Дисертації з теми "Transport of particles"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 дисертацій для дослідження на тему "Transport of particles".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Imoto, Yu, and Takashi Odagaki. "Diffusion on diffusing particles." Universitätsbibliothek Leipzig, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-193282.
Повний текст джерелаJiang, Wenchao. "Spin dependent transport in ferromagnetic particles." Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/52204.
Повний текст джерелаWang, Fujing. "Pressure gradient and particle adhesion in the pneumatic transport of fine particles." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp01/MQ28680.pdf.
Повний текст джерелаBechinger, Clemens. "Active Brownian motion of asymmetric particles." Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-179545.
Повний текст джерелаImoto, Yu, and Takashi Odagaki. "Diffusion on diffusing particles." Diffusion fundamentals 6 (2007) 11, S. 1-7, 2007. https://ul.qucosa.de/id/qucosa%3A14185.
Повний текст джерелаTrenkmann, Ines, Daniela Täuber, Michael Bauer, Jörg Schuster, Sangho Bok, Shubhra Gangopadhyay, and Christian von Borczyskowski. "Investigations of solid liquid interfaces in ultra-thin liquid films via single particle tracking of silica particles." Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-191734.
Повний текст джерелаTrenkmann, Ines, Jörg Schuster, Shubhra Gangopadhyay, and Christian von Borczyskowski. "Investigation of solid liquid interface in ultra-thin liquid films via single particle tracking of colloidal particles." Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-191812.
Повний текст джерелаSchmidt, Frank Dr Ing. "Transport und Abscheidung submikroner Partikel - Transport and deposition of submicron particles." Gerhard-Mercator-Universitaet Duisburg, 2001. http://www.ub.uni-duisburg.de/ETD-db/theses/available/duett-08022001-085456/.
Повний текст джерелаHan, Shuxiang. "Chlorocarbon transport out of contaminated soil particles." Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/35993.
Повний текст джерелаWood, Joseph. "Two phase transport in porous catalyst particles." Thesis, University of Cambridge, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.621176.
Повний текст джерелаMartens, Steffen. "Transport of Brownian particles in confined geometries." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2013. http://dx.doi.org/10.18452/16764.
Повний текст джерелаThis work intends to show how experimentally relevant issues such as strong channel corrugation, sophisticated external force fields, particle size, and the solvent''s viscosity can be incorporated into the commonly used Fick-Jacobs approach which provides a powerful tool to capture many properties of Brownian particles'' transport in confined geometries. First, we derive exact solutions of the stationary probability distribution in terms of an expansion parameter specifying the channel corrugation. Thereby, the leading order is equivalent to the Fick-Jacobs approach. By means of higher expansion orders, which become significant for strong channel corrugation, we obtain corrections to the key particle transport quantities. Going one step further, we generalize the Fick-Jacobs approach to the most general forces. As an exemplary application, we consider microfluidic devices in which the interplay of conservative forces and pressure-driven flows (vector potentials) offers a unique opportunity to efficiently separate Brownian particles of the same size using the newly discovered effect of hydrodynamically enforced entropic trapping. Since separation and sorting by size is a main challenge in basic research, we demonstrate that within certain limits the analytic expressions for the key transport quantities, derived for point-like particles, can be applied to extended objects, too. Lastly, we study the impact of the solvent''s viscosity on particle transport. If the time scales separate, adiabatic elimination results in an effective description even for finite damping. The possibility of such description is intimately connected with equipartition and vanishing velocity correlation. Numerical simulations show that this approach is accurate for moderate to strong damping and for weak forces. For strong external forces, equipartition may break down due to reflections at the boundaries. This leads to a non-monotonic dependence of the particle mobility on the force strength.
Chaikin, Paul, David Pine, Jeremie Palacci, and John Royer. "Diffusion and organization in driven particles systems." Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-181684.
Повний текст джерелаChakrabarty, Ayan, Feng Wang, Jonathan Selinger, and Qi-Huo Wei. "Fabrication and Brownian diffusion of boomerang colloidal particles." Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-185744.
Повний текст джерелаTarasenko, Alexander, and Lubomir Jastrabik. "Surface diffusion of particles over bivariate trap lattices." Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-191662.
Повний текст джерелаCichos, Frank. "From hot Brownian motion to self-propelled particles." Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-184786.
Повний текст джерелаSchaap, Allison Schaap. "Transport and size-separation of airborne particles in a microchannel for continuous particle monitoring." Thesis, University of British Columbia, 2010. http://hdl.handle.net/2429/30230.
Повний текст джерелаBechinger, Clemens. "Active Brownian motion of asymmetric particles." Diffusion fundamentals 20 (2013) 16, S. 1, 2013. https://ul.qucosa.de/id/qucosa%3A13540.
Повний текст джерелаTrenkmann, Ines, Daniela Täuber, Michael Bauer, Jörg Schuster, Sangho Bok, Shubhra Gangopadhyay, and Christian von Borczyskowski. "Investigations of solid liquid interfaces in ultra-thin liquid films via single particle tracking of silica particles." Diffusion fundamentals 11 (2009) 108, S. 1-12, 2009. https://ul.qucosa.de/id/qucosa%3A14082.
Повний текст джерелаTrenkmann, Ines, Jörg Schuster, Shubhra Gangopadhyay, and Christian von Borczyskowski. "Investigation of solid liquid interface in ultra-thin liquid films via single particle tracking of colloidal particles." Diffusion fundamentals 11 (2009) 115, S. 1-2, 2009. https://ul.qucosa.de/id/qucosa%3A14089.
Повний текст джерелаTakada, Satoshi. "Studies on transport phenomena of cohesive granular particles." 京都大学 (Kyoto University), 2016. http://hdl.handle.net/2433/215293.
Повний текст джерелаLaker, Travis S. "Transport of microscopic particles in microchannels and microbubbles." Diss., Georgia Institute of Technology, 2003. http://hdl.handle.net/1853/15816.
Повний текст джерелаLopes, Felipe Nathan de Oliveira. "Neoclassical transport of particles in magnetic confined plasmas." reponame:Repositório Institucional da UnB, 2017. http://repositorio.unb.br/handle/10482/24179.
Повний текст джерелаSubmitted by Raquel Almeida (raquel.df13@gmail.com) on 2017-06-14T21:00:42Z No. of bitstreams: 1 2017_FelipeNathandeOliveiraLopes.pdf: 2581164 bytes, checksum: b145a85dc2b652f6416a58481ed46516 (MD5)
Approved for entry into archive by Raquel Viana (raquelviana@bce.unb.br) on 2017-08-18T17:30:19Z (GMT) No. of bitstreams: 1 2017_FelipeNathandeOliveiraLopes.pdf: 2581164 bytes, checksum: b145a85dc2b652f6416a58481ed46516 (MD5)
Made available in DSpace on 2017-08-18T17:30:19Z (GMT). No. of bitstreams: 1 2017_FelipeNathandeOliveiraLopes.pdf: 2581164 bytes, checksum: b145a85dc2b652f6416a58481ed46516 (MD5) Previous issue date: 2017-08-18
Plasmas confinados em diferentes topologias magnéticas são uma tarefa importante na busca pela Energia de Fusão. Hoje em dia, as formas mais estudadas de Fusão Termonuclear Controlada focam em Confinamento Inercial, Stellarators e Tokamaks. No presente trabalho, estudaremos os diferentes mecanismos de transporte presentes nos plasmas toroidalmente confinados. Vamos rever a teoria a partir dos conceitos básicos de transporte de plasma, até as peculiaridades presentes em plasmas toroidalmente confinados, conhecido como tokamak. Na fronteira do modelo de transporte mais realista, a questão do transporte anômalo será tratada com a teoria do transporte turbulento, no âmbito da teoria girocinética. O uso de ferramentas computacionais auxiliará na análise do impacto das microinstabilidades no fluxo de partículas e calor, e auxiliará na validação dessa abordagem, feita com uma análise da literatura
Plasmas confined in several magnetics topologies are an important task in the quest for Fusion Energy. Nowadays, the most studied forms of Controlled Thermonuclear Fusion focus on Inertial Confinement, Stellarators and Tokamaks. In the present work, we are going to study the different transport mechanisms present in toroidally confined plasmas. We are going to review the theory from the basic concepts of plasma transport, until the peculiarities present in toroidally confi- ned plasmas, known as tokamak. In the border of the realistic transport model, the issue of the anomalous transport will be treated with the turbulent transport theory, in the framework of the gyrokinetic theory. The use of computational tools will help us to assist the analysis of microinstabilities impact on flux levels, and to give support in the validation of this approach, done with a thorough analysis the literatures.
Yellen, Benjamin Biron Friedman Gary. "Magnetically programmable transport and assembly of colloidal particles /." Philadelphia, Pa. : Drexel University, 2004. http://dspace.library.drexel.edu/handle/1860/333.
Повний текст джерелаLong, Brian R. "Transport of polymers and particles microfabricated array devices." Thesis, University of Oregon, 2008. http://hdl.handle.net/1794/8289.
Повний текст джерелаBrownian ratchets generate transport at the micron scale with the help of thermal motion. The Brownian ratchet studied here is the flashing ratchet which transports particles by switching on and off a spatially asymmetric, periodic potential. Experimental work in the literature indicates that interdigitated electrode arrays can been used to create such potentials in solution, but no detailed study of particle trajectories has accompanied such experiments. Here, interdigitated electrode array devices were fabricated. Analysis of the trajectories of individual particles moving in response to a switching voltage revealed that the transport is likely due to electroosmotically driven fluid flow, not the Brownian ratchet effect. Simulation work in the literature predicts that polymers in a ratchet potential will exhibit qualitatively different transport from the particle case. Here, polymer transport was tested experimentally using interdigitated electrode array devices, collecting images of individual à à à à à à » DNA molecules and applying a flashing voltage. The DNA was observed to move in response to the applied potential and the resulting images contain DNA trajectories and also information about its conformations and dynamics. Conformations were analyzed using principal components analysis, extracting the normal modes of the variations amongst large sets of polymer images. These results iv show no conformational changes indicative of the polymer ratchet mechanism, despite the polymer motion. This result and detailed analysis of the DNA trajectories, suggest that the observed motion was driven by bulk flow generated through electroosmosis, in agreement with results from experiments using particles in similar devices. Deterministic Lateral Displacement (DLD) uses an array of obstacles in a microfluidic channel to sort micron-scale objects with à à à à à ¢ à à à à à ¼10nm precision. However, very little work has been done to quantitatively address the role of diffusion in DLD sorting. Here, modeling of transport in DLD arrays has shown that using arrays of obstacles that are small compared to their separation can create sorting that is robust against changes in flow velocity. Also, novel sorting modes were revealed when the model was applied to unconventional array geometries that have not been discussed in the literature.
Adviser: Heiner Linke
Kalay, Ziya, Takahiro K. Fujiwara, and Akihiro Kusumi. "Diffusion in a hard-disk fluid with immobile particles." Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-182568.
Повний текст джерелаHansen, Eddy W., and Hans Christian Gran. "Probing pore-structure within porous polymer particles by NMR." Universitätsbibliothek Leipzig, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-194852.
Повний текст джерелаGerber, Gaétan. "Suspensions of particles interacting with porous matrices : transport, deposition and accumulation." Thesis, Paris Est, 2019. http://www.theses.fr/2019PESC1036.
Повний текст джерелаFrom the separation of products on industrial filters to the propagation of pollutants in soils or the transmission of micro-organisms in biological tissues, the transport of particles through porous matrices is ubiquitous. Particle-matrix interactions involve crucial deposition mechanisms, often studied by numerical simulations, global measurements or reduced (1D or 2D) systems. By making adapted 3D porous media (transparent random packings of spheres), and taking advantage of original internal observations (MRI, confocal microscopy), we have been able to directly visualize and analyze the whole range of transport and deposition dynamics at the global and local scales. Varying in turns the particles size (tens of nanometers to tens of microns), long-range interactions (electrostatic or magnetic) and shape (from unique spheres to clusters), all deposition regimes are finally mapped according to three key parameters: particle confinement (particle/pore size ratio), particle-surface affinity, and inter-particle aggregation ability.Two examples highlight the diversity of these regimes. First, we show that non-colloidal particles of sufficient size tend to clog pores by accumulating in pore size clusters, which ultimately constitute regions avoided by the flow. A critical cluster concentration (percolation) corresponds to a system saturation, i.e. caking. Further insights on the impact of the particle shape on the clogging dynamics are also proposed. On another side, for non-clogging colloidal particles, we show that particle accumulation is a self-limited mechanism, towards a deposited fraction associated with a balance between the colloidal cohesive energy and the local flow (drag energy varying with evolving porosity).In the end, the classification of the main deposition regimes combined with simple predictive models allows an application of these results to a broad range of systems
Zheng, Feng. "Thermophoretic force measurements of spherical and non-spherical particles /." Thesis, Connect to this title online; UW restricted, 2000. http://hdl.handle.net/1773/9874.
Повний текст джерелаChaikin, Paul, David Pine, Jeremie Palacci, and John Royer. "Diffusion and organization in driven particles systems." Diffusion fundamentals 20 (2013) 18, S. 1, 2013. https://ul.qucosa.de/id/qucosa%3A12531.
Повний текст джерелаKurzhals, Jan-Magnus, Marcel Dierl, and Philipp Maass. "Phase transitions in driven single file diffusion of suspended particles." Universitätsbibliothek Leipzig, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-198347.
Повний текст джерелаPei, Chunsheng. "Solar Energetic Particle Transport in the Heliosphere." Diss., The University of Arizona, 2007. http://hdl.handle.net/10150/194303.
Повний текст джерелаHormozi, Sarah. "Transport and dispersion of particles in visco-plastic fluids." Thesis, University of British Columbia, 2013. http://hdl.handle.net/2429/45002.
Повний текст джерелаMercier, Richard Steven. "The reactive transport of suspended particles : mechanisms and modeling." Thesis, Massachusetts Institute of Technology, 1985. http://hdl.handle.net/1721.1/15232.
Повний текст джерелаMICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING.
Bibliography: leaves 262-272.
by Richard Steven Mercier.
Ph.D.
Wångby, Emil. "Transport of non-spherical particles in pipeflow with suction." Thesis, Luleå tekniska universitet, Institutionen för system- och rymdteknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-79806.
Повний текст джерелаLong, Brian Russell. "Transport of polymers and particles in microfabricated array devices /." Connect to title online (Scholars' Bank) Connect to title online (ProQuest), 2008. http://hdl.handle.net/1794/8289.
Повний текст джерелаTypescript. Includes vita and abstract. Includes bibliographical references (leaves 122-127). Also available online in Scholars' Bank; and in ProQuest, free to University of Oregon users.
Cichos, Frank. "From hot Brownian motion to self-propelled particles." Diffusion fundamentals 16 (2011) 23, S. 1, 2011. https://ul.qucosa.de/id/qucosa%3A13755.
Повний текст джерелаChakrabarty, Ayan, Feng Wang, Jonathan Selinger, and Qi-Huo Wei. "Fabrication and Brownian diffusion of boomerang colloidal particles." Diffusion fundamentals 16 (2011) 78, S. 1-2, 2011. https://ul.qucosa.de/id/qucosa%3A13822.
Повний текст джерелаTarasenko, Alexander, and Lubomir Jastrabik. "Surface diffusion of particles over bivariate trap lattices." diffusion fundamentals 11 (2009) 103, S. 1-8, 2009. https://ul.qucosa.de/id/qucosa%3A14077.
Повний текст джерелаHeidernätsch, Mario, Michael Bauer, Daniela Täuber, Günter Radons, and Christian von Borcyskowski. "An advanced method of tracking temporarily invisible particles in video imaging." Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-191774.
Повний текст джерелаHansen, Eddy W., and Hans Christian Gran. "Probing pore-structure within porous polymer particles by NMR." Diffusion fundamentals 3 (2005) 21, S. 1-2, 2005. https://ul.qucosa.de/id/qucosa%3A14312.
Повний текст джерелаBarlow, Janet F. "Turbulent transport of space charge in the atmospheric surface layer." Thesis, University of Reading, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.270265.
Повний текст джерелаCifuentes, Manuel Valiente. "Few quantum particles on one dimensional lattices." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2010. http://dx.doi.org/10.18452/16191.
Повний текст джерелаThere is currently a great interest in the physics of degenerate quantum gases and low-energy few-body scattering due to the recent experimental advances in manipulation of ultracold atoms by light. In particular, almost perfect periodic potentials, called optical lattices, can be generated. The physics of few quantum particles on a one-dimensional lattice is the topic of this thesis. Most of the results are obtained in the tight-binding approximation, which is amenable to exact numerical or analytical treatment. For the two-body problem, theoretical methods for calculating the stationary scattering and bound states are developed, and are generalized to obtain exact results for arbitrary interactions and particle statistics. Quantum transport of one and two particles is also considered. The problem of binding and scattering of three identical bosons is studied in detail, finding novel types of bound states. Finally, other lattice systems are studied by introducing methods closely connected with the methods developed for the two-body problem.
Suñé, Simon Marc. "Anomalous transport and diffusion of Brownian particles on disordered landscapes." Doctoral thesis, Universitat de Barcelona, 2016. http://hdl.handle.net/10803/400564.
Повний текст джерелаEl moviment Brownià és el bellugueig aleatori que efectuen les partícules de tamany micromètric quan estan suspeses en un dissolvent. Segons la formulació d’Einstein, els desplaçaments que efectuen les partícules exhibeixen una distribució Gaussiana de mitjana nul·la i variança proporcional al temps. La constant que relaciona la dispersió del conjunt de desplaçaments i el temps és el coeficient de difusió, que depèn de la temperatura i el coeficient de fricció. Si les partícules estan sotmeses a una força externa, la velocitat mitjana del conjunt és no nul·la, donant lloc al fenòmen del transport. En aquestes condicions, el valor mig de la distribució de desplaçaments presenta un creixement lineal amb el temps. Tanmateix, el seguiment de partícules sotmeses al moviment Brownià en ambients complexos dóna lloc a desviacions—anomalies—en els resultats clàssics del transport i la difusió, és a dir, dependències no lineals de la mitjana i la dispersió respecte el temps. Els ambients en els quals s’observen aquestes anomalies es poden caracteritzar per mitjà de potencials no–lineals que presenten barreres que modifiquen la distribució dels desplaçaments. L’objecte de la tesi és explorar aquestes anomalies del transport i la difusió de partícules Brownianes sotmeses a un potencial desordenat. El mètode emprat és la simulació numèrica de les equacions de Langevin clàssiques, una adaptació de la mecànica de Newton que permet obtenir les trajectòries de les partícules. En concret, la tesi indaga en les causes que motiven l’aparició de les anomalies i la influència que hi tenen les propietats del potencial desordenat, la força externa, la temperatura, el coeficient de fregament—únicament en l’aproximació d’infraesmorteïment—, etc. En paral·lel, s'han desenvolupat noves tècniques numèriques per simular les equacions dinàmiques estocàstiques. La tesi inclou diversos casos d'estudi en funció de les característiques del potencial no–lineal—periòdic, desordenat estàtic, desordenat dinàmic—i de la dissipació de l'energia—règims sobreesmorteït i infraesmorteït—. Així mateix, també es presenten dos treballs d'aplicació del moviment Brownià per modelitzar casos experi- mentals; l'atrapament de partícules en una interfície quasi–plana amb una viscositat canviant, i el transport del motor KIF1A a través d'un microtúbol.
Holmstedt, Elise. "Modelling Transport of Non-Spherical Particles in Small Channel Flow." Doctoral thesis, Luleå tekniska universitet, Strömningslära och experimentell mekanik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-60402.
Повний текст джерелаTaskin, Ertan M. "CFD simulation of transport and reaction in cylindrical catalyst particles." Link to electronic thesis, 2007. http://www.wpi.edu/Pubs/ETD/Available/etd-081507-135028/.
Повний текст джерелаKrutyeva, Margarita, Sergey Vasenkov, and Jörg Kärger. "Exploring the influence of the surface resistance of nanoporous particles on molecular transport." Universitätsbibliothek Leipzig, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-194330.
Повний текст джерелаGünther, Katrin, Andreas Bregulla, Martin Bönsch, Frank Cichos, and Michael Mertig. "Suppressing rotational diffusion of Janus particles by surface modifications for directed thermophoretic motion." Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-183685.
Повний текст джерелаKurzhals, Jan-Magnus, Marcel Dierl, and Philipp Maass. "Phase transitions in driven single file diffusion of suspended particles." Diffusion fundamentals 24 (2015) 29, S. 1, 2015. https://ul.qucosa.de/id/qucosa%3A14545.
Повний текст джерелаMoore, Matthew C. "Bedload transport: the effects of particle shape and an investigation of a wide range of transport rates." Thesis, Virginia Polytechnic Institute and State University, 1994. http://hdl.handle.net/10919/50107.
Повний текст джерелаMaster of Science
incomplete_metadata
Petrov, Eugene P., Anastasiia Artemieva, Christoph Herold, and Petra Schwille. "Interaction of semiflexible polymers and rod-like colloidal particles with strongly charged lipid membranes." Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-182828.
Повний текст джерела