Дисертації з теми "Transverse knots and links"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-33 дисертацій для дослідження на тему "Transverse knots and links".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Tovstopyat-Nelip, Lev Igorevich. "Braids, transverse links and knot Floer homology:." Thesis, Boston College, 2019. http://hdl.handle.net/2345/bc-ir:108376.
Повний текст джерелаContact geometry has played a central role in many recent advances in low-dimensional topology; e.g. in showing that knot Floer homology detects the genus of a knot and whether a knot is fibered. It has also been used to show that the unknot, trefoil, and figure eight knot are determined by their Dehn surgeries. An important problem in 3-dimensional contact geometry is the classification of Legendrian and transverse knots. Such knots come equipped with some classical invariants. New invariants from knot Floer homology have been effective in distinguishing Legendrian and transverse knots with identical classical invariants, a notoriously difficult task. The Giroux correspondence allows contact structures to be studied via purely topological constructs called open book decompositions. Transverse links are then braids about these open books, which in turn may be thought of as mapping tori of diffeomorphisms of compact surfaces with boundary having marked points, which we refer to as pointed monodromies. In the first part of this thesis, we investigate properties of the transverse invariant in knot Floer homology, in particular its behavior for transverse closures of pointed monodromies possessing certain dynamical properties. The binding of an open book sits naturally as a transverse link in the supported contact manifold. We prove that the transverse link invariant in knot Floer homology of the binding union any braid about the open book is non-zero. As an application, we show that any pointed monodromy with fractional Dehn twist coefficient greater than one has non-zero transverse invariant, generalizing a result of Plamenevskaya for braids about the unknot. In the second part of this thesis, we define invariants of Legendrian and transverse links in universally tight lens spaces using grid diagrams, generalizing those defined by Ozsvath, Szabo and Thurston. We show that our invariants are equivalent to those defined by Lisca, Ozsvath, Szabo and Stipsicz for Legendrian and transverse links in arbitrary contact 3-manifolds. Our argument involves considering braids about rational open book decompositions and filtrations on knot Floer complexes
Thesis (PhD) — Boston College, 2019
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Mathematics
Wiest, Bertold. "Knots, links, and cubical sets." Thesis, University of Warwick, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.263657.
Повний текст джерелаMontemayor, Anthony. "On Nullification of Knots and Links." TopSCHOLAR®, 2012. http://digitalcommons.wku.edu/theses/1158.
Повний текст джерелаLipson, Andrew Solomon. "Polynomial invariants of knots and links." Thesis, University of Cambridge, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.303206.
Повний текст джерелаBettersworth, Zachary S. "Nullification of Torus Knots and Links." TopSCHOLAR®, 2016. http://digitalcommons.wku.edu/theses/1626.
Повний текст джерелаPham, Van Anh. "Loop Numbers of Knots and Links." TopSCHOLAR®, 2017. http://digitalcommons.wku.edu/theses/1952.
Повний текст джерелаOzawa, Makoto. "Tangle decompositions of knots and links /." Electronic version of summary, 1999. http://www.wul.waseda.ac.jp/gakui/gaiyo/2848.pdf.
Повний текст джерелаManfredi, Enrico <1986>. "Knots and links in lens spaces." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2014. http://amsdottorato.unibo.it/6265/1/manfredi_enrico_tesi.pdf.
Повний текст джерелаManfredi, Enrico <1986>. "Knots and links in lens spaces." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2014. http://amsdottorato.unibo.it/6265/.
Повний текст джерелаTosun, Bulent. "Legendrian and transverse knots and their invariants." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/44880.
Повний текст джерелаHill, Jonathan William. "Invariants of legendrian curves and transverse knots." Thesis, University of Liverpool, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.367639.
Повний текст джерелаBatson, Joshua. "Obstructions to slicing knots and splitting links." Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/90178.
Повний текст джерела49
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 65-68).
In this thesis, we use invariants inspired by quantum field theory to study the smooth topology of links in space and surfaces in space-time. In the first half, we use Khovanov homology to the study the relationship between links in R3 and their components. We construct a new spectral sequence beginning at the Khovanov homology of a link and converging to the Khovanov homology of the split union of its components. The page at which the sequence collapses gives a lower bound on the splitting number of the link, the minimum number of times its components must be passed through one another in order to completely separate them. In addition, we build on work of Kronheimer- Mrowka and Hedden-Ni to show that Khovanov homology detects the unlink. In the second half, we consider knots as potential cross-sections of surfaces in R4. We use Heegaard Floer homology to show that certain knots never occur as cross-sections of surfaces with small first Betti number. (It was previously thought possible that every knot was a cross-section of a connect sum of three Klein bottles.) In particular, we show that any smooth surface in R 4 with cross-section the (2k, 2k - 1) torus knot has first Betti number at least 2k - 2.
by Joshua Batson.
Ph. D.
Savini, Alessio. "Fibered knots and links in lens spaces." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2014. http://amslaurea.unibo.it/7269/.
Повний текст джерелаStephens, Alexander. "The synthesis and study of molecular knots and links." Thesis, University of Manchester, 2016. https://www.research.manchester.ac.uk/portal/en/theses/the-synthesis-and-study-of-molecular-knots-and-links(c66cba3a-87aa-430a-a7bc-88f2dcd09727).html.
Повний текст джерелаSargrad, Scott. "The existence of energy minimizers for knots and links." Diss., Connect to the thesis, 2004. http://hdl.handle.net/10066/682.
Повний текст джерелаCho, Karina Elle. "Enhancing the Quandle Coloring Invariant for Knots and Links." Scholarship @ Claremont, 2019. https://scholarship.claremont.edu/hmc_theses/228.
Повний текст джерелаNewman, Jonathan Harold. "Higher dimensional convex Brunnian links and other explorations in knots." Winston-Salem, NC : Wake Forest University, 2009. http://dspace.zsr.wfu.edu/jspui/handle/10339/42536.
Повний текст джерелаGaebler, Robert. "Alexander Polynomials of Tunnel Number One Knots." Scholarship @ Claremont, 2004. https://scholarship.claremont.edu/hmc_theses/162.
Повний текст джерелаCengiz, Mustafa. "Heegaard Splittings and Complexity of Fibered Knots:." Thesis, Boston College, 2020. http://hdl.handle.net/2345/bc-ir:108729.
Повний текст джерелаThis dissertation explores a relationship between fibered knots and Heegaard splittings in closed, connected, orientable three-manifolds. We show that a fibered knot, which has a sufficiently complicated monodromy, induces a minimal genus Heegaard splitting that is unique up to isotopy. Moreover, we show that fibered knots in the three-sphere has complexity at most 3
Thesis (PhD) — Boston College, 2020
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Mathematics
Williamson, Mathew. "Kauffman-Harary Conjecture for Virtual Knots." Scholar Commons, 2007. http://scholarcommons.usf.edu/etd/3916.
Повний текст джерелаLorton, Cody. "On the Breadth of the Jones Polynomial for Certain Classes of Knots and Links." TopSCHOLAR®, 2009. http://digitalcommons.wku.edu/theses/86.
Повний текст джерелаBoerner, Jeffrey Thomas Conley. "Khovanov homology in thickened surfaces." Diss., University of Iowa, 2010. https://ir.uiowa.edu/etd/464.
Повний текст джерелаKaradayi, Enver. "Topics in Random Knots and R-Matrices from Frobenius Algebras." Scholar Commons, 2010. http://scholarcommons.usf.edu/etd/3512.
Повний текст джерелаSaltz, Adam. "The Spectral Sequence from Khovanov Homology to Heegaard Floer Homology and Transverse Links." Thesis, Boston College, 2016. http://hdl.handle.net/2345/bc-ir:106790.
Повний текст джерелаKhovanov homology and Heegaard Floer homology have opened new horizons in knot theory and three-manifold topology, respectively. The two invariants have distinct origins, but the Khovanov homology of a link is related to the Heegaard Floer homology of its branched double cover by a spectral sequence constructed by Ozsváth and Szabó. In this thesis, we construct an equivalent spectral sequence with a much more transparent connection to Khovanov homology. This is the first step towards proving Seed and Szabó's conjecture that Szabó's geometric spectral sequence is isomorphic to Ozsváth and Szabó's spectral sequence. These spectral sequences connect information about contact structures contained in each invariant. We construct a braid conjugacy class invariant κ from Khovanov homology by adapting Floer-theoretic tools. There is a related transverse invariant which we conjecture to be effective. The conjugacy class invariant solves the word problem in the braid group among other applications. We have written a computer program to compute the invariant
Thesis (PhD) — Boston College, 2016
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Mathematics
Banks, Jessica E. "The Kakimizu complex of a link." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:d89d46a3-03f0-4a71-a746-8f024f988f63.
Повний текст джерелаKrishna, Siddhi. "Taut foliations, positive braids, and the L-space conjecture:." Thesis, Boston College, 2020. http://hdl.handle.net/2345/bc-ir:108731.
Повний текст джерелаWe construct taut foliations in every closed 3-manifold obtained by r-framed Dehn surgery along a positive 3-braid knot K in S^3, where r < 2g(K)-1 and g(K) denotes the Seifert genus of K. This confirms a prediction of the L--space conjecture. For instance, we produce taut foliations in every non-L-space obtained by surgery along the pretzel knot P(-2,3,7), and indeed along every pretzel knot P(-2,3,q), for q a positive odd integer. This is the first construction of taut foliations for every non-L-space obtained by surgery along an infinite family of hyperbolic L-space knots. We adapt our techniques to construct taut foliations in every closed 3-manifold obtained along r-framed Dehn surgery along a positive 1-bridge braid, and indeed, along any positive braid knot, in S^3, where r < g(K)-1. These are the only examples of theorems producing taut foliations in surgeries along hyperbolic knots where the interval of surgery slopes is in terms of g(K)
Thesis (PhD) — Boston College, 2020
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Mathematics
Malabre, François. "Eigenvalue varieties of abelian trees of groups and link-manifolds." Doctoral thesis, Universitat Autònoma de Barcelona, 2015. http://hdl.handle.net/10803/308323.
Повний текст джерелаLe A-polynôme d’un noeud dans S3 est un polynôme à deux variables obtenu en projetant la variété des SL2C-caractères de l’extérieur du noeud sur la variété de caractères du groupe périphérique. Il distingue le noeud trivial et détecte certaines pentes aux bords de surfaces essentielles des extérieurs de noeud. La notion de A-polynôme a été généralisée aux 3-variétés à bord torique non connexe ; une 3-variétéM bordée par n tores produit un sous-espace algebrique E(M) de C2n appelé variété des valeurs propres deM. Sa dimension est inférieure ou égale à n et E(M) détecte également des systèmes de pentes aux bords de surfaces essentielles dans M. La variété des valeurs propres de M contient toujours un sous-ensemble Ered(M) produit par les caractères réductibles, et de dimension maximale. Si M est hyperbolique, E(M) contient une autre composante de dimension maximale ; pour quelles autres 3- variétes est-ce le cas reste une question ouverte. Dans cette thèse, nous étudions cette question pour deux familles de 3-variétés à bords toriques et, via deux techniques distinctes, apportons une réponse positive dans ces deux cas. Dans un premier temps, nous étudions les entrelacs Brunniens dans S3, entrelacs pour lesquels tout sous-entrelacs strict est trivial. Certaines propriétés de ces entrelacs, et leur stabilité par certains remplissages de Dehn nous permettent de prouver que, siM est l’extérieur d’un entrelacs Brunnien non trivial et différent de l’entrelacs de Hopf, E(M) contient une composante de dimension maximale différente de Ered(M). Ce résultat est obtenu en généralisant la technique préalablement utilisée pour les noeuds dans S3 grâce au théorème de Kronheimer-Mrowka. D’autre part, nous considérons une famille de variétés-entrelacs, variétés obtenues comme extérieurs d’entrelacs dans des sphères d’homologie entière. Les variétés-entrelacs possèdent des systèmes périphériques standard de méridiens et longitudes et sont stables par splicing, le recollement de deux variétés-entrelacs le long de tores périphériques en identifiant le méridien de chaque coté avec la longitude opposée. Ceci induit une notion de décomposition torique de variété-entrelacs et une telle variété est dite graphée si elle admet une décomposition torique où toutes les pièces sont fibrées de Seifert. Nous montrons que, mis-à-part les cas triviaux, toutes les variétés-entrelacs graphées produisent une autre composante de dimension maximale dans leur variétés des valeurs propres. Pour cette seconde preuve, nous présentons une nouvelle généralisation de la variété des valeurs propres, qui prend également en compte les tores intérieurs, que nous introduisons dans le contexte plus général des arbres abéliens de groupes. Un arbre de groupe est appelé abélien si tous les groupes d’arête sont commutatifs ; dans ce cas, nous définissions la variété des valeurs propres d’un arbre abélien de groupe, une variété algébrique compatible avec deux opérations naturelles sur les arbres : la fusion et la contraction. Ceci permet d’étudier la variété des valeurs propres d’une variété-entrelacs à travers les variétés des valeurs propres de ses décompositions toriques. En combinant des résultats généraux sur les variétés des valeurs propres d’arbres abéliens de groupe et les descriptions combinatoires des variétés-entrelacs graphées, nous contruisons des composantes de dimension maximale dans leur variétés des valeur propres.
The A-polynomial of a knot in S3 is a two variable polynomial obtained by projecting the SL2C-character variety of the knot-group to the character variety of its peripheral subgroup. It distinguishes the unknot and detects some boundary slopes of essential surfaces in knot exteriors. The notion of A-polynomial has been generalized to 3-manifolds with non-connected toric boundaries; ifM is a 3-manifold bounded by n tori, this produces an algebraic subset E(M) of C2n called the eigenvalue variety of M. It has dimension at most n and still detects systems of boundary slopes of surfaces in M. The eigenvalue variety of M always contains a part Ered(M) arising from reducible characters and with maximal dimension. If M is hyperbolic, E(M) contains another topdimensional component; for which 3-manifolds is this true remains an open question. In this thesis, this matter is studied for two families of 3-manifolds with toric boundaries and, via two very different technics, we provide a positive answer for both cases. On the one hand, we study Brunnian links in S3, links in the standard 3-sphere for which any strict sublink is trivial. Using special properties of these links and stability under certain Dehn fillings we prove that, if M is the exterior of a Brunnian link different from the trivial link or the Hopf link, then E(M) admits a top-dimensional component different from Ered(M). This is achieved generalizing the technic applied to knots in S3, using Kronheimer-Mrowka theorem. On the other hand, we consider a family of link-manifolds, exteriors of links in integerhomology spheres. Link-manifolds are equipped with standard peripheral systems of meridians and longitudes and are stable under splicing, gluing two link-manifolds along respective boundary components, identifying the meridian of each side to the longitude of the other. This yields a well-defined notion of torus decomposition and a link-manifold is called a graph link-manifold if there exists such a decomposition for which each piece is Seifert-fibred. Discarding trivial cases, we prove that all graph link-manifolds produce another top-dimensional component in their eigenvalue variety. For this second proof, we propose a further generalization of the eigenvalue variety that also takes into account internal tori and this is introduced in the broader context of abelian trees of groups. A tree of group is called abelian if all its edge groups are commutative; in that case, we define the eigenvalue variety of an abelian tree of groups, an algebraic variety compatible with two natural operations on trees: merging and contraction. This enables to study the eigenvalue variety of a link-manifold through the eigenvalue varieties of its torus splittings. Combining general results on eigenvalue varieties of abelian trees of groups with combinatorial descriptions of graph link-manifolds, we construct top-dimensional components in their eigenvalue varieties.
Simões, Pedro Miguel Lola. "Dinâmica simbólica de aplicações multimodais renormalizáveis, renormalização em templates." Doctoral thesis, Universidade de Évora, 2015. http://hdl.handle.net/10174/16150.
Повний текст джерелаCOLLARI, CARLO. "Transverse invariants from the deformations of Khovanov sl2- and sl3-homologies." Doctoral thesis, 2017. http://hdl.handle.net/2158/1079076.
Повний текст джерелаHo, Chi Fai. "On Polynomial Invariants for Knots and Links." Thesis, 1986. https://thesis.library.caltech.edu/11454/2/Ho_CF_1986.pdf.
Повний текст джерелаThis thesis presents an investigation of many known polynomial invariants of knots and links. Following Alexander's original idea, we define another multi-indeterminant polynomial for links and show that it satisfies some of Torres' conditions. We conjecture that they are equivalent.
Conway polynomials have been known since the sixties. In this paper, we show that the polynomials of various orientations of a link are related, at least in the first and second coefficients. The relationship can be expressed as a function of the Conway polynomials of all sublinks.
A new invariant polynomial of knots and links has been discovered which is independent of the orientation. This polynomial is also invariant of link inverses. Moreover, it is different from the Conway polynomial and the newly discovered HOMFLY polynomial. It distinguishes the trivial 3-unlink and the Borremean ring of 3 components. Various properties of the polynomial are studied.
Dąbrowski-Tumański, Paweł. "Knots, links and lassos – topological manifolds in biological objects." Doctoral thesis, 2019. https://depotuw.ceon.pl/handle/item/3453.
Повний текст джерелаŁańcuchy białkowe opisywane są zazwyczaj w ramach czterorzędowej organizacji struktury. Jednakże, ten sposób opisu nie pozwala na uwzględnienie niektórych aspektów geometrii białek. Jedną z brakujących cech jest obecność węzła stworzonego przez łańcuch główny. Odkrycie białek posiadających taki węzeł budzi pytania o zwijanie takich białek i funkcję węzła. Pomimo połączonego podejścia teoretycznego i eksperymentalnego, odpowiedź na te pytania nadal pozostaje nieuchwytna. Z drugiej strony, prócz zawęźlonych białek, w ostatnich czasach zostały zidentyfikowane pojedyncze struktury zawierające inne, topologicznie nietrywialne motywy. Funkcja tych motywów i ścieżka zwijania białek ich zawierających jest również nieznana w większości przypadków. Ta praca jest pierwszym holistycznym podejściem do całego tematu nietrywialnej topologii w białkach. Prócz białek z zawęźlonym łańcuchem głównym, praca opisuje także inne motywy: białka-lassa, sploty, zawęźlone pętle i teta-krzywe. Niektóre spośród tych motywów zostały odkryte w ramach pracy. Wyniki skoncentrowano na klasyfikacji, występowaniu, funkcji oraz zwijaniu białek z topologicznie nietrywialnymi motywami. W części poświęconej klasyfikacji, zaprezentowane zostały wszystkie topologicznie nietrywialne motywy występujące w białkach. W szczególności, zaproponowano i opisano nowe matematyczne narzędzia umożliwiające klasyfikację białek-lass. W części dotyczącej występowania struktur rozważane jest statystyczne prawdopodobieństwo występowania różnych motywów. Ich mniejsza liczba w porównaniu z szacunkami wynikającymi z modeli polimerowych stanowi wstęp do rozważań na temat funkcji nietrywialnej topologii. W szczególności pokazano, że funkcją splotu jest wprowadzenie szczególnej stabilności łańcucha, a w przypadku niektórych białek topologia lassa jest najprawdopodobniej niezbędna do pełnienia przez nie funkcji. W tej części zaproponowana została również funkcja węzła w łańcuchu głównym, wspomagająca tworzenie i stabilizująca miejsca aktywne enzymów. Nowy mechanizm zwijania zawęźlonych białek wykorzystujący rybosom rozpoczyna część czwartą, w której analizowany jest również wpływ topologii, ograniczonej objętości i długości węzła na zwijanie białek. Skrupulatna analiza wszystkich dostępnych struktur przestrzennych białek możliwa była jedynie po stworzeniu odpowiednich narzędzi programistycznych. Narzędzia te zostały przekazane naukowej wspólnocie pod postacią baz danych, serwerów, wtyczek do innych programów oraz paczki programistycznej. Narzędzia te opisane są w części piątej. Praca kończy się wskazaniem przyszłych kierunków rozwoju dziedziny oraz zbiorem literatury okalającej zagadnienia zawarte w pracy. Zestaw ten skierowany jest do przyszłych adeptów, stanowiąc przewodnik po świecie białek o skomplikowanej topologii i zachętę do dalszych prac.
Castle, Toen. "Entangled graphs on surfaces in space." Phd thesis, 2013. http://hdl.handle.net/1885/11978.
Повний текст джерелаGutierrez, Quispe Robert Gerson. "Aspectos de la teoría de nudos." Bachelor's thesis, 2019. http://hdl.handle.net/11086/14649.
Повний текст джерелаLos nudos, tal cual aparecen en nuestra vida cotidiana, son un objeto de estudio en la Matemática. La Teoría de Nudos es la rama de la Matemática que se encarga de su estudio. Un problema central es el de poder decir si dos nudos dados son equivalentes o no. Los matemáticos, en la búsqueda de responder esta pregunta, entre otras, han desarrollado diversas técnicas y herramientas en esta área de estudio. En este trabajo se hace un recorrido en el estudio de la Teoría de Nudos, comenzando con las definiciones más elementales, hasta llegar a estudiar herramientas sofisticadas como el polinomio de Alexander, el grupo de un nudo y las matrices de Seifert, entre otros. En los dos últimos capítulos se investigan los dos temas siguientes: nudos virtuales y presentaciones de Wirtinger. En este último se hace un aporte, dando una nueva familia infinita de presentaciones de Wirtinger no geométricas.
The knots we usually see in our lifes are studied in mathematics in the branch called Knot Theory. A main problem is to decide whether two knots are equivalent or not. Many tools and techniques have been developed by mathematicians in order to answer this and other related questions. In this work, we study Knot Theory from the beginning, with definitions and elementary notions, until some sophisticated concepts and tools like the Alexander polynomial, the knot group and Seifert matrices, among others. In the last two chapters, we work on the following two particular subjects: virtual knots and Wirtinger presentations. In this last one, we made a small contribution by presenting a new infinite family of Wirtinger presentations which are not geometric.
Fil: Gutierrez Quispe. Robert Gerson. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina.