1109/qels.2007.4431329.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Snoswell, D. R. E., P. Ivanov, M. J. Cryan, N. Elsner, J. G. Rarity, C. L. Bower, and B. Vincent. "Electronically Tunable Photonic Crystals." In CLEO 2007. IEEE, 2007. http://dx.doi.org/10.1109/cleo.2007.4453552.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Aktsipetrov, O. A., T. V. Murzina, F. Yu Sychev, and I. A. Kolmychek. "Tunable ferroelectric photonic crystals." In 2008 Conference on Lasers and Electro-Optics (CLEO). IEEE, 2008. http://dx.doi.org/10.1109/cleo.2008.4552153.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Snoswell, D. R. E., P. S. Ivanov, M. J. Cryan, N. Elsner, J. G. Rarity, C. L. Bower, and B. Vincent. "Electronically Tunable Photonic Crystals." In 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference. IEEE, 2007. http://dx.doi.org/10.1109/cleoe-iqec.2007.4386604.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Wülbern, Jan H., Markus Schmidt, Manfred Eich, and Uwe Hübner. "Electro-optically tunable photonic crystals." In Photonics Europe, edited by Ali Adibi, Shawn-Yu Lin, and Axel Scherer. SPIE, 2006. http://dx.doi.org/10.1117/12.667779.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Brenot, R., M. Attali, O. Le Gouezigou, F. Poingt, F. Pommereau, L. Le Gouezigou, O. Drisse, F. Lelarge, and G. H. Duan. "Widely Tunable Photonic Crystals Lasers." In 2006 IEEE 20th International Semiconductor Laser Conference, 2006. Conference Digest. IEEE, 2006. http://dx.doi.org/10.1109/islc.2006.1708124.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Summers, C. J., E. Graugnard, D. P. Gaillot, J. S. King, Y. Zhang-Williams, and I. C. Khoo. "Tunable 3D photonic crystals by liquid crystal infiltration." In SPIE Optics + Photonics, edited by Iam-Choon Khoo. SPIE, 2006. http://dx.doi.org/10.1117/12.682654.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Khoo, Iam-Choon, Yana Zhang, Andrew Diaz, Jianwu Ding, Ivan B. Divliansky, Kito Holliday, Theresa S. Mayer, V. Crespi, David A. Scrymgeour, and V. Gopalan. "Widely tunable nonlinear liquid crystal-based photonic crystals." In International Symposium on Optical Science and Technology, edited by Iam-Choon Khoo. SPIE, 2002. http://dx.doi.org/10.1117/12.453287.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії