Дисертації з теми "Trusted Execution Environment (TEE)"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Trusted Execution Environment (TEE).

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-16 дисертацій для дослідження на тему "Trusted Execution Environment (TEE)".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Da, Silva Mathieu. "Securing a trusted hardware environment (Trusted Execution Environment)." Thesis, Montpellier, 2018. http://www.theses.fr/2018MONTS053/document.

Повний текст джерела
Анотація:
Ce travail de thèse a pour cadre le projet Trusted Environment Execution eVAluation (TEEVA) (projet français FUI n°20 de Janvier 2016 à Décembre 2018) qui vise à évaluer deux solutions alternatives de sécurisation des plateformes mobiles, l’une est purement logicielle, la Whitebox Crypto, alors que l’autre intègre des éléments logiciels et matériels, le Trusted Environment Execution (TEE). Le TEE s’appuie sur la technologie TrustZone d’ARM disponible sur de nombreux chipsets du marché tels que des smartphones et tablettes Android. Cette thèse se concentre sur l’architecture TEE, l’objectif étant d’analyser les menaces potentielles liées aux infrastructures de test/debug classiquement intégrées dans les circuits pour contrôler la conformité fonctionnelle après fabrication.Le test est une étape indispensable dans la production d’un circuit intégré afin d’assurer fiabilité et qualité du produit final. En raison de l’extrême complexité des circuits intégrés actuels, les procédures de test ne peuvent pas reposer sur un simple contrôle des entrées primaires avec des patterns de test, puis sur l’observation des réponses de test produites sur les sorties primaires. Les infrastructures de test doivent être intégrées dans le matériel au moment du design, implémentant les techniques de Design-for-Testability (DfT). La technique DfT la plus commune est l’insertion de chaînes de scan. Les registres sont connectés en une ou plusieurs chaîne(s), appelé chaîne(s) de scan. Ainsi, un testeur peut contrôler et observer les états internes du circuit à travers les broches dédiées. Malheureusement, cette infrastructure de test peut aussi être utilisée pour extraire des informations sensibles stockées ou traitées dans le circuit, comme par exemple des données fortement corrélées à une clé secrète. Une attaque par scan consiste à récupérer la clé secrète d’un crypto-processeur grâce à l’observation de résultats partiellement encryptés.Des expérimentations ont été conduites sur la carte électronique de démonstration avec le TEE afin d’analyser sa sécurité contre une attaque par scan. Dans la carte électronique de démonstration, une contremesure est implémentée afin de protéger les données sensibles traitées et sauvegardées dans le TEE. Les accès de test sont déconnectés, protégeant contre les attaques exploitant les infrastructures de test, au dépend des possibilités de test, diagnostic et debug après mise en service du circuit. Les résultats d’expérience ont montré que les circuits intégrés basés sur la technologie TrustZone ont besoin d’implanter une contremesure qui protège les données extraites des chaînes de scan. Outre cette simple contremesure consistant à éviter l’accès aux chaînes de scan, des contremesures plus avancées ont été développées dans la littérature pour assurer la sécurité tout en préservant l’accès au test et au debug. Nous avons analysé un état de l’art des contremesures contre les attaques par scan. De cette étude, nous avons proposé une nouvelle contremesure qui préserve l’accès aux chaînes de scan tout en les protégeant, qui s’intègre facilement dans un système, et qui ne nécessite aucun redesign du circuit après insertion des chaînes de scan tout en préservant la testabilité du circuit. Notre solution est basée sur l’encryption du canal de test, elle assure la confidentialité des communications entre le circuit et le testeur tout en empêchant son utilisation par des utilisateurs non autorisés. Plusieurs architectures ont été étudiées, ce document rapporte également les avantages et les inconvénients des solutions envisagées en terme de sécurité et de performance
This work is part of the Trusted Environment Execution eVAluation (TEEVA) project (French project FUI n°20 from January 2016 to December 2018) that aims to evaluate two alternative solutions for secure mobile platforms: a purely software one, the Whitebox Crypto, and a TEE solution, which integrates software and hardware components. The TEE relies on the ARM TrustZone technology available on many of the chipsets for the Android smartphones and tablets market. This thesis focuses on the TEE architecture. The goal is to analyze potential threats linked to the test/debug infrastructures classically embedded in hardware systems for functional conformity checking after manufacturing.Testing is a mandatory step in the integrated circuit production because it ensures the required quality and reliability of the devices. Because of the extreme complexity of nowadays integrated circuits, test procedures cannot rely on a simple control of primary inputs with test patterns, then observation of produced test responses on primary outputs. Test facilities must be embedded in the hardware at design time, implementing the so-called Design-for-Testability (DfT) techniques. The most popular DfT technique is the scan design. Thanks to this test-driven synthesis, registers are connected in one or several chain(s), the so-called scan chain(s). A tester can then control and observe the internal states of the circuit through dedicated scan pins and components. Unfortunately, this test infrastructure can also be used to extract sensitive information stored or processed in the chip, data strongly correlated to a secret key for instance. A scan attack consists in retrieving the secret key of a crypto-processor thanks to the observation of partially encrypted results.Experiments have been conducted during the project on the demonstrator board with the target TEE in order to analyze its security against a scan-based attack. In the demonstrator board, a countermeasure is implemented to ensure the security of the assets processed and saved in the TEE. The test accesses are disconnected preventing attacks exploiting test infrastructures but disabling the test interfaces for testing, diagnosis and debug purposes. The experimental results have shown that chips based on TrustZone technology need to implement a countermeasure to protect the data extracted from the scan chains. Besides the simple countermeasure consisting to avoid scan accesses, further countermeasures have been developed in the literature to ensure security while preserving test and debug facilities. State-of-the-art countermeasures against scan-based attacks have been analyzed. From this study, we investigate a new proposal in order to preserve the scan chain access while preventing attacks, and to provide a plug-and-play countermeasure that does not require any redesign of the scanned circuit while maintaining its testability. Our solution is based on the encryption of the test communication, it provides confidentiality of the communication between the circuit and the tester and prevents usage from unauthorized users. Several architectures have been investigated, this document also reports pros and cons of envisaged solutions in terms of security and performance
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Cole, Nigel. "Arguing Assurance in Trusted Execution Environments using Goal Structuring Notation." Thesis, Linköpings universitet, Programvara och system, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-177923.

Повний текст джерела
Анотація:
A trusted execution environment (TEE) is an isolated environment used for trusted execution. TEE solutions are usually proprietary and specific for a certain hardware specification, thereby limiting developers that use those TEEs. A potential solution to this issue is the use of open-source alternatives such as the TEE framework Keystone and the Reduced Instruction Set Computer V (RISC-V) hardware. These alternatives are rather young and are not as well established as the variants developed by ARM and Intel. To this end, the assurance in Keystone and RISC-V are analysed by studying a remote attestation assurance use case using the goal structuring notation (GSN) method. The aim is to investigate how GSN can be utilised to build assurance cases for TEEs on RISC-V. This thesis presents a process of how GSNs can be created to argue assurance for a TEE solution. Furthermore, Keystone operates under a specific threat model with made assumptions that may have a large impact depending on the use case. Therefore, Keystone is analysed to understand whether the framework mitigates existing vulnerabilities in TEEs. It is concluded that GSN is a viable method for arguing assurance in TEEs, providing great freedom in the creation of the GSN model. The freedom is also its weakness since the argument composition has a high impact on the argument. Furthermore, we conclude that Keystone mitigates multiple known vulnerabilities primarily through made assumptions in its threat model. These cases need to be considered by developers utilising Keystone to determine whether or not the assumptions are valid for their use case.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Sundblad, Anton, and Gustaf Brunberg. "Secure hypervisor versus trusted execution environment : Security analysis for mobile fingerprint identification applications." Thesis, Linköpings universitet, Databas och informationsteknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-139227.

Повний текст джерела
Анотація:
Fingerprint identification is becoming increasingly popular as a means of authentication for handheld devices of different kinds. In order to secure such an authentication solution it is common to use a TEE implementation. This thesis examines the possibility of replacing a TEE with a hypervisor-based solution instead, with the intention of keeping the same security features that a TEE can offer. To carry out the evaluation a suitable method is constructed. This method makes use of fault trees to be able to find possible vulnerabilities in both systems, and these vulnerabilities are then documented. The vulnerabilities of both systems are also compared to each other to identify differences in how they are handled. It is concluded that if the target platform has the ability to implement a TEE solution, it can also implement the same solution using a hypervisor. However, the authors recommend against porting a working TEE solution, as TEEs often offer finished APIs for common operations that would require re-implementation in the examined hypervisor.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Dhar, Siddharth. "Optimizing TEE Protection by Automatically Augmenting Requirements Specifications." Thesis, Virginia Tech, 2020. http://hdl.handle.net/10919/98730.

Повний текст джерела
Анотація:
An increasing number of software systems must safeguard their confidential data and code, referred to as critical program information (CPI). Such safeguarding is commonly accomplished by isolating CPI in a trusted execution environment (TEE), with the isolated CPI becoming a trusted computing base (TCB). TEE protection incurs heavy performance costs, as TEE-based functionality is expensive to both invoke and execute. Despite these costs, projects that use TEEs tend to have unnecessarily large TCBs. As based on our analysis, developers often put code and data into TEE for convenience rather than protection reasons, thus not only compromising performance but also reducing the effectiveness of TEE protection. In order for TEEs to provide maximum benefits for protecting CPI, their usage must be systematically incorporated into the entire software engineering process, starting from Requirements Engineering. To address this problem, we present a novel approach that incorporates TEEs in the Requirements Engineering phase by using natural language processing (NLP) to classify those software requirements that are security critical and should be isolated in TEE. Our approach takes as input a requirements specification and outputs a list of annotated software requirements. The annotations recommend to the developer which corresponding features comprise CPI that should be protected in a TEE. Our evaluation results indicate that our approach identifies CPI with a high degree of accuracy to incorporate safeguarding CPI into Requirements Engineering.
Master of Science
An increasing number of software systems must safeguard their confidential data like passwords, payment information, personal details, etc. This confidential information is commonly protected using a Trusted Execution Environment (TEE), an isolated environment provided by either the existing processor or separate hardware that interacts with the operating system to secure sensitive data and code. Unfortunately, TEE protection incurs heavy performance costs, with TEEs being slower than modern processors and frequent communication between the system and the TEE incurring heavy performance overhead. We discovered that developers often put code and data into TEE for convenience rather than protection purposes, thus not only hurting performance but also reducing the effectiveness of TEE protection. By thoroughly examining a project's features in the Requirements Engineering phase, which defines the project's functionalities, developers would be able to understand which features handle confidential data. To that end, we present a novel approach that incorporates TEEs in the Requirements Engineering phase by means of Natural Language Processing (NLP) tools to categorize the project requirements that may warrant TEE protection. Our approach takes as input a project's requirements and outputs a list of categorized requirements defining which requirements are likely to make use of confidential information. Our evaluation results indicate that our approach performs this categorization with a high degree of accuracy to incorporate safeguarding the confidentiality related features in the Requirements Engineering phase.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Lim, Steven. "Recommending TEE-based Functions Using a Deep Learning Model." Thesis, Virginia Tech, 2021. http://hdl.handle.net/10919/104999.

Повний текст джерела
Анотація:
Trusted execution environments (TEEs) are an emerging technology that provides a protected hardware environment for processing and storing sensitive information. By using TEEs, developers can bolster the security of software systems. However, incorporating TEE into existing software systems can be a costly and labor-intensive endeavor. Software maintenance—changing software after its initial release—is known to contribute the majority of the cost in the software development lifecycle. The first step of making use of a TEE requires that developers accurately identify which pieces of code would benefit from being protected in a TEE. For large code bases, this identification process can be quite tedious and time-consuming. To help reduce the software maintenance costs associated with introducing a TEE into existing software, this thesis introduces ML-TEE, a recommendation tool that uses a deep learning model to classify whether an input function handles sensitive information or sensitive code. By applying ML-TEE, developers can reduce the burden of manual code inspection and analysis. ML-TEE's model was trained and tested on functions from GitHub repositories that use Intel SGX and on an imbalanced dataset. The accuracy of the final model used in the recommendation system has an accuracy of 98.86% and an F1 score of 80.00%. In addition, we conducted a pilot study, in which participants were asked to identify functions that needed to be placed inside a TEE in a third-party project. The study found that on average, participants who had access to the recommendation system's output had a 4% higher accuracy and completed the task 21% faster.
Master of Science
Improving the security of software systems has become critically important. A trusted execution environment (TEE) is an emerging technology that can help secure software that uses or stores confidential information. To make use of this technology, developers need to identify which pieces of code handle confidential information and should thus be placed in a TEE. However, this process is costly and laborious because it requires the developers to understand the code well enough to make the appropriate changes in order to incorporate a TEE. This process can become challenging for large software that contains millions of lines of code. To help reduce the cost incurred in the process of identifying which pieces of code should be placed within a TEE, this thesis presents ML-TEE, a recommendation system that uses a deep learning model to help reduce the number of lines of code a developer needs to inspect. Our results show that the recommendation system achieves high accuracy as well as a good balance between precision and recall. In addition, we conducted a pilot study and found that participants from the intervention group who used the output from the recommendation system managed to achieve a higher average accuracy and perform the assigned task faster than the participants in the control group.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Moghimi, Ahmad. "Side-Channel Attacks on Intel SGX: How SGX Amplifies The Power of Cache Attack." Digital WPI, 2017. https://digitalcommons.wpi.edu/etd-theses/399.

Повний текст джерела
Анотація:
In modern computing environments, hardware resources are commonly shared, and parallel computation is more widely used. Users run their services in parallel on the same hardware and process information with different confidentiality levels every day. Running parallel tasks can cause privacy and security problems if proper isolation is not enforced. Computers need to rely on a trusted root to protect the data from malicious entities. Intel proposed the Software Guard eXtension (SGX) to create a trusted execution environment (TEE) within the processor. SGX allows developers to benefit from the hardware level isolation. SGX relies only on the hardware, and claims runtime protection even if the OS and other software components are malicious. However, SGX disregards any kind of side-channel attacks. Researchers have demonstrated that microarchitectural sidechannels are very effective in thwarting the hardware provided isolation. In scenarios that involve SGX as part of their defense mechanism, system adversaries become important threats, and they are capable of initiating these attacks. This work introduces a new and more powerful cache side-channel attack that provides system adversaries a high resolution channel. The developed attack is able to virtually track all memory accesses of SGX execution with temporal precision. As a proof of concept, we demonstrate our attack to recover cryptographic AES keys from the commonly used implementations including those that were believed to be resistant in previous attack scenarios. Our results show that SGX cannot protect critical data sensitive computations, and efficient AES key recovery is possible in a practical environment. In contrast to previous attacks which require hundreds of measurements, this is the first cache side-channel attack on a real system that can recover AES keys with a minimal number of measurements. We can successfully recover the AES key from T-Table based implementations in a known plaintext and ciphertext scenario with an average of 15 and 7 samples respectively.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Arfaoui, Ghada. "Conception de protocoles cryptographiques préservant la vie privée pour les services mobiles sans contact." Thesis, Orléans, 2015. http://www.theses.fr/2015ORLE2013/document.

Повний текст джерела
Анотація:
Avec l'émergence de nouvelles technologies telles que le NFC (Communication à champ proche) et l'accroissement du nombre de plates-formes mobiles, les téléphones mobiles vont devenir de plus en plus indispensables dans notre vie quotidienne. Ce contexte introduit de nouveaux défis en termes de sécurité et de respect de la vie privée. Dans cette thèse, nous nous focalisons sur les problématiques liées au respect de la vie privée dans les services NFC ainsi qu’à la protection des données privées et secrets des applications mobiles dans les environnements d'exécution de confiance (TEE). Nous fournissons deux solutions pour le transport public: une solution utilisant des cartes d'abonnement (m-pass) et une autre à base de tickets électroniques (m-ticketing). Nos solutions préservent la vie privée des utilisateurs tout en respectant les exigences fonctionnelles établies par les opérateurs de transport. À cette fin, nous proposons de nouvelles variantes de signatures de groupe ainsi que la première preuve pratique d’appartenance à un ensemble, à apport nul de connaissance, et qui ne nécessite pas de calculs de couplages du côté du prouveur. Ces améliorations permettent de réduire considérablement le temps d'exécution de ces schémas lorsqu’ils sont implémentés dans des environnements contraints par exemple sur carte à puce. Nous avons développé les protocoles de m-passe et de m-ticketing dans une carte SIM standard : la validation d'un ticket ou d'un m-pass s'effectue en moins de 300ms et ce tout en utilisant des tailles de clés adéquates. Nos solutions fonctionnent également lorsque le mobile est éteint ou lorsque sa batterie est déchargée. Si les applications s'exécutent dans un TEE, nous introduisons un nouveau protocole de migration de données privées, d'un TEE à un autre, qui assure la confidentialité et l'intégrité de ces données. Notre protocole est fondé sur l’utilisation d’un schéma de proxy de rechiffrement ainsi que sur un nouveau modèle d’architecture du TEE. Enfin, nous prouvons formellement la sécurité de nos protocoles soit dans le modèle calculatoire pour les protocoles de m-pass et de ticketing soit dans le modèle symbolique pour le protocole de migration de données entre TEE
The increasing number of worldwide mobile platforms and the emergence of new technologies such as the NFC (Near Field Communication) lead to a growing tendency to build a user's life depending on mobile phones. This context brings also new security and privacy challenges. In this thesis, we pay further attention to privacy issues in NFC services as well as the security of the mobile applications private data and credentials namely in Trusted Execution Environments (TEE). We first provide two solutions for public transport use case: an m-pass (transport subscription card) and a m-ticketing validation protocols. Our solutions ensure users' privacy while respecting functional requirements of transport operators. To this end, we propose new variants of group signatures and the first practical set-membership proof that do not require pairing computations at the prover's side. These novelties significantly reduce the execution time of such schemes when implemented in resource constrained environments. We implemented the m-pass and m-ticketing protocols in a standard SIM card: the validation phase occurs in less than 300ms whilst using strong security parameters. Our solutions also work even when the mobile is switched off or the battery is flat. When these applications are implemented in TEE, we introduce a new TEE migration protocol that ensures the privacy and integrity of the TEE credentials and user's private data. We construct our protocol based on a proxy re-encryption scheme and a new TEE model. Finally, we formally prove the security of our protocols using either game-based experiments in the random oracle model or automated model checker of security protocols
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Li, Jiatong. "TLS Library for Isolated Enclaves : Optimizing the performance of TLS libraries for SGX." Thesis, KTH, Kommunikationssystem, CoS, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-241245.

Повний текст джерела
Анотація:
Nowadays cloud computing systems handle large amounts of data and process this data across different systems. It is essential to considering data security vulnerabilities and data protection. One means of decreasing security vulnerabilities is to partition the code into distinct modules and then isolate the execution of the code together with its data. Intel’s Software Guard Extension (SGX) provides security critical code isolation in an enclave. By isolating the code’s execution from an untrusted zone (an unprotected user platform), code integrity and confidentiality are ensured. Transport Layer Security (TLS) is responsible for providing integrity and confidentiality for communication between two entities. Several TLS libraries support cryptographic functions both for an untrusted zone and an enclave. Different TLS libraries have different performance when used with Intel’s SGX. It is desirable to use the best performance TLS library for specific cryptographic functions. This thesis describes a performance evaluation several popular TLS libraries performance on Intel SGX. Using the evaluation results and combining several different TLS libraries together, the thesis proposes a new solution to improve the performance of TLS libraries on Intel SGX. The performance is best when invoking the best specific TLS library based upon the data size – as there is a crossover in performance between the two best libraries. This solution also maintains the versatility of the existing cryptographic functions.
Numera hanterar molnberäkningssystem stora mängder data och bearbetar dessa data över olika system. Det är viktigt att ta itu med datasäkerhetsproblem och dataskydd. Ett sätt att minska säkerhetsproblem är att partitionera koden i olika moduler och sedan isolera kodens exekvering tillsammans med dess data. Intel’s Software Guard Extension (SGX) tillhandahåller säkerhetskritisk kodisolering i en enklav. Genom att isolera kodens körning från en otillförlitlig zon (en oskyddad användarplattform) säkerställs kodintegritet och sekretess. Transport Layer Security (TLS) ansvarar för att ge integritet och konfidentialitet för kommunikation mellan två enheter. Flera TLS-bibliotek stödjer kryptografiska funktioner både för en osäker zon och en enklav. Olika TLS-bibliotek har olika prestanda när de används med Intel’s SGX. Det är önskvärt att använda TLS-bibliotekets bästa prestanda för specifika kryptografiska funktioner. Denna avhandling beskriver en prestationsutvärdering av flera populära TLS-bibliotekens prestanda på Intel SGX. Genom att använda utvärderingsresultaten och kombinera flera olika TLS-bibliotek tillsammans, presenterar avhandlingen en ny design och lösning för att förbättra prestanda för TLS-bibliotek på Intel SGX. Den resulterande prestanda åberopar TLS-bibliotekets bästa prestanda inom en viss datastorlek samtidigt som krypteringsfunktionerna är mångsidiga.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Zhang, Ning. "Attack and Defense with Hardware-Aided Security." Diss., Virginia Tech, 2016. http://hdl.handle.net/10919/72855.

Повний текст джерела
Анотація:
Riding on recent advances in computing and networking, our society is now experiencing the evolution into the age of information. While the development of these technologies brings great value to our daily life, the lucrative reward from cyber-crimes has also attracted criminals. As computing continues to play an increasing role in the society, security has become a pressing issue. Failures in computing systems could result in loss of infrastructure or human life, as demonstrated in both academic research and production environment. With the continuing widespread of malicious software and new vulnerabilities revealing every day, protecting the heterogeneous computing systems across the Internet has become a daunting task. Our approach to this challenge consists of two directions. The first direction aims to gain a better understanding of the inner working of both attacks and defenses in the cyber environment. Meanwhile, our other direction is designing secure systems in adversarial environment.
Ph. D.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Elbashir, Khalid. "Trusted Execution Environments for Open vSwitch : A security enabler for the 5G mobile network." Thesis, KTH, Radio Systems Laboratory (RS Lab), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-218070.

Повний текст джерела
Анотація:
The advent of virtualization introduced the need for virtual switches to interconnect virtual machines deployed in a cloud infrastructure. With Software Defined Networking (SDN), a central controller can configure these virtual switches. Virtual switches execute on commodity operating systems. Open vSwitch is an open source project that is widely used in production cloud environments. If an adversary gains access with full privileges to the operating system hosting the virtual switch, then Open vSwitch becomes vulnerable to a variety of different attacks that could compromise the whole network. The purpose of this thesis project is to improve the security of Open vSwitch implementations in order to ensure that only authenticated switches and controllers can communicate with each other, while maintaining code integrity and confidentiality of keys and certificates. The thesis project proposes a design and shows an implementation that leverages Intel® Safe Guard Extensions (SGX) technology. A new library, TLSonSGX, is implemented. This library replaces the use of the OpenSSL library in Open vSwitch. In addition to implementing standard Transport Level Security (TLS) connectivity, TLSonSGX confines TLS communication in the protected memory enclave and hence protects TLS sensitive components necessary to provide confidentiality and integrity, such as private keys and negotiated symmetric keys. Moreover, TLSonSGX introduces new, secure, and automatic means to generate keys and obtain signed certificates from a central Certificate Authority that validates using Linux Integrity Measurements Architecture (IMA) that the Open vSwitch binaries have not been tampered with before issuing a signed certificate. The generated keys and obtained certificates are stored in the memory enclave and hence never exposed as plaintext outside the enclave. This new mechanism is a replacement for the existing manual and unsecure procedures (as described in Open vSwitch project). A security analysis of the system is provided as well as an examination of performance impact of the use of a trusted execution environment. Results show that generating keys and certificates using TLSonSGX takes less than 0.5 seconds while adding 30% latency overhead for the first packet in a flow compared to using OpenSSL when both are executed on Intel® CoreTM i7-6600U processor clocked at 2.6 GHz. These results show that TLSonSGX can enhance Open vSwitch security and reduce its TLS configuration overhead.
Framkomsten av virtualisering införde behovet av virtuella växlar för att koppla tillsammans virtuella maskiner placerade i molninfrastruktur. Med mjukvarubaserad nätverksteknik (SDN), kan ett centralt styrenhet konfigurera dessa virtuella växlar. Virtuella växlar kör på standardoperativsystem. Open vSwitch är ett open-source projekt som ofta används i molntjänster. Om en motståndare får tillgång med fullständiga privilegier till operativsystemet där Open vSwitch körs, blir Open vSwitch utsatt för olika attacker som kan kompromettera hela nätverket.  Syftet med detta examensarbete är att förbättra säkerheten hos Open vSwitch för att garantera att endast autentiserade växlar och styrenheter kan kommunicera med varandra, samtidigt som att upprätthålla kod integritet och konfidentialitet av nycklar och certifikat. Detta examensarbete föreslår en design och visar en implementation som andvändar Intel®s Safe Guard Extensions (SGX) teknologi. Ett nytt bibliotek, TLSonSGX, är implementerat. Detta bibliotek ersätter biblioteket OpenSSL i Open vSwitch. Utöver att det implementerar ett standard “Transport Layer Security” (TLS) anslutning, TLSonSGX begränsar TLS kommunikation i den skyddade minnes enklaven och skyddar därför TLS känsliga komponenter som är nödvändiga för att ge sekretess och integritet, såsom privata nycklar och förhandlade symmetriska nycklar. Dessutom introducerar TLSonSGX nya, säkra och automatiska medel för att generera nycklar och få signerade certifikat från en central certifikatmyndighet som validerar, med hjälp av Linux Integrity Measurements Architecture (IMA), att Open vSwitch-binärerna inte har manipulerats innan de utfärdade ett signerat certifikat. De genererade nycklarna och erhållna certifikat lagras i minnes enklaven och är därför aldrig utsatta utanför enklaven. Denna nya mekanism ersätter de manuella och osäkra procedurerna som beskrivs i Open vSwitch projektet. En säkerhetsanalys av systemet ges såväl som en granskning av prestandaffekten av användningen av en pålitlig exekveringsmiljö. Resultaten visar att använda TLSonSGX för att generera nycklar och certifikat tar mindre än 0,5 sekunder medan det lägger 30% latens overhead för det första paketet i ett flöde jämfört med att använda OpenSSL när båda exekveras på Intel® Core TM processor i7-6600U klockad vid 2,6 GHz. Dessa resultat visar att TLSonSGX kan förbättra Open vSwitch säkerhet och minska TLS konfigurationskostnaden.
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Sabt, Mohamed. "Outsmarting smartphones : trust based on provable security and hardware primitives in smartphones architectures." Thesis, Compiègne, 2016. http://www.theses.fr/2016COMP2320.

Повний текст джерела
Анотація:
Le paysage du monde des téléphones mobiles a changé avec l’introduction des ordiphones (de l’anglais smartphones). En effet, depuis leur avènement, les ordiphones sont devenus incontournables dans des différents aspects de la vie quotidienne. Cela a poussé de nombreux fournisseurs de services de rendre leurs services disponibles sur mobiles. Malgré cette croissante popularité, l’adoption des ordiphones pour des applications sensibles n’a toujours pas eu un grand succès. La raison derrière cela est que beaucoup d’utilisateurs, de plus en plus concernés par la sécurité de leurs appareils, ne font pas confiance à leur ordiphone pour manipuler leurs données sensibles. Cette thèse a pour objectif de renforcer la confiance des utilisateurs en leur mobile. Nous abordons ce problème de confiance en suivant deux approches complémentaires, à savoir la sécurité prouvée et la sécurité ancrée à des dispositifs matériels. Dans la première partie, notre objectif est de montrer les limitations des technologies actuellement utilisées dans les architectures des ordiphones. À cette fin, nous étudions deux systèmes largement déployés et dont la sécurité a reçu une attention particulière dès la conception : l’entrepôt de clés d’Android, qui est le composant protégeant les clés cryptographiques stockées sur les mobiles d’Android, et la famille des protocoles sécurisés SCP (de l’anglais Secure Channel Protocol) qui est définie par le consortium GlobalPlatform. Nos analyses se basent sur le paradigme de la sécurité prouvée. Bien qu’elle soit perçue comme un outil théorique voire abstrait, nous montrons que cet outil pourrait être utilisé afin de trouver des vulnérabilités dans des systèmes industriels. Cela atteste le rôle important que joue la sécurité prouvée pour la confiance en étant capable de formellement démontrer l’absence de failles de sécurité ou éventuellement de les identifier quand elles existent. Quant à la deuxième partie, elle est consacrée aux systèmes complexes qui ne peuvent pas être formellement vérifiés de manière efficace en termes de coût. Nous commençons par examiner l’approche à double environnement d’exécution. Ensuite, nous considérons le cas où cette approche est instanciée par des dispositifs matériels particuliers, à savoir le ARM TrustZone, afin de construire un environnement d’exécution de confiance (TEE de l’anglais Trusted Execution Environment). Enfin, nous explorons deux solutions palliant quelques limitations actuelles du TEE. Premièrement, nous concevons une nouvelle architecture du TEE qui en protège les données sensibles même quand son noyau sécurisé est compromis. Cela soulage les fournisseurs des services de la contrainte qui consiste à faire pleinement confiance aux fournisseurs du TEE. Deuxièmement, nous proposons une solution dans laquelle le TEE n’est pas uniquement utilisé pour protéger l’exécution des applications sensibles, mais aussi pour garantir à des grands composants logiciels (comme le noyau d’un système d’exploitation) des propriétés de sécurité plus complexes, à savoir l’auto-protection et l’auto-remédiation
The landscape of mobile devices has been changed with the introduction of smartphones. Sincetheir advent, smartphones have become almost vital in the modern world. This has spurred many service providers to propose access to their services via mobile applications. Despite such big success, the use of smartphones for sensitive applications has not become widely popular. The reason behind this is that users, being increasingly aware about security, do not trust their smartphones to protect sensitive applications from attackers. The goal of this thesis is to strengthen users trust in their devices. We cover this trust problem with two complementary approaches: provable security and hardware primitives. In the first part, our goal is to demonstrate the limits of the existing technologies in smartphones architectures. To this end, we analyze two widely deployed systems in which careful design was applied in order to enforce their security guarantee: the Android KeyStore, which is the component shielding users cryptographic keys in Android smartphones, and the family of Secure Channel Protocols (SCPs) defined by the GlobalPlatform consortium. Our study relies on the paradigm of provable security. Despite being perceived as rather theoretical and abstract, we show that this tool can be handily used for real-world systems to find security vulnerabilities. This shows the important role that can play provable security for trust by being able to formally prove the absence of security flaws or to identify them if they exist. The second part focuses on complex systems that cannot cost-effectively be formally verified. We begin by investigating the dual-execution-environment approach. Then, we consider the case when this approach is built upon some particular hardware primitives, namely the ARM TrustZone, to construct the so-called Trusted Execution Environment (TEE). Finally, we explore two solutions addressing some of the TEE limitations. First, we propose a new TEE architecture that protects its sensitive data even when the secure kernel gets compromised. This relieves service providers of fully trusting the TEE issuer. Second, we provide a solution in which TEE is used not only for execution protection, but also to guarantee more elaborated security properties (i.e. self-protection and self-healing) to a complex software system like an OS kernel
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Liu, Yin. "Methodologies, Techniques, and Tools for Understanding and Managing Sensitive Program Information." Diss., Virginia Tech, 2021. http://hdl.handle.net/10919/103421.

Повний текст джерела
Анотація:
Exfiltrating or tampering with certain business logic, algorithms, and data can harm the security and privacy of both organizations and end users. Collectively referred to as sensitive program information (SPI), these building blocks are part and parcel of modern software systems in domains ranging from enterprise applications to cyberphysical setups. Hence, protecting SPI has become one of the most salient challenges of modern software development. However, several fundamental obstacles stand on the way of effective SPI protection: (1) understanding and locating the SPI for any realistically sized codebase by hand is hard; (2) manually isolating SPI to protect it is burdensome and error-prone; (3) if SPI is passed across distributed components within and across devices, it becomes vulnerable to security and privacy attacks. To address these problems, this dissertation research innovates in the realm of automated program analysis, code transformation, and novel programming abstractions to improve the state of the art in SPI protection. Specifically, this dissertation comprises three interrelated research thrusts that: (1) design and develop program analysis and programming support for inferring the usage semantics of program constructs, with the goal of helping developers understand and identify SPI; (2) provide powerful programming abstractions and tools that transform code automatically, with the goal of helping developers effectively isolate SPI from the rest of the codebase; (3) provide programming mechanism for distributed managed execution environments that hides SPI, with the goal of enabling components to exchange SPI safely and securely. The novel methodologies, techniques, and software tools, supported by programming abstractions, automated program analysis, and code transformation of this dissertation research lay the groundwork for establishing a secure, understandable, and efficient foundation for protecting SPI. This dissertation is based on 4 conference papers, presented at TrustCom'20, GPCE'20, GPCE'18, and ManLang'17, as well as 1 journal paper, published in Journal of Computer Languages (COLA).
Doctor of Philosophy
Some portions of a computer program can be sensitive, referred to as sensitive program information (SPI). By compromising SPI, attackers can hurt user security/privacy. It is hard for developers to identify and protect SPI, particularly for large programs. This dissertation introduces novel methodologies, techniques, and software tools that facilitate software developments tasks concerned with locating and protecting SPI.
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Zhou, Zongwei. "On-demand Isolated I/O for Security-sensitive Applications on Commodity Platforms." Research Showcase @ CMU, 2014. http://repository.cmu.edu/dissertations/328.

Повний текст джерела
Анотація:
Today large software systems (i.e., giants) thrive in commodity markets, but are untrustworthy due to their numerous and inevitable software bugs that can be exploited by the adversary. Thus, the best hope of security is that some small, simple, and trustworthy software components (i.e., wimps) can be protected from attacks launched by adversary-controlled giants. However, wimps in isolation typically give up a variety of basic services (e.g., file system, networking, device I/O), trading usefulness and viability with security. Among these basic services, isolated I/O channels remained an unmet challenge over the past three decades. Isolated I/O is a critical security primitive for a myriad of applications (e.g., secure user interface, remote device control). With this primitive, isolated wimps can transfer I/O data to commodity peripheral devices and the data secrecy and authenticity are protected from the co-existing giants. This thesis addresses this challenge by proposing a new security architecture to provide services to isolated wimps. Instead of restructuring the giants or bloating the Trusted Computing Base that underpins wimp-giant isolation (dubbed underlying TCB), this thesis presents a unique on-demand I/O isolation model and a trusted add-on component called wimpy kernel to instantiate this model. In our model, the wimpy kernel dynamically takes control of the devices managed by a commodity OS, connects them to the isolated wimps, and relinquishes controls to the OS when done. This model creates ample opportunities for the wimpy kernel to outsource I/O subsystem functions to the untrusted OS and verify their results. The wimpy kernel further exports device drivers and I/O subsystem code to wimps and mediates the operations of the exported code. These two methodologies help to significantly reduce the size and complexity of the wimpy kernel for high security assurance. Using the popular and complex USB subsystem as a case study, this thesis illustrates the dramatic reduction of the wimpy kernel; i.e., over 99% of the Linux USB code base is removed. In addition, the wimpy kernel also composes with the underlying TCB, by retaining its code size, complexity and security properties.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Zhang, Ruide. "Hardware-Aided Privacy Protection and Cyber Defense for IoT." Diss., Virginia Tech, 2020. http://hdl.handle.net/10919/98791.

Повний текст джерела
Анотація:
With recent advances in electronics and communication technologies, our daily lives are immersed in an environment of Internet-connected smart things. Despite the great convenience brought by the development of these technologies, privacy concerns and security issues are two topics that deserve more attention. On one hand, as smart things continue to grow in their abilities to sense the physical world and capabilities to send information out through the Internet, they have the potential to be used for surveillance of any individuals secretly. Nevertheless, people tend to adopt wearable devices without fully understanding what private information can be inferred and leaked through sensor data. On the other hand, security issues become even more serious and lethal with the world embracing the Internet of Things (IoT). Failures in computing systems are common, however, a failure now in IoT may harm people's lives. As demonstrated in both academic research and industrial practice, a software vulnerability hidden in a smart vehicle may lead to a remote attack that subverts a driver's control of the vehicle. Our approach to the aforementioned challenges starts by understanding privacy leakage in the IoT era and follows with adding defense layers to the IoT system with attackers gaining increasing capabilities. The first question we ask ourselves is "what new privacy concerns do IoT bring". We focus on discovering information leakage beyond people's common sense from even seemingly benign signals. We explore how much private information we can extract by designing information extraction systems. Through our research, we argue for stricter access control on newly coming sensors. After noticing the importance of data collected by IoT, we trace where sensitive data goes. In the IoT era, edge nodes are used to process sensitive data. However, a capable attacker may compromise edge nodes. Our second research focuses on applying trusted hardware to build trust in large-scale networks under this circumstance. The application of trusted hardware protects sensitive data from compromised edge nodes. Nonetheless, if an attacker becomes more powerful and embeds malicious logic into code for trusted hardware during the development phase, he still can secretly steal private data. In our third research, we design a static analyzer for detecting malicious logic hidden inside code for trusted hardware. Other than the privacy concern of data collected, another important aspect of IoT is that it affects the physical world. Our last piece of research work enables a user to verify the continuous execution state of an unmanned vehicle. This way, people can trust the integrity of the past and present state of the unmanned vehicle.
Doctor of Philosophy
The past few years have witnessed a rising in computing and networking technologies. Such advances enable the new paradigm, IoT, which brings great convenience to people's life. Large technology companies like Google, Apple, Amazon are creating smart devices such as smartwatch, smart home, drones, etc. Compared to the traditional internet, IoT can provide services beyond digital information by interacting with the physical world by its sensors and actuators. While the deployment of IoT brings value in various aspects of our society, the lucrative reward from cyber-crimes also increases in the upcoming IoT era. Two unique privacy and security concerns are emerging for IoT. On one hand, IoT brings a large volume of new sensors that are deployed ubiquitously and collect data 24/7. User's privacy is a big concern in this circumstance because collected sensor data may be used to infer a user's private activities. On the other hand, cyber-attacks now harm not only cyberspace but also the physical world. A failure in IoT devices could result in loss of human life. For example, a remotely hacked vehicle could shut down its engine on the highway regardless of the driver's operation. Our approach to emerging privacy and security concerns consists of two directions. The first direction targets at privacy protection. We first look at the privacy impact of upcoming ubiquitous sensing and argue for stricter access control on smart devices. Then, we follow the data flow of private data and propose solutions to protect private data from the networking and cloud computing infrastructure. The other direction aims at protecting the physical world. We propose an innovative method to verify the cyber state of IoT devices.
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Lantz, David. "Detection of side-channel attacks targeting Intel SGX." Thesis, Linköpings universitet, Programvara och system, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-177987.

Повний текст джерела
Анотація:
In recent years, trusted execution environments like Intel SGX have allowed developers to protect sensitive code inside so called enclaves. These enclaves protect its code and data even in the cases of a compromised OS. However, SGX enclaves have been shown to be vulnerable to numerous side-channel attacks. Therefore, there is a need to investigate ways that such attacks against enclaves can be detected. This thesis investigates the viability of using performance counters to detect an SGX-targeting side-channel attack, specifically the recent Load Value Injection (LVI) class of attacks. A case study is thus presented where performance counters and a threshold-based detection method is used to detect variants of the LVI attack. The results show that certain attack variants could be reliably detected using this approach without false positives for a range of benign applications. The results also demonstrate reasonable levels of speed and overhead for the detection tool. Some of the practical limitations of using performance counters, particularly in an SGX-context, are also brought up and discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Alsibyani, Hassan. "Enhancing Network Data Obliviousness in Trusted Execution Environment-based Stream Processing Systems." Thesis, 2018. http://hdl.handle.net/10754/627880.

Повний текст джерела
Анотація:
Cloud computing usage is increasing and a common concern is the privacy and security of the data and computation. Third party cloud environments are not considered fit for processing private information because the data will be revealed to the cloud provider. However, Trusted Execution Environments (TEEs), such as Intel SGX, provide a way for applications to run privately and securely on untrusted platforms. Nonetheless, using a TEE by itself for stream processing systems is not sufficient since network communication patterns may leak properties of the data under processing. This work addresses leaky topology structures and suggests mitigation techniques for each of these. We create specific metrics to evaluate leaks occurring from the network patterns; the metrics measure information leaked when the stream processing system is running. We consider routing techniques for inter-stage communication in a streaming application to mitigate this data leakage. We consider a dynamic policy to change the mitigation technique depending on how much information is currently leaking. Additionally, we consider techniques to hide irregularities resulting from a filtering stage in a topology. We also consider leakages resulting from applications containing cycles. For each of the techniques, we explore their effectiveness in terms of the advantage they provide in overcoming the network leakage. The techniques are tested partly using simulations and some were implemented in a prototype SGX-based stream processing system.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії