Добірка наукової літератури з теми "Transverse magneto focusing"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Transverse magneto focusing".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Transverse magneto focusing":

1

Bykova, D. V., A. E. Afanasiev, and V. I. Balykin. "Sharp Focusing of an Atomic Beam with the Doppler and Sub-Doppler Laser Cooling Mechanisms in a Two-Dimensional Magneto-Optical Trap." JETP Letters 118, no. 1 (July 2023): 14–20. http://dx.doi.org/10.1134/s0021364023601549.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The focusing of an atomic beam with the use of a two-dimensional magneto-optical trap in order to increase the number of atoms in the region of their laser cooling and localization near an atom chip is discussed. Two regimes of the interaction of atoms with a focusing laser field are considered: (i) the Doppler interaction regime, which occurs at small detunings of the laser field from the atomic resonance, and (ii) the sub-Doppler interaction regime, which occurs at large detunings of the laser field from the atomic resonance. The efficiency of focusing in the first case is low because of the momentum diffusion. It has been shown that the momentum diffusion in the sub-Doppler cooling mechanism is insignificant and, as a result, the broadening of the transverse velocity distribution of atoms is small. The sharp focusing of the atomic beam is possible in this interaction regime.
2

SUMMERS, D. J., S. B. BRACKER, L. M. CREMALDI, R. GODANG, D. B. CLINE, A. A. GARREN, G. G. HANSON, et al. "6D IONIZATION MUON COOLING WITH TABLETOP RINGS." International Journal of Modern Physics A 20, no. 16 (June 30, 2005): 3851–56. http://dx.doi.org/10.1142/s0217751x05027795.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Progress on six dimensional ionization muon cooling with relatively small rings of magnets is described. Lattices being explored include scaling sector cyclotrons with edge focusing and strong focusing, fixed field alternating gradient (FFAG) rings. Ionization cooling is provided by high pressure hydrogen gas which removes both transverse and longitudinal momentum. Lost longitudinal momentum is replaced using radio frequency (RF) cavities, giving a net transverse emittance reduction. The longer path length in the hydrogen of higher momentum muons decreases longitudinal emittance at the expense of transverse emittance. Thus emittance exchange allows these rings to cool in all six dimensions and not just transversely. Alternatively, if the RF is located after the ring, it may be possible to cool the muons by stopping them as they spiral adiabatically into a central swarm. As p → 0, Δp → 0. The resulting cooled muons can lead to an intense muon beam which could be a source for neutrino factories or muon colliders.
3

Jummunt, S., P. Sunwong, S. Prawanta, A. Kwankasem, V. Sooksrimuang, W. Promdee, K. Chaiyasit, P. Aim-O, S. Chunjarean, and S. Klinkhieo. "Development of a solenoid magnet for emittance compensation." Journal of Physics: Conference Series 2653, no. 1 (December 1, 2023): 012034. http://dx.doi.org/10.1088/1742-6596/2653/1/012034.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract This paper explores the implementation of a solenoid field to achieve electron beam focusing and compensation of transverse emittance, which is generated from photocathode RF gun. An extensive investigation was conducted to determine the optimal solenoid magnetic field required for focusing an electron bunch with a charge of 0.5 nC. A magnetic field strength of 0.25 T was chosen for emittance compensation, enabling the reduction of emittance to below 1.20 mm-mrad at the end of linac. The engineering design of the solenoid magnet for this system is presented in detail, ensuring precise dimensional tolerances within the range of ±30 µm. To ensure its effectiveness and reliability, extensive thermal and mechanical analyses were conducted. Currently, the prototype solenoid magnet is in the fabrication process.
4

ANDERSON, S. G., D. J. GIBSON, F. V. HARTEMANN, J. S. JACOB, A. M. TREMAINE, J. K. LIM, P. FRIGOLA, J. B. ROSENZWEIG, and G. TRAVISH. "PRODUCTION OF FEMTOSECOND PULSES AND MICRON BEAM SPOTS FOR HIGH BRIGHTNESS ELECTRON BEAM APPLICATIONS." International Journal of Modern Physics A 22, no. 22 (September 10, 2007): 3726–35. http://dx.doi.org/10.1142/s0217751x0703738x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Current and future applications of high brightness electron beams, which include advanced accelerators and beam-radiation interactions require both transverse and longitudinal beam sizes on the order of tens of microns. Ultra-high density beams may be produced at moderate energy (50 MeV) by compression and subsequent strong focusing of low emittance, photoinjector sources. We describe the implementation of this method used at the PLEIADES inverse-Compton scattering (ICS) x-ray source at LLNL in which the photoinjector-generated beam has been compressed to 300 fsec rms duration using the velocity bunching technique and focused to 20 μm rms size using an extremely high gradient, permanent magnet quadrupole focusing system.
5

Makarov, Vladimir, and Igor Khmelinskii. "Focusing effects of ballistic transverse-quantized excitons in metal nanofilms." Optik 242 (September 2021): 167283. http://dx.doi.org/10.1016/j.ijleo.2021.167283.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Wu, Bin, Kai Zhou, Shouyan Xu, Changdong Den, Mingyang Huang, Yu Bao, Hangtao Jing, and Xiao Li. "Design and beam dynamics validation of a spiral FFAG accelerator for CSNS-II." Journal of Instrumentation 19, no. 06 (June 1, 2024): T06011. http://dx.doi.org/10.1088/1748-0221/19/06/t06011.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract The fixed-field alternating gradient (FFAG) accelerator, with its compact structure and the combined advantages of high energy from synchrotrons and high beam intensity from cyclotrons, offers unparalleled benefits in accelerating protons, heavy ions, and short-lived particles such as muons and unstable nuclei. The China Spallation Neutron Source plans to establish an FFAG accelerator with a diameter of 20 meters at the end of the negative hydrogen linac for various purposes, including experiments in nuclear physics and medical applications. For this design, a scaling scheme using spiral magnets as the basic focusing structure is investigated to provide the proton beam with kinetic energy ranging from 300 MeV to 600 MeV. We present the design results for the scaling FFAG accelerator and discuss the optimization of the cell tune. A detailed beam dynamics verification and discussion of the proposed FFAG accelerator lattice are presented using the ray-tracing code Zgoubi, including off-axis optical characteristics, large amplitude transverse motion, and full-cycle longitudinal acceleration. The FFAG accelerator is demonstrated to provide a large transverse and longitudinal acceptance for the tracking beam in the designed lattice. A new simulation code based on Python for the study of FFAG accelerator beam dynamics has been developed, and the corresponding verification results are also presented.
7

Xie, Zhixiong, Yanzhong Yu, and Mingxiang Wu. "Generation of 3D quasi-spherical multi-focus arrays and optical rings using orthogonally superimposed dipole antenna arrays." Journal of Optics 25, no. 10 (August 24, 2023): 105701. http://dx.doi.org/10.1088/2040-8986/acf0d3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract This paper proposes a novel method to generate a three-dimensional (3D) quasi-spherical focal point with high longitudinal and transverse resolution in a 4Pi focusing system based on the radiation pattern of the orthogonally superimposed dipole antenna. In this paper, we present generated 3D quasi-spherical multi-focus arrays that are controllable and uniformly distributed and optical rings from the radiation patterns of antenna arrays in different configurations. The results showed that the generated focal point is smaller longitudinally (0.31λ) than transversely (0.41λ). This focal point has the smallest volume (∼0.0273λ 3) found. Moreover, it is highly homogeneous and has a small side lobe. The polarization at the center of the focal point is purely circular. The resulting 3D focal fields can be easily tailored by adjusting the modulation parameters of the orthogonally superimposed dipole arrays. Manipulating 3D optical focal fields with pre-defined characteristics of quasi-spherical focal points has a high degree of freedom. Many potential applications exist in arbitrarily oriented particle capture and guidance, micromanipulation, optical capture, and 3D optical data storage.
8

Rendell, M., O. Klochan, A. Srinivasan, I. Farrer, D. A. Ritchie, and A. R. Hamilton. "Transverse magnetic focussing of heavy holes in a (100) GaAs quantum well." Semiconductor Science and Technology 30, no. 10 (September 14, 2015): 102001. http://dx.doi.org/10.1088/0268-1242/30/10/102001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Man, Zhongsheng, Xiaoyu Li, Shuoshuo Zhang, Zhidong Bai, Yudong Lyu, Jinjian Li, Xiaolu Ge, Yuping Sun, and Shenggui Fu. "Manipulation of the transverse energy flow of azimuthally polarized beam in tight focusing system." Optics Communications 431 (January 2019): 174–80. http://dx.doi.org/10.1016/j.optcom.2018.09.028.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Božović, Ivan, Xi He, Anthony T. Bollinger, and Roberta Caruso. "Is Nematicity in Cuprates Real?" Condensed Matter 8, no. 1 (January 10, 2023): 7. http://dx.doi.org/10.3390/condmat8010007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In La2-xSrxCuO4 (LSCO), a prototype high-temperature superconductor (HTS) cuprate, a nonzero transverse voltage is observed in zero magnetic fields. This is important since it points to the breaking of the rotational symmetry in the electron fluid, the so-called electronic nematicity, presumably intrinsic to LSCO (and other cuprates). An alternative explanation is that it arises from extrinsic factors such as the film’s inhomogeneity or some experimental artifacts. We confront this hypothesis with published and new experimental data, focusing on the most direct and sensitive probe—the angle-resolved measurements of transverse resistivity (ARTR). The aggregate experimental evidence overwhelmingly refutes the extrinsic scenarios and points to an exciting new effect—intrinsic electronic nematicity.

Дисертації з теми "Transverse magneto focusing":

1

Hong, Yuanzhuo. "Charge transport properties of graphene and its aligned heterostructures." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASP020.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Le graphène a une structure de bande unique que la bande de conduction et la bande de valence se touchent aux points de Dirac K and K', ce qui en fait un semi-conducteur à écart nul. La structure de la bande peut être modifiée en introduisant un potentiel périodique (super-réseau) qui place le graphène au-dessus du BN pour un alignement cristallographique. Dans cette thèse, je discute principalement des propriétés de transport de charge du graphène et de ses hétérostructures. Différentes méthodes de fabrication d'échantillons sont introduites pour réaliser des hétérostructures en fonction du but de l'expérience. Nous utilisons différentes techniques de transport dans le graphène monocouche/bicouche et leurs hétérostructures d'alignement pour étudier différents mécanismes de diffusion afin de comprendre si ceux-ci sont modifiés par la présence du super-réseau. Nous avons constaté que la diffusion aux petits angles est dominante dans les échantillons de graphène monocouche et bicouche. Grâce aux mesures de focalisation magnéto transversale (TMF), nous concluons que la diffusion électron-électron domine la suppression du TMF. Cependant, nous observons une réponse non identique dans l'alignement 0 ̊ et 60 ̊ pour le graphène bicouche dans TMF. Cela montre la structure de bande différente de deux alignements et nous indique que la symétrie de l'hétérostructure bicouche graphène/BN n'est pas de 60 ̊. Nous observons en outre la même réponse non identique dans l'effet Valley Hall (VHE) selon laquelle l'alignement 60 ̊ ne nous donne pas la relation cubique qui représente le VHE. Ce fait nous indique la triple symétrie du graphène bicouche/BN et montre également que la courbure de Berry n'est pas la seule explication du VHE. Nous proposons ici une explication possible de la relaxation de la structure atomique. La contrainte exercée sur la deuxième couche de graphène est différente et crée des champs de jauge qui agissent comme un pseudo-champ magnétique différent et affectent effectivement le VHE
Graphene has unique band structure that conduction band and valence band touch at the Dirac points K and K', making it a zero gap semiconductor. The band structure can be modified by introducing periodic potential (superlattice) that place graphene on top of BN to crystallographic alignment. In this thesis, I mainly discuss the charge transport properties of graphene and its heterostructures. Different sample fabrication methods are introduced to make stacks depending on experiment purpose. We use different transport techniques in monolayer/bilayer graphene and their alignment heterostructures to study different scattering mechanisms in order to understand if these are modified by the presence of the superlattice. We found that small angle scattering is dominant in both monolayer and bilayer graphene samples. Through the transverse magneto focusing (TMF) measurements, we have the conclusion that electron-electron scattering is in dominance of TMF suppression. However, we observe nonidentical response in 0 ̊ and 60 ̊ alignment for bilayer graphene in TMF. This shows the different band structure of two alignments and tell us that the symmetry of bilayer graphene/BN heterostructure is not 60 ̊.We further observe the same nonidentical response in valley Hall effect (VHE) that 60 ̊ alignment doesn't give us the cubic relation which represents the VHE. This fact tells us the three fold symmetry of bilayer graphene/BN and also show that Berry curvature is not the only explanation of VHE. Here we propose a possible explanation about atomic structure relaxation. The strain on the second layer of graphene is different and create gauge fields that act as different pseudo magnetic field and indeed affect the VHE
2

Heng-JianChang and 張恆健. "Spatial Detection of 1D Double-Row Formation Using Transverse Magnetic Focusing Technique." Thesis, 2015. http://ndltd.ncl.edu.tw/handle/94620364784751042959.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

O'Gorman, Brian Curtin. "Spin-polarized transport in magnetic nanostructures." Thesis, 2009. http://hdl.handle.net/2152/ETD-UT-2009-12-550.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Two of the principal phenomena observed and exploited in the field of spintronics are giant magnetoresistance (GMR) and spin transfer torque (STT). With GMR, the resistance of a magnetic multilayer is affected by the relative orientation of its magnetic layers due to (electron) spin dependent scattering. For the STT effect, a spin-polarized electric current is used to alter the magnetic state of a ferromagnet. Together, GMR and STT are at the foundation of numerous technologies, and they hold promise for many more applications. To achieve the high current densities (~10¹² A/m²) that are necessary to observe STT effects, point contacts – constricted electrical pathways (~1–100 nm in diameter) between conducting materials – are often used because of their small cross-sectional areas. In this sense, we have explored STT in bilayer magnetic nanopillars, where an electric current was used to induce precession of a ferromagnetic layer. This precessional state was detected as an increase in resistance of the device, akin to GMR. Temperature dependent measurements of the onset of precession shed light on the activation mechanism, but raised further questions about its detailed theory. Point contacts can also be used as local sources or detectors of electrons. In this context, we have observed transverse electron focusing (TEF) in a single crystal of bismuth. TEF is a k-selective technique for studying electron scattering from within materials. Using lithographically fabricated point contacts, we have studied the temperature dependence of the relaxation time for ballistic electrons from 4.2 to 100 K. These measurements indicated a transition between electron-electron dominated scattering at low temperatures and electron-phonon scattering as the Debye temperature was approached. We present preliminary work toward a TEF experiment to measure spin dependent scattering from a non-magnet/magnet interface. We also investigated spin wave propagation in thin, magnetic waveguide structures. At the boundary between the waveguide and continuous magnetic film, spin wave rays were found to radiate into the film, or to reflect and form standing waves in the waveguide. A circular defect in the waveguide was observed to cause diffraction of spin waves, generating an interference pattern of higher modes of oscillation.
text

Частини книг з теми "Transverse magneto focusing":

1

Metral, E., G. Rumolo, and W. Herr. "Impedance and Collective Effects." In Particle Physics Reference Library, 105–81. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-34245-6_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractAs the beam intensity increases, the beam can no longer be considered as a collection of non-interacting single particles: in addition to the “single-particle phenomena”, “collective effects” become significant. At low intensity a beam of charged particles moves around an accelerator under the Lorentz force produced by the “external” electromagnetic fields (from the guiding and focusing magnets, RF cavities, etc.). However, the charged particles also interact with themselves (leading to space charge effects) and with their environment, inducing charges and currents in the surrounding structures, which create electromagnetic fields called wake fields. In the ultra-relativistic limit, causality dictates that there can be no electromagnetic field in front of the beam, which explains the term “wake”. It is often useful to examine the frequency content of the wake field (a time domain quantity) by performing a Fourier transformation on it. This leads to the concept of impedance (a frequency domain quantity), which is a complex function of frequency. The charged particles can also interact with other charged particles present in the accelerator (leading to two-stream effects, and in particular to electron cloud effects in positron/hadron machines) and with the counter-rotating beam in a collider (leading to beam–beam effects). As the beam intensity increases, all these “perturbations” should be properly quantified and the motion of the charged particles will eventually still be governed by the Lorentz force but using the total electromagnetic fields, which are the sum of the external and perturbation fields. Note that in some cases a perturbative treatment is not sufficient and the problem has to be solved self consistently. These perturbations can lead to both incoherent (i.e. of a single particle) and coherent (i.e. of the centre of mass) effects, in the longitudinal and in one or both transverse directions, leading to beam quality degradation or even partial or total beam losses. Fortunately, stabilising mechanisms exist, such as Landau damping, electronic feedback systems and linear coupling between the transverse planes (as in the case of a transverse coherent instability, one plane is usually more critical than the other).
2

Qasrawi, Radwan, Diala Abu Al-Halawa, Omar Daraghmeh, Mohammad Hjouj, and Rania Abu Seir. "Medical Image Processing and Analysis Techniques for Detecting Giant Cell Arteritis." In Giant-Cell Arteritis [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.97161.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Medical image segmentation and classification algorithms are commonly used in clinical applications. Several automatic and semiautomatic segmentation methods were used for extracting veins and arteries on transverse and longitudinal medical images. Recently, the use of medical image processing and analysis tools improved giant cell arteries (GCA) detection and diagnosis using patient specific medical imaging. In this chapter, we proposed several image processing and analysis algorithms for detecting and quantifying the GCA from patient medical images. The chapter introduced the connected threshold and region growing segmentation approaches on two case studies with temporal arteritis using ultrasound (US) and magnetic resonance imaging (MRI) imaging modalities extracted from the Radiopedia Dataset. The GCA detection procedure was developed using the 3D Slicer Medical Imaging Interaction software as a fast prototyping open-source framework. GCA detection passes through two main procedures: The pre-processing phase, in which we improve and enhances the quality of an image after removing the noise, irrelevant and unwanted parts of the scanned image by the use of filtering techniques, and contrast enhancement methods; and the processing phase which includes all the steps of processing, which are used for identification, segmentation, measurement, and quantification of GCA. The semi-automatic interaction is involved in the entire segmentation process for finding the segmentation parameters. The results of the two case studies show that the proposed approach managed to detect and quantify the GCA region of interest. Hence, the proposed algorithm is efficient to perform complete, and accurate extraction of temporal arteries. The proposed semi-automatic segmentation method can be used for studies focusing on three-dimensional visualization and volumetric quantification of Giant Cell Arteritis.

Тези доповідей конференцій з теми "Transverse magneto focusing":

1

Heremans, J. J., Hong Chen, M. B. Santos, N. Goel, W. Van Roy, and G. Borghs. "Spin-dependent Transverse Magnetic Focusing in InSb- and InAs-based Heterostructures." In PHYSICS OF SEMICONDUCTORS: 28th International Conference on the Physics of Semiconductors - ICPS 2006. AIP, 2007. http://dx.doi.org/10.1063/1.2730372.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Zhu, Junjie, Tzuen-Rong Jeremy Tzeng, and Xiangchun Schwann Xuan. "Dielectrophoretic Focusing of Microparticles in Curved Microchannels." In ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-11876.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Focusing particles into a tight stream is usually a necessary step prior to counting, detecting and sorting them in microfluidic devices such as flow cytometers [1] and continuous-flow separators [2]. The diverse approaches to particle focusing may be classified as active or passive ones in nature. Active focusing utilizes external force field(s) to manipulate particles other than the force to pump the particle solution. This category covers the conventional sheath flow focusing method and the various sheathless focusing methods where a transverse acoustic, AC dielectrophoretic, or magnetic force must be externally imposed. Passive focusing exploits the geometric topology-induced internal force(s) to alter the particle motion. So far dielectrophoretic, hydrodynamic and inertial forces have been demonstrated to focus particles [3]. Here, we introduce a novel passive particle focusing technique in electrokinetic flow through curved microchannels. This focusing stems from the cross-stream dielectrophoretic motion induced by channel curvatures [4], and is demonstrated in a serpentine and a spiral microchannel.

До бібліографії