Дисертації з теми "Transport des phonons"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Transport des phonons.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 дисертацій для дослідження на тему "Transport des phonons".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Davaasambuu, Jav, Friedrich Güthoff, Klaudia Hradil, and Götz Eckold. "Phonons in demixing systems." Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-188279.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Davaasambuu, Jav, Friedrich Güthoff, Klaudia Hradil, and Götz Eckold. "Phonons in demixing systems." Diffusion fundamentals 12 (2010) 109, 2010. https://ul.qucosa.de/id/qucosa%3A13916.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Tavakoli-Ghinani, Adib. "Transport de phonons dans le régime quantique." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAY090/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Ce travail de thèse est consacré à la mesure de transport de chaleur par les phonons dans le régime quantique dans des systèmes confinés à très basse température.Le contexte de ce sujet est de soumettre ces systèmes à deux conditions extrêmes : basse température et faibles dimensions et de comprendre les propriétés thermiques fondamentales issues de ces limites.Les échantillons étudiés au cours de cette thèse sont des structures suspendues (membrane ou nanofil) ; elles sont élaborées à partir de nitrure de silicium amorphe (SiN).En abaissant la température, les longueurs caractéristiques des phonons comme le libre parcours moyen ou la longueur d'onde dominante des phonons augmentent. Lorsque ces longueurs caractéristiques dépassent les dimensions latérales du système, la diffusion sur les surfaces (boundary scattering) régira les propriétés thermiques. Dans cette limite de diffusion, le transport des phonons va de la diffusion aux surfaces (régime de Casimir) au régime balistique (limite quantique). Dans ce régime balistique, le courant de chaleur peut être exprimé en utilisant le modèle de Landauer. La conductance thermique est alors exprimée par: K=N_α q T où, N_α est le nombre de modes vibratoires peuplés, q=((π²k_B^2)T)⁄3h est la valeur universelle du quantum de conductance thermique et T est le coefficient de transmission.Dans ce travail, les mesures de conductance thermique de nanofils suspendus ont été effectuées jusqu'à très basse température. Une plate-forme de mesure ayant une sensibilité sans précédent a été développée pour mesurer la variation d'énergie inférieure à l'attojoule. Ces nouveaux capteurs permettent de mesurer les propriétés thermiques du guide d'onde de phonon 1D dans le régime quantique du transport de chaleur. Nous montrons que le coefficient de transmission est le facteur dominant qui définit la valeur de conductance thermique. Ce coefficent dépend de la dimension et de la forme des réservoirs ainsi que de la nature du matériau utilisé ce qui rend difficile la mesure du quantum de conductance thermique. Nous montrons que dans toutes les structures de SiN mesurées, le transport thermique pourrait être dominé par des excitations de faible énergie qui existent dans les solides amorphes (a-solides).Le deuxième ensemble important d'expériences concerne la chaleur spécifique. Nous avons étudié les propriétés thermiques de membranes suspendues de SiN très minces que l'on pense être des cavités de phonon 2D. Nous montrons que la dépendance en température de la chaleur spécifique s'écarte du comportement quadratique comme prévu à très basse température. Les modèles pertinents donnant une explication quantitative des résultats sont encore à l'étude. La présence de systèmes à deux niveaux dans les matériaux amorphes pourrait être une explication possible de la valeur absolue élevée de la chaleur spécifique observée
This PhD entitles Phonon heat transport in the quantum regime is based on the analysis of the thermal properties of confined systems at very low temperature.The context of this subject is putting the systems in two extreme conditions (low temperature and low dimensions) and understand the fundamental thermal properties coming from these limits.The studied samples during this PhD that are suspended structures (membrane or nanowire) are elaborated from amorphous silicon nitride.By lowering the temperature, the phonon characteristic lengths like the mean free path or the phonon dominant wavelength increase. When these characteristic lengths exceed lateral dimensions of the system, the boundary scattering will govern the thermal properties. In the boundary scattering, phonon transport goes from boundary limited scattering (Casimir regime) to ballistics regime (quantum limit). In this ballistic regime, the heat current can be expressed using the Landauer model. The thermal conductance is then expressed as: K=N_α q T where N_α is the number of populated vibrational modes, q=((π²k_B^2)T)⁄3h is the universal value of quantum of thermal conductance, and T is the transmission coefficient.In this work, thermal conductance measurements of suspended nanowires have been performed down to very low temperature. A measurement platform having an unprecedented sensitivity have been developed that can measure a variation of energy smaller than the attojoule. These new sensors allow the measurement of thermal properties of 1D phonon waveguide in the quantum regime of heat transport. We show that the transmission coefficient is the dominant factor that set the thermal conductance value. It depends on the dimension and the shape of the reservoirs, and the nature of the material in use rendering difficult the measurement of the quantum of thermal conductance. We show that in all of the SiN structures, the thermal transport could be dominated by low energy excitations that exist in amorphous solids (a-solids).The second important set of experiments concerns the specific heat. We have studied suspended the thermal properties of very thin SiN membranes that are thought to be 2D phonon cavities. We show that the temperature dependence of the specific heat departs from the quadratic behavior as expected at very low temperature. The true models giving a quantitative explanation of the results is still under consideration. The presence of tunneling two-level systems in amorphous materials could be one possible explanation for the high absolute value of specific heat that has been measured
4

Heron, Jean-Savin. "Transport des phonons à l'échelle du nanomètre." Phd thesis, Grenoble 1, 2009. http://www.theses.fr/2009GRE10183.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Pour comprendre les mécanismes du transport de la chaleur à l'échelle du nanomètre, nous avons fabriqué des dispositifs suspendus nanostructurés complexes et mesuré leur conductance thermique aux températures cryogéniques, notamment via la méthode 3 oméga. Nous avons pu ainsi démontrer la dépendance du transport des phonons aux dimensions et à la géométrie des nanostructures. Pour des nanofils de silicium d'une longueur comprise entre 8 et 10 µm, et d'une section de 200x100 nm^2, nous observons une déviation au régime diffusif de Casimir sous 5K, que nous pouvons expliquer en tenant compte de la rugosité en surface des nanofils. Quand la température décroit, la longueur d'onde des phonons augmente et des collisions balistiques en surface surviennent, impliquant une augmentation du libre parcours moyen des phonons, considéré comme constant jusque là. D'importants effets mésoscopiques sur le transport des phonons induits par la géométrie des nanofils ont pu être mesurés pour la première fois. La présence de zig-zag sur la longueur des fils bloquent le courant de phonons sur une large gamme de température, ayant pour conséquence une importante réduction de l'ordre de 40% de la conductance thermique en comparaison avec des nanofils droits. En parallèle, des expériences ont été menées sur des NEMS de silicium à basse température, et comparées avec des résultats antérieurs sur des MEMS de même géométrie. Le comportement mécanique des structures de silicium aux petites échelles est également abordé. A la fin de ce manuscrit, sont présentés les premiers prototypes de nano-calorimètres zepto-Joules (10^-21 J), qui vont permettre des caractérisations thermiques extrêmes d'objets uniques mésoscopiques
To understand the mechanisms of the heat transport at small length scales, we are fabricating complex nano-devices and measuring the thermal conductance of suspended silicon nanowires at cryogenic temperatures, principally by the 3 omega method. We demonstrate the dependance of the phonon transport to the dimensions and the geometry of these nanostructures. For nanowires with a length between 8 and 10 µm, and a section of 200x100 nm^2, we observe a deviation of the diffusive regime of Casimir below 5K, which can be explained by taking account the roughness of the surface of the nanowires. When the temperature decreases, the wave length of the phonons increases and ballistic collisions at the surface occur, implying an increase of the mean free path of the phonons, considered before as constant. Important mesoscopic effects on the phonons transport induced by the geometry of the nanowires have been measured for the first time. The presence of zigzag on the length of the wires blocks the current of phonons on a wide range of temperature, with as consequence an important decrease in the order of 40 % of the thermal conductance in comparison with straight nanowires. Experiments in parrallel on silcon NEMS have been performed at low temperatures, and compared with MEMS of same geometries. The mechanical behavior of silcon nanostructures at low scale is also aborded. At the end, first prototypes of zeptoJoules nanocalorimeters (10^-21 J) are presented, which allow thermal characterization of single mesoscopic object
5

Heron, Jean-Savin. "Transport des phonons à l'échelle du nanomètre." Phd thesis, Grenoble 1, 2009. http://tel.archives-ouvertes.fr/tel-00461703.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Pour comprendre les mécanismes du transport de la chaleur à l'échelle du nanomètre, nous avons fabriqué des dispositifs suspendus nanostructurés complexes et mesuré leur conductance thermique aux températures cryogéniques, notamment via la méthode 3 oméga. Nous avons pu ainsi démontrer la dépendance du transport des phonons aux dimensions et à la géométrie des nanostructures. Pour des nanofils de silicium d'une longueur comprise entre 8 et 10 µm, et d'une section de 200x100 nm^2, nous observons une déviation au régime diffusif de Casimir sous 5K, que nous pouvons expliquer en tenant compte de la rugosité en surface des nanofils. Quand la température décroit, la longueur d'onde des phonons augmente et des collisions balistiques en surface surviennent, impliquant une augmentation du libre parcours moyen des phonons, considéré comme constant jusque là. D'importants effets mésoscopiques sur le transport des phonons induits par la géométrie des nanofils ont pu être mesurés pour la première fois. La présence de zig-zag sur la longueur des fils bloquent le courant de phonons sur une large gamme de température, ayant pour conséquence une importante réduction de l'ordre de 40% de la conductance thermique en comparaison avec des nanofils droits. En parallèle, des expériences ont été menées sur des NEMS de silicium à basse température, et comparées avec des résultats antérieurs sur des MEMS de même géométrie. Le comportement mécanique des structures de silicium aux petites échelles est également abordé. A la fin de ce manuscrit, sont présentés les premiers prototypes de nano-calorimètres zepto-Joules (10^-21 J), qui vont permettre des caractérisations thermiques extrêmes d'objets uniques mésoscopiques.
6

Hamzeh, Hani. "Résolution de l’équation de transport de Boltzmann pour les phonons et applications." Thesis, Paris 11, 2012. http://www.theses.fr/2012PA112371/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Cette thèse est consacrée à l’étude de la dynamique et du transport des phonons via la résolution de l’équation de transport de Boltzmann (ETB) pour les Phonons. Un ‘solveur’ Monte Carlo dédié à la résolution de l’ETB des phonons dans l’espace réciproque, prenant en compte tous les processus d’interactions Normaux et Umklapp à trois-phonons, est proposé. Une prise en compte rigoureuse des lois de conservation de l’énergie et de la quantité de mouvement est entreprise. Des relations de dispersion réalistes, intégrant tous les modes de polarisations, sont considérées. Le calcul des taux d’interactions à trois-phonons de tous les processus Normaux et Umklapp est effectué en utilisant l’approche théorique due à Ridley qui ne nécessite qu’un unique paramètre semi-ajustable pour chaque mode de polarisation, nommément : le coefficient de couplage anharmonique représenté par les constantes de Grüneisen. Les taux d’interactions ainsi calculés ne servent pas uniquement à la résolution de l’ETB des phonons, mais ont permis aussi une analyse complète des canaux de relaxation des phonons longitudinaux optiques de centre de zone. Cette analyse a montré que le canal de Vallée-Bogani est négligeable dans le GaAs, et que vraisemblablement les temps de vie des phonons LO de centre de zone dans l’InAs et le GaSb rapportés dans la littérature sont fortement sous-estimés. Pour la première fois à notre connaissance, un couplage de deux solveurs Monte Carlo indépendants l’un dédié aux porteurs de charges (Thèse E. Tea) et l’autre dédié aux phonons, est effectué. Cela permet d’étudier l’effet des phonons chauds sur le transport des porteurs de charges. Cette étude a montré que l’approximation de temps de relaxation surestime souvent l’effet bottleneck des phonons. Le ‘solveur’ Monte Carlo est étendu pour résoudre l’ETB des phonons dans l’espace réel (en plus de l’espace réciproque), cela a permet d’étudier le transport des phonons et ainsi de la chaleur. La théorie généralisée de Ridley est toujours utilisée avec des particules de simulations qui interagissent les unes avec les autres directement. Les règles de conservation de l’énergie et de la quantité de mouvement sont rigoureusement respectées. L’effet des processus Umklapp sur la quantité de mouvement totale des phonons est fidèlement traduit; tout comme l’effet des interactions sur les directions des phonons, grâce à une procédure prenant en compte les directions vectorielles respectives lors d’une interaction, au lieu, de la distribution aléatoire usuellement utilisée. Les résultats préliminaires montrent la limite de l’équation analytique de conduction de la chaleur
This work is dedicated to the study of phonon transport and dynamics via the solution of Boltzmann Transport Equation (BTE) for phonons. The Monte Carlo stochastic method is used to solve the phonon BTE. A solution scheme taking into account all the different individual types of Normal and Umklapp processes which respect energy and momentum conservation rules is presented. The use of the common relaxation time approximation is thus avoided. A generalized Ridley theoretical scheme is used instead to calculate three-phonon scattering rates, with the Grüneisen constant as the only adjustable parameter. A method for deriving adequate adjustable anharmonic coupling coefficients is presented. Polarization branches with real nonlinear dispersion relations for transverse or longitudinal optical and acoustic phonons are considered. Zone-center longitudinal optical (LO) phonon lifetimes are extracted from the MC simulations for GaAs, InP, InAs, and GaSb. Decay channels contributions to zone-center LO phonon lifetimes are investigated using the calculated scattering rates. Vallée-Bogani’s channel is found to have a negligible contribution in all studied materials, notably GaAs. A comparison of phonons behavior between the different materials indicates that the previously reported LO phonon lifetimes in InAs and GaSb were quite underestimated in the literature. For the first time, to our knowledge, a coupling of two independent Monte Carlo solvers, one for charge carriers [PhD manuscript, E. TEA], and one for phonons, is undertaken. Hot phonon effect on charge carrier dynamics is studied. It is shown that the relaxation time approximation overestimates the phonon bottleneck effect. The phonon MC solver is extended to solve the phonon’s BTE in real space simultaneously with the reciprocal space, to study phonon and heat transport. Ridley’s generalized theoretical scheme is utilized again with simulation particles interacting directly together. Energy and momentum conservation laws are rigorously implemented. Umklapp processes effect on the total phonon momentum is thoroughly reproduced, as for the anharmonic interactions effect on resulting phonon directions. This is thanks to a procedure taking in consideration the respective vector directions during an interaction, instead of the randomization procedure usually used in literature. Our preliminary results show the limit of the analytic macroscopic heat conduction equation
7

Iskandar, Abdo. "Phonon Heat Transport and Photon-phonon Interaction in Nanostructures." Thesis, Troyes, 2018. http://www.theses.fr/2018TROY0010.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Cette thèse avait pour cadre, le contrôle du transport thermique via les phonons et leur interaction avec des photons dans des nanostructures. Le manuscrit comprend cinq chapitres. Dans le premier, nous introduisons la physique des phonons et excitations élémentaires optiques de la matière. Le deuxième chapitre fournit une description des procédés de croissance, techniques de structuration et techniques de caractérisation utilisées. Dans le troisième chapitre, nous démontrons qu’à la fois, phonons et photons peuvent être confinés et interagir dans une même nanostructure. Dans le quatrième chapitre, nous montrons expérimentalement que le spectre de phonons d'un matériau peut être modifié par des mécanismes d'hybridation entre des modes de surface introduits par une nanostructuration et les modes normaux du matériau massif. Nous montrons que la forme et la taille des nanostructures sur la surface du matériau ont des effets sur le spectre de phonons du substrat. Dans le cinquième chapitre, nous montrons qu'à basse température (inférieure à 4 K), la chaleur spécifique des nanofils est équivalente à celle d'un cristal essentiellement bidimensionnel. Encore plus étonnant à l'interface entre les nanofils et le substrat, nous avons mis en évidence une transition entre une transmission élastique spéculaire et une transmission élastique diffuse. Lorsque la température augmente on observe alors une transition entre une diffusion élastique et une diffusion inélastique. L’ensemble de ces résultats laisse entrevoir des perspectives intéressantes pour le contrôle des propriétés thermiques de matériaux massifs par nanostructuration de surface
In this dissertation, we investigate phonon heat transport and phonon interaction with optical elementary excitations in nanostructures. In the first chapter, we present an introduction to the physics of phonons and optical elementary excitations in nanostructured materials. The second chapter provides a detailed description of the samples growth and fabrication procedures and the various characterization techniques used. In the third chapter, we demonstrate that phonons and photons of different momenta can be confined and interact with each other within the same nanostructure. In the fourth chapter, we present experimental evidence on the change of the phonon spectrum and vibrational properties of a bulk material through phonon hybridization mechanisms. We demonstrate that the phonon spectrum of a bulk material can be altered by hybridization between confined phonon modes in nanostructures introduced on the surface of the material and the underlying bulk phonon modes. Shape and size of the nanostructures made on the surface of the substrate have strong effects on the phonon spectrum of the bulk material itself. In the fifth chapter, we demonstrate that at low temperatures (below 4 K) the nanowire specific heat exhibits a clear contribution from an essentially two-dimensional crystal. We also demonstrate that transitions from specular to diffusive elastic transmission and then from diffusive elastic to diffusive inelastic transmission occur at the interface between nanowires and a bulk substrate as temperature increases. Perspectives include the control of bulk material thermal properties via surface nanostructuring
8

France-Lanord, Arthur. "Transport électronique et thermique dans des nanostructures." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS566/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
La miniaturisation continue des composants électroniques rend indispensable la connaissance des mécanismes de transport à l’échelle nanométrique. Alors que les processus simples de conduction dans les matériaux homogènes sont bien assimilés, la compréhension du transport à l’échelle nanométrique dans les systèmes hétérogènes reste à améliorer. Par exemple, le couplage entre courant, résistance et flux de chaleur dans des nanostructures doit être clarifié. Dans ce contexte, le sujet de thèse est centré autour du développement et de l’application de méthodes de calcul avancées pour la prédiction des propriétés de transport électronique et thermique à l’échelle nanométrique. Dans une première partie, nous avons paramétré un modèle de potentiel inter-atomique classique adapté à la description de systèmes multicomposants, afin de modéliser les propriétés structurelles, vibratoires et de transport de chaleur de la silice, ainsi que du silicium. Pour ce faire, une approche d’optimisation automatisée et reproductible a été mise en place. En guise d’exemple, nous avons calculé la dépendance en température de la résistance de Kapitza pour le système silice amorphe - silicium cristallin, ce qui a permis de souligner l’importance d’une description structurelle précise de l’interface. Dans une seconde partie, nous avons étudié la décomposition modale de la conductivité thermique du graphène supporté par un substrat de silice amorphe. Plus précisément, l’influence de l’état de surface (hydroxilation, etc) sur le transport thermique a été quantifiée. Le rôle déterminant des excitations collectives de phonons a été mis au jour. Finalement, dans une dernière partie, les propriétés de transport électronique du graphène supporté par une bi-couche de silice, système récemment observé expérimentalement, ont été étudiées. L’influence d’ondulations dans la couche de graphène ou dans le substrat, souvent présentes dans les échantillons réels et dont l’amplitude et la longueur d’onde peuvent être contrôlées, a été dégagée. Nous avons également modélisé le champ électrique généré par une grille, et déterminé son incidence sur le transport électronique
The perpetual shrinking of microelectronic devices makes it crucial to have a proper understanding of transport mechanisms at the nanoscale. While simple effects are now well understood in homogeneous materials, the understanding of nanoscale transport in heterosystems needs to be improved. For instance, the relationship between current, resistance, and heat flux in nanostructures remains to be clarified. In this context, the subject of the thesis is centered around the development and application of advanced numerical methods used to predict electronic and thermal conductivities of nanomaterials. This manuscript is divided into three parts. We begin with the parameterization of a classical interatomic potential, suitable for the description of multicomponent systems, in order to model the structural, vibrational, and thermal transport properties of both silica and silicon. A well-defined, reproducible, and automated optimization procedure is derived. As an example, we evaluate the temperature dependence of the Kapitza resistance between amorphous silica and crystalline silicon, and highlight the importance of an accurate description of the structure of the interface. Then, we have studied thermal transport in graphene supported on amorphous silica, by evaluating the mode-wise decomposition of thermal conductivity. The influence of hydroxylation on heat transport, as well as the significant role played by collective excitations of phonons, have come to light. Finally, electronic transport properties of graphene supported on quasi-two-dimensional silica, a system recently observed experimentally, have been investigated. The influence on transport properties of ripples in the graphene sheet or in the substrate, which often occur in samples and whose amplitude and wavelength can be controlled, has been evaluated. We have also modeled electrostatic gating, and its impact on electronic transport
9

Hamzeh, Hani. "Résolution de l'équation de transport de Boltzmann pour les phonons et applications." Phd thesis, Université Paris Sud - Paris XI, 2012. http://tel.archives-ouvertes.fr/tel-00778705.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Cette thèse est consacrée à l'étude de la dynamique et du transport des phonons via la résolution de l'équation de transport de Boltzmann (ETB) pour les Phonons. Un 'solveur' Monte Carlo dédié à la résolution de l'ETB des phonons dans l'espace réciproque, prenant en compte tous les processus d'interactions Normaux et Umklapp à trois-phonons, est proposé. Une prise en compte rigoureuse des lois de conservation de l'énergie et de la quantité de mouvement est entreprise. Des relations de dispersion réalistes, intégrant tous les modes de polarisations, sont considérées. Le calcul des taux d'interactions à trois-phonons de tous les processus Normaux et Umklapp est effectué en utilisant l'approche théorique due à Ridley qui ne nécessite qu'un unique paramètre semi-ajustable pour chaque mode de polarisation, nommément : le coefficient de couplage anharmonique représenté par les constantes de Grüneisen. Les taux d'interactions ainsi calculés ne servent pas uniquement à la résolution de l'ETB des phonons, mais ont permis aussi une analyse complète des canaux de relaxation des phonons longitudinaux optiques de centre de zone. Cette analyse a montré que le canal de Vallée-Bogani est négligeable dans le GaAs, et que vraisemblablement les temps de vie des phonons LO de centre de zone dans l'InAs et le GaSb rapportés dans la littérature sont fortement sous-estimés. Pour la première fois à notre connaissance, un couplage de deux solveurs Monte Carlo indépendants l'un dédié aux porteurs de charges (Thèse E. Tea) et l'autre dédié aux phonons, est effectué. Cela permet d'étudier l'effet des phonons chauds sur le transport des porteurs de charges. Cette étude a montré que l'approximation de temps de relaxation surestime souvent l'effet bottleneck des phonons. Le 'solveur' Monte Carlo est étendu pour résoudre l'ETB des phonons dans l'espace réel (en plus de l'espace réciproque), cela a permet d'étudier le transport des phonons et ainsi de la chaleur. La théorie généralisée de Ridley est toujours utilisée avec des particules de simulations qui interagissent les unes avec les autres directement. Les règles de conservation de l'énergie et de la quantité de mouvement sont rigoureusement respectées. L'effet des processus Umklapp sur la quantité de mouvement totale des phonons est fidèlement traduit; tout comme l'effet des interactions sur les directions des phonons, grâce à une procédure prenant en compte les directions vectorielles respectives lors d'une interaction, au lieu, de la distribution aléatoire usuellement utilisée. Les résultats préliminaires montrent la limite de l'équation analytique de conduction de la chaleur.
10

Santamore, Deborah Hannah Cross Michael Clifford. "Quantum transport and dynamics of phonons in mesoscopic systems /." Diss., Pasadena, Calif. : California Institute of Technology, 2003. http://resolver.caltech.edu/CaltechETD:etd-05272003-152136.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Sarrazin, Emmanuelle. "Etude du transport électronique dans un nanofil de silicium." Paris 11, 2009. http://www.theses.fr/2009PA112118.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les nanofils semi-conducteurs sont devenus en quelques années un intense sujet de recherche. Ces structures uni-dimensionnelles sont considérées comme des briques élémentaires pour les nanodispositifs en raison de leurs intéressantes propriétés électroniques, optiques et thermiques. La connaissance des propriétés de transport est essentielle pour déterminer les performances de ces futurs dispositifs à base de nanofils. Ce travail de thèse a pour objectif de modéliser la mobilité des électrons dans un nanofil de silicium. Il s’articule autour de trois points : la structure de bandes, les mécanismes d’interaction et le transport des porteurs. La structure électronique est tout d’abord calculée à partir de la résolution auto-cohérente des équations de Poisson et de Schrödinger. L’approximation de la masse effective a été utilisée et comparée à la méthode des liaisons fortes afin de discuter de sa validité. Puis, les interactions avec les phonons et la rugosité de surface sont décrites à l’aide de la règle d’or de Fermi. Enfin, la vitesse moyenne des électrons et leur mobilité sont calculées à partir de simulations particulaires de type Monte-Carlo permettant de résoudre l’équation de transport de Boltzmann. Cette approche permet de comprendre l’influence du confinement des électrons et des phonons sur les propriétés de transport et d’évaluer l’effet de l’interaction électron-phonon et de la rugosité de surface sur la mobilité. L’étude de l’influence de la section et de la tension de grille montre une réduction de la mobilité avec la diminution de la section et/ou avec l’augmentation de la tension de grille quels que soient les interactions prises en compte
Semiconductor nanowires have become in few years a subject of intense interest. These one-dimensional structures are considered as potential building blocks for nanoscale devices due to their promising electronic, optical and thermal properties, which differ from bulk properties. The knowledge of electron transport properties is essential to determine the performance of devices based on nanowires. This work aims to model the mobility of electrons in silicon nanowire. It is based on three points: electronic structure, scattering mechanisms and transport. A self-consistent Poisson-Schrödinger solver provides the band structure. The comparison between tight-binding method and effective mass approximation allows to discuss on the validity of effective mass approximation for thin nanowires. Then, scattering rates due to phonon scattering and surface roughness scattering are described using Fermi’s golden rule. Finally, both electron velocity and low-field electron mobility are computed with an ensemble Monte-Carlo method, which solves the Boltzmann transport equation. This approach leads to the understanding of the impact of electron and phonon confinement on transport properties and to evaluate the influence of scattering mechanisms on the mobility. The investigation of the impact of cross section size and gate bias shows a reduction of electron mobility with the decrease of cross section size and/or with the increase of gate bias whatever the scattering mechanisms taken into account
12

Eckold, Götz. "Time resolved phonons as a microscopic probe for solid state reactions." Universitätsbibliothek Leipzig, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-186610.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Lee, Sangyeop. "Transport of phonons and electrons in thermoelectric materials and graphene." Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/100136.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2015.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 137-143).
Understanding transport of phonons and electrons plays a critical role in developing energy conversion and information devices. Thermoelectric materials, which directly convert heat to electricity or vice versa, require both extremely low thermal conductivity and high thermoelectric power factor. However, a good understanding of low thermal conductivity is still lacking even for several good thermoelectric materials that have been studied over several decades. For the information devices, graphene has recently drawn much attention for various applications including high speed transistors due to its high electron mobility and high thermal conductivity. However, the graphene's high thermal conductivity has yet to be fully understood. There have been many studies based on diffusive-ballistic phonon transport, but no conclusive explanation for the graphene's high thermal conductivity has been drawn. In this thesis, we investigate the transport of phonons and electrons in thermoelectric materials and graphene using both first principles calculations and experimental characterizations. We start by studying phonon transport in Bi and Bi-Sb alloys using first principles calculations. A notable observation from this calculation is that a strong long-range interaction exists in Bi and Sb along a specific crystallographic direction. We further show that this long-range interaction is also found in other good thermoelectric materials, and is a key to understanding their low thermal conductivity. The long-range interaction is explained with resonant bonding which many good thermoelectric materials commonly share. The particularly strong resonant bonding in group IV-VI materials leads to the low thermal conductivity through the long-range interaction and resulting softening of optical phonons that strongly scatter acoustic phonons. We study electron transport in thermoelectric materials with two-dimensional discontinuities, such as grain boundaries. We set up an experimental system to measure thermo- and galvano-magnetic electron transport coefficients of a Bi₂Te₂.₇Se₀.₃ nanocomposite sample to examine the electron filtering effect by many grain boundaries in the nanocomposite. The experimental results indicate that the nanocomposite sample exhibits the electron filtering effect and it would be possible to increase the thermoelectric power factor by engineering the potential barrier of grain boundaries. While thermoelectric applications require materials with low thermal conductivity, electronic and optoelectronic devices often require high thermal conductivity. Graphene is attractive for these applications because of its unique electrical, optical, and thermal properties. We use first-principles calculations to reveal that the phonon transport in graphene is not diffusive unlike many threedimensional materials, but is hydrodynamic due to graphene's two-dimensional features. The hydrodynamic phonon transport is demonstrated through a drift motion of phonons, phonon Poiseuille flow, and second sound, all of which are not possible in both diffusive and ballistic phonon transport.
by Sangyeop Lee.
Ph. D.
14

Jean, Valentin. "Modélisation du transport de phonons dans les semi-conducteurs nanostructurés." Thesis, Université de Lorraine, 2014. http://www.theses.fr/2014LORR0145/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
La maîtrise des techniques de fabrication de matériaux nanostructurés a fait émerger ces dernières années de nouvelles problématiques relatives aux transferts thermiques à très courtes échelles d'espace et de temps. L'étude thermique s'effectue alors à partir de l'équation de transport de Boltzmann (ETB) pour les phonons qui sont les principaux porteurs de chaleur dans les semi-conducteurs. Ce travail résout l’ETB par une méthode statistique de type Monte Carlo en suivant le déplacement des phonons dans une nanostructure cristalline (de type nanofilm ou nanofil). On s’intéresse en particulier aux structures poreuses homogènes et avec gradient de porosité, ainsi qu’aux nanofils modulés en diamètre qui offrent des perspectives intéressantes en terme de réduction de conductivité
Since the past decades, progresses in nanomaterials engineering raise new questions about heat transport processes at very short time and space scales. Thermal properties of nanoscaled devices are determined from the resolution of the Boltzmann Transport Equation (BTE) for phonons, which are the main heat carriers in semiconductors. In this study, BTE is solved with a numerical tool based on a statistical method (Monte Carlo) which tracks phonons’ motion in two kinds of nanostructures: nanofilms and nanowires. We focus on the effect of homogeneous and heterogeneous porous materials as well as nanowires with varying diameters. All these devices present interesting prospects regarding thermal conductivity reduction
15

Sundaresan, Sasi Sekaran. "ATOMISTIC MODELING OF PHONON BANDSTRUCTURE AND TRANSPORT FOR OPTIMAL THERMAL MANAGEMENT IN NANOSCALE DEVICES." OpenSIUC, 2014. https://opensiuc.lib.siu.edu/dissertations/854.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Monte Carlo based statistical approach to solve Boltzmann Transport Equation (BTE) has become a norm to investigate heat transport in semiconductors at sub-micron regime, owing mainly to its ability to characterize realistically sized device geometries qualitatively. One of the primary issues with this technique is that the approach predominantly uses empirically fitted phonon dispersion relations as input to determine the properties of phonons so as to predict the thermal conductivity of specified material geometry. The empirically fitted dispersion relations assume harmonic approximation thereby failing to account for thermal expansion, interaction of lattice waves, effect of strain on spring stiffness, and accurate phonon-phonon interaction. To circumvent this problem, in this work, a coupled molecular mechanics-Monte Carlo (MM-MC) platform has been developed and used to solve the phonon Boltzmann Transport Equation (BTE) for the calculation of thermal conductivity of several novel and emerging nanostructures. The use of the quasi-anharmonic MM approach (as implemented in the open source NEMO 3-D software toolkit) not only allows one to capture the true atomicity of the underlying lattice but also enables the simulation of realistically-sized structures containing millions of atoms. As compared to the approach using an empirically fitted phonon dispersion relation, here, a 17% increase in the thermal conductivity for a silicon nanowire due to the incorporation of atomistic corrections in the LA (longitudinal acoustic) branch alone has been reported. The atomistically derived thermal conductivity as calculated from the MM-MC framework is then used in the modular design and analysis of (i) a silicon nanowire based thermoelectric cooler (TEC) unit, and (ii) a GaN/InN based nanostructured light emitting device (LED). It is demonstrated that the use of empirically fitted phonon bandstructure parameters overestimates the temperature difference between the hot and the cold sides and the overall cooling efficiency of the system, thereby, demanding the use of the BTE derived thermal conductivity in the calculation of thermal conductivity. In case of the light-emitting device, the microscopically derived material parameters, as compared to their bulk and fitted counterparts, yielded ~3% correction (increase) in optical efficiency. A non-deterministic approach adopted in this work, therefore, provides satisfactory results in what concerns phonons transport in both ballistic and diffusive regimes to understand and/predict the heat transport phenomena in nanostructures.
16

Eckold, Götz. "Time resolved phonons as a microscopic probe for solid state reactions." Diffusion fundamentals 12 (2010) 19, 2010. https://ul.qucosa.de/id/qucosa%3A13871.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

de, Tomás Andrés Carla. "On thermal transport by phonons in bulk and nanostructured semiconductor materials." Doctoral thesis, Universitat Autònoma de Barcelona, 2014. http://hdl.handle.net/10803/285571.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
La presente tesis doctoral versa sobre el transporte de calor llevado a cabo por los fonones en sólidos cristalinos semiconductores. La motivación de este trabajo es doble. En primer lugar, se pretende contribuir a entender mejor cómo funciona el transporte de calor a distintas escalas de tamaño: desde semiconductores con tamaño bulk (del orden de milímetros o mayores) hasta semiconductores nano-estructurados, como por ejemplo nanocables o láminas finas, cuyos tamaños característicos están en la escala nanométrica. La intención es describir dicho transporte de calor en estas escalas en un amplio rango de temperaturas, prestando especial atención a las colisiones entre fonones, pues son la causa intrínseca de la propagación del calor en los sólidos cristalinos semiconductores. En segundo lugar, se pretende mejorar la capacidad de predicción a la hora de describir el comportamiento de la conductividad térmica de los semiconductores más comunes por su implicación en procesos termoeléctricos, como son el silicio, el diamante, el germanio y el bismuto de telurio. Para lograr alcanzar estos objetivos, es necesario formular un nuevo modelo que nos permita superar las dificultades asociadas a los modelos ya existentes, con el objetivo de cumplir dos condiciones muy deseables. Por un lado, obtener una expresión general para la conductividad térmica válida para diferentes materiales, que pueda ser aplicada a muestras de dichos materiales con diferentes composiciones isotópicas, diferentes tamaños (desde la macro hasta la nano-escala) y con diferentes geometrías. Por otro lado, dicha expresión deberá tener el menor número posible de parámetros ajustables para asegurar la fiabilidad del modelo. La potencialidad de dicho modelo radicaría en servir como herramienta a la hora de guiar el diseño de dispositivos termoeléctricos más eficientes. La presente tesis se organiza en 8 capítulos ordenados de la siguiente manera: En el capítulo 1 se contextualiza el tema en el que está enmarcado el presente trabajo de investigación y se presentan los conceptos físicos necesarios para trabajar con el transporte fonónico. En el segundo capítulo se desarrolla la dinámica de la red para los distintos materiales que serán objeto de estudio en el presente trabajo, en particular se aplica el modelo Bond-charge para obtener las relaciones de dispersión y la densidad de estados de los semiconductores del grupo IV (silicio, germanio, diamante y estaño gris) y análogamente se aplica el modelo Rigid-ion sobre el bismuto de telurio para obtener sus relaciones de dispersión y densidad de estados. Los tiempos de relajación apropiados para dichos materiales se discutirán en detalle en el capítulo 3, proponiendo nuevas expresiones empíricas para describir las interacciones fonón-fonón. En el capítulo 4 se introducen y discuten los modelos de conductividad térmica más representativos de la literatura y a continuación se presenta un nuevo modelo para predecir la conductividad térmica: el modelo Kinetic-collective, cuya principal característica consiste en interpretar el transporte de calor en dos regímenes diferentes, el primero de ellos de tipo cinético donde los fonones son tratados como partículas libres y el segundo de tipo colectivo donde todos los fonones que participan en el transporte pierden su individualidad y se comportan como una colectividad de partículas. En el capítulo 5 el modelo Kinetic-collective se aplica a silicio bulk con diferentes composiciones isotópicas, y a varias muestras de silicio nanoestructuradas con diferentes geometrías y tamaños efectivos. Se obtienen predicciones de la conductividad térmica en un amplio intervalo de temperaturas que concuerdan satisfactoriamente con las medidas experimentales y se discuten diversos aspectos novedosos sobre el transporte fonónico. En el capítulo 6 el modelo Kinetic-collective se aplica al resto de materiales componentes del grupo IV de semiconductores y se obtiene una relación teórica que nos permite predecir los valores de los parámetros libres asociados a los tiempos de relajación de dichos materiales y así poder predecir sus conductividades térmicas sin la necesidad de añadir nuevos parámetros. En el capítulo 7 vamos un paso más allá y aplicamos el modelo a bismuto de telurio, obteniendo predicciones de la conductividad térmica para nanocables con diferentes diámetros y discutimos los resultados en vista a posibles aplicaciones termoeléctricas. Finalmente, el capítulo 8 está dedicado a recoger las principales conclusiones de este trabajo de investigación y a indicar posibles líneas futuras de trabajo surgidas a consecuencia de los resultados obtenidos.
The aim of this theoretical work is twofold. First, to contribute to a better understand- ing of phonon heat transport in bulk and nanostructured semiconductors, like thin-films or nanowires, in a wide range of temperatures, paying special attention to phonon-phonon col- lisions. Second, to improve the prediction capability of the thermal conductivity of the most common semiconductors. To achieve this, it becomes necessary the formulation of a new model allowing us to overcome the diculties associated to the existing models, with the aim to fulfill two desirable conditions: to provide a general expression for the thermal conduc- tivity, valid for several materials with di↵erent size-scales and geometries in a wide range of temperatures, and to have the smallest number of free adjustable parameters to assure the reliability of the model. The potentiality of such model would be to serve as a useful tool to design more ecient thermoelectric devices. The fruit of our study is the Kinetic-collective model which is developed in the framework of the Boltzmann transport equation as a natural generalization of the Guyer-Krumhansl model. Since phonon interactions are the source of thermal resistance, they deserve a special discussion in any thermal conductivity study. Precisely, the keystone in our work is the treatment of phonon-phonon collisions regarding their di↵erent nature. The prediction capability of the model need to be tested on several materials. In particular, we study five materials with thermoelectric interest. In first place, silicon, because it is an ideal test material due to the considerable amount of experimental data available in the literature, and because of its inherent scientific and technological importance. Secondly, we extend our study to other materials with the same lattice structure as silicon, that is the family of group IV element semiconductors (germanium, diamond, silicon and gray-tin), which also have been object of intense study, specially germanium, due to the recent and fast development of SiGe alloys and superlattices. Finally, we finish our study with a more complicated material regarding its lattice structure, bismuth telluride, which is known to be a very ecient thermoelectric material due to its high figure of merit. The Thesis is arranged in eight Chapters. The lay out is as follows: Chapter 1 con- textualizes the topic of the work and briefly introduces the basic physics related to phonon transport. In Chapter 2 the fundamental quantity necessary for considering any thermal property, the phonon dispersion relations, have been obtained for the materials under study. For this purpose, two lattice dynamics models are used: the Bond-charge model for group-IV semiconductors (silicon, germanium, diamond and gray-tin), and the Rigid-ion model for bismuth telluride (Bi2Te3). Along with their corresponding phonon dispersion relations, phonon density of states and specific heat results are also presented. The phonon relaxation times that suit these materials are discussed in Chapter 3, where new expressions to account for the phonon-phonon collisions are also presented. In the first part of Chapter 4 the most represen- tative thermal conductivity models to date are introduced and discussed, in the second part, a new model to predict the thermal conductivity, the Kinetic-collective model, is presented and its conceptual di↵erences and advantages with respect to previous similar models are discussed. In Chapter 5 the Kinetic-collective model is applied to silicon bulk samples with di↵erent isotopic composition and several nanostructured samples with di↵erent geometries (thin-films and nanowires) obtaining predictions for their thermal conductivity in a wide in- terval of temperatures. Some novel aspects of phonon transport arising from these results are discussed. In Chapter 6 the Kinetic-collective model is applied to the other group-IV materials using theoretical expressions to predict their relaxation times and, eventually, their thermal conductivity. Results for several samples with di↵erent isotopic compositions in a wide range of temperature are presented and discussed. In Chapter 7 the Kinetic-collective model is applied to Bi2Te3, providing thermal conductivity predictions for nanowires with several diameter values, and the results are discussed in view of possible applications in ther- moelectricity. Finally, in Chapter 8 the main conclusions of this Thesis are summarized and possible future lines of work stemming from its several results are discussed.
18

Latour, Benoit. "Contribution à l'étude du transport d'énergie dans la matière condensée : phonons, électrons et photons." Thesis, Université Paris-Saclay (ComUE), 2015. http://www.theses.fr/2015SACLC014/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Nous avons étudié durant cette thèse les transferts de chaleur mettant en jeu différents types de porteur d'énergie - phonons, électrons et photons - dans des matériaux nanostructurés. A ces échelles, les lois régissant les phénomènes physiques sont différentes des lois macroscopiques. Il est donc nécessaire de développer de nouveaux outils pour étudier ces nouveaux mécanismes. Dans une première partie, nous nous sommes intéressés aux propriétés ondulatoires des phonons thermiques. Nous avons ainsi développé une théorie pour quantifier leur cohérence temporelle et spatiale. Dans une seconde partie, nous nous sommes tournés vers la thermo-plasmonique, c'est-à-dire vers le chauffage par absorption de lumière d'un métal et la redistribution de l'énergie au réseau cristallin par interactions électron/phonon. Dans une dernière partie, nous avons porté notre étude sur la possibilité d'incluer les effets quantiques dans la Dynamique Moléculaire, ouvrant ainsi l'accès aux propriétés thermiques de nanomatériaux aux basses températures
Energy transport at the nanoscale involves different types of carriers - phonon, electron and photon. Their spatial confinement in nanostructured materials implies the invalidation of the macroscopic laws of heat transfer. Therefore, new mechanisms arise and lead to novel thermal properties. This manuscript is devoted to the study of phonon transport in nanomaterials as well as the dissipation processes involving photon/electron and electron/phonon interactions. It is divided in three independent parts. We have first investigated the wave properties of thermal phonons. We have developed a theory to quantitatively assess the coherence of these carriers. Then, we have adressed the coupling between plasmonics and phonon transport in metallic materials. The objective is to quantify how the heat generated by the absorption of an electromagnetic energy will impact the surrounding medium. In the last part, we have included the Bose-Einstein quantum statistics in Molecular Dynamics simulations in order to compute thermal properties of nanomaterials at low temperatures
19

Han, Haoxue. "Effect of phonon interference on the thermal conductivity and heat carriers." Thesis, Université Paris-Saclay (ComUE), 2015. http://www.theses.fr/2015SACLC002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
L'interférence des ondes de phonon peut modifier le spectre de phonon et ainsi la vitesse de groupe et la population de phonon. Ces interférences permettent de manipuler le flux d'énergie thermique en contrôlant la conductivité thermique et en utilisant les miroirs pour réfléchir les phonons. L'application technologique d'interférence de phonons dans les matériaux, par exemple la conversion renforcée thermoélectrique d'énergie et l'isolation améliorée thermique, a propulsé l'exploration des matériaux avec les interférences de phonons plus efficace.Dans un premier temps, nous proposons une nouvelle approche pour démontrer que la chaleur dans les solides peut être manipuler comme la lumière. Nous contrôlons avec précision le flux thermique par un métamatériau à l'échelle atomique qui comporte des défauts dans le réseau cristallin. L'interférence destructive entre les ondes de chaleur en suivant différents chemins mène à la réflexion totale de phonon et à une réduction remarquable de la conductance thermique. En exploitant cette interférence, nous modélisons une possibilité contre-intuitif de transport thermique: plus de chaleur est bloquée par l'ouverture des chaînes additionnelles de phonon. Le métamateriau thermique est un bon candidat de miroir atomique thermique de haute finesse. Nous renforçons la compréhension sur le contrôle cohérente des phonons qui peuvent être appliquée à la fois au son et à la propagation de chaleur.Dans un deuxième temps, nous introduisons un nano condensateur ultra-compacte de phonons cohérents formé par les miroirs d'interférence de haute finesse basée sur le métamatériau semi-conducteur à l'échelle atomique.Nos simulations de dynamique moléculaire montrent que le nano condensateur stocke les ondes monochromatiques térahertz, qui peuvent être utilisés pour un laser de phonon - l'émission de phonons cohérents. Un laser de phonon soit d'une ou de deux couleurs peut être réalisé en fonction de la géométrie du nano dispositif. Le stockage des phonons cohérents peut être réalisé par le refroidissement de la nano condensateur initialement thermalisé à la température ambiante ou par la technique pump-sonde. Le rétrécissement de la largeur de raie et de le nombre relatif de participation de phonon confirme un confinement dans la nanocavité par une quantité extrêmement faible de défauts de résonance. L'émission des faisceaux acoustiques cohérents en térahertz de la nano condensateur peuvent être réalisés en appliquant une contrainte réversible accordable qui décale les fréquences d'antirésonance.Enfin, nous étudions l'effet d'interférences destructrice de phonon à deux-chemin induite par les forces interatomiques de longue portée sur la conductance thermique et la conductivité d'un alliage silicium-germanium par des calculs atomiques. La conductance thermique à travers un plan atomique de germanium dans le réseau de silicium est sensiblement réduit par l'interférence destructrice du chemin de phonon entre les voisins les plus proches avec l'interaction directe contournant les atomes de défauts. Une réduction quintuple dans la conductivité thermique dans un alliage SiGe à la température ambiante a été observée en introduisant les forces de longue portée. Nous démontrons le rôle prédominant des interférences de phonons harmoniques régissant la conductivité thermique de matières solides en supprimant la diffusion inélastique de phonon à basse température. De telles interférences fournissent un mécanisme résistif harmonique pour contrôler la conduction de chaleur à travers les comportements cohérents de phonons dans les solides
Wave interference of phonons can modify the phonon spectrum and thereby the group velocity and phonon population. These wave interferences allow the flow of thermal energy to be manipulated by controlling the materials lattice thermal conductivity and using thermal mirrors to reflect thermal phonons.The technological application of the phonon interference in materials, such as enhanced thermoelectric energy conversion and improved thermal insulation,has thrusted the exploration for highly efficient wave interference materials. First, we provide a new approach to demonstrate that heat in solids can be manipulated like light. We precisely control the heat flow by the atomic-scale phononic metamaterial, which contains deliberate flaws in the crystalline atomic lattice,channeling the heat through different phonon paths. Destructive interference between heat waves following different paths leads to the total reflection of the heat current and thus to the remarkable reduction in the material ability to conduct heat. By exploiting this destructive phonon interference, we model a very counter-intuitive possibility of thermal transport: more heat flow is blocked by the opening of the additional phonon channels. Our thermal metamaterial is a good candidate for high-fi nesse atomic-scale heat mirrors. We provide an important further insight into the coherent control of phonons which can be applied both to sound and heat propagation.Secondly, we introduce a novel ultra-compact nanocapacitor of coherent phonons formed by high-finesse interference mirrors based on atomic-scale semiconducto rmetamaterials. Our molecular dynamics simulations show that the nanocapacitor stores monochromatic terahertz lattice waves, which can be used for phonon lasing - the emission of coherent phonons. Either one- or two-color phonon lasing can be realized depending on the geometry of the nanodevice. The two-color regime of the interference cavity originates from different incidence-angle dependence of phonon wave packet transmission for two wave polarizations at the respective antiresonances. Coherent phonon storage can be achieved by cooling the nanocapacitor initially thermalized at room temperature or by the pump-probe technique. The line width narrowing and the computed relative phonon participation number confirm strong phonon confinement in the interference cavity by an extremely small amount of resonance defects. The emission of coherent terahertz acoustic beams from the nanocapacitor can be realized by applying tunable reversible stress which shifts the antiresonance frequencies.Finally, we investigate the role of two-path destructive phonon interference induced by long-range interatomic forces on the thermal conductance and conductivityof a silicon-germanium alloy by atomistic calculations. The thermal conductance across a germanium atomic plane in the silicon lattice is substantially reduced by the destructive interference of the nearest-neighbour phononpath with a direct path bypassing the defect atoms. Such an interference causes a fivefold reduction in the lattice thermal conductivity in a SiGe alloy at room temperature. We demonstrate the predominant role of harmonic phonon interferences in governing the thermal conductivity of solids by suppressing the inelastic scattering processes at low temperature. Such interferences provide a harmonic resistive mechanism to explain and control heat conduction through the coherent behaviours of phonons in solids
20

Moussavou, Manel. "Modélisation du transport quantique de transistors double-grille : influence de la contrainte, du matériau et de la diffusion par les phonons." Thesis, Aix-Marseille, 2017. http://www.theses.fr/2017AIXM0353.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Le transistor est la brique élémentaire des circuits intégrés présents dans tous les appareils électroniques. Années après années l’industrie de la microélectronique a amélioré les performances des circuits intégrés (rapidité, consommation énergétique) en réduisant les dimensions du transistor. De nos jours, en plus de la réduction de la taille du transistor d’autres techniques permettent de soutenir cette croissance: ce sont les « booster » technologiques. Les contraintes mécaniques ou encore le remplacement du Silicium par d’autres matériaux tels que germanium (Ge) et les matériaux semi-conducteurs de type III-V sont des exemples de booster technologiques. Grâce à la modélisation numérique, cette thèse propose d’étudier les effets de booster technologiques sur les performances électriques de la future génération de transistors
The transistor is the elementary brick of Integrated circuits found in all electronic devices. Years after years the microelectronic industry has enhanced the performances of integrated circuits (speed and energy consumption) by downscaling the transistor. Nowadays besides the transistor’s downscaling, other techniques have been considered to maintain this growth: they are called technological boosters. Mechanical strain or new material, such as germanium (Ge) and III-V semiconductors, to replace Silicon are example of technological boosters. By the means of numerical quantum simulations and modeling, this these work propose a study of the effect of technological boosters on the electric performances of the next generation of transistors
21

Lee, Youseung. "Traitement quantique original des interactions inélastiques pour la modélisation atomistique du transport dans les nano-structures tri-dimensionnelles." Thesis, Aix-Marseille, 2017. http://www.theses.fr/2017AIXM0345.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Le formalisme des fonctions de Green hors-équilibre (NEGF pour « Non-equilibrium Green’s function) a suscité au cours des dernières décennies un engouement fort pour étudier les propriétés du transport quantique des nanostructures et des nano-dispositifs dans lesquels les interactions inélastiques, comme la diffusion des électrons-phonons, jouent un rôle significatif. L'incorporation d'interactions inélastiques dans le cadre du NEGF s’effectue généralement dans l'approximation auto-cohérente de Born (SCBA pour « Self-consistent Born approximation) qui représente une approche itérative plus exigeante en ressources numériques. Nous proposons dans ce travail de thèse une méthode efficace alternative dite LOA pour (« Lowest Order Approximation. Son principal avantage est de réduire considérablement le temps de calcul et de décrire physiquement la diffusion électron-phonon. Cette approche devrait considérablement étendre l'accessibilité de l'utilisation de codes atomistiques de transport quantique pour étudier des systèmes 3D réalistes sans faire à des ressources numériques importantes
Non-equilibrium Green’s function (NEGF) formalism during recent decades has attracted numerous interests for studying quantum transport properties of nanostructures and nano-devices in which inelastic interactions like electron-phonon scattering have a significant impact. Incorporation of inelastic interactions in NEGF framework is usually performed within the self-consistent Born approximation (SCBA) which induces a numerically demanding iterative scheme. As an alternative technique, we propose an efficient method, the so-called Lowest Order Approximation (LOA) coupled with the Pade approximants. Its main advantage is to significantly reduce the computational time, and to describe the electron-phonon scattering physically. This approach should then considerably extend the accessibility of using atomistic quantum transport codes to study three-dimensional (3D) realistic systems without requiring numerous numerical resources
22

Larroque, Jérôme. "Étude théorique de l'anisotropie du transport thermique dans des nanostructures à base de silicium et de germanium." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS001/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Le transport thermique dans les nanostructures semi-conductrices est un sujet de recherche très actuel, couvrant de larges domaines applicatifs dont l’auto-échauffement des composants nanoélectroniques et la conversion d’énergie par effet thermoélectrique. La modélisation du transport thermique à l’échelle nanométrique est complexe car la longueur des dispositifs devient du même ordre de grandeur que le libre parcours moyen des porteurs de chaleurs (phonons). L’hypothèse de pseudo-équilibre local n’est plus pertinente, de plus des effets de confinements peuvent aussi apparaitre. Il faut donc développer des outils de modélisation spécifiques.Pour prendre en compte les effets de confinement, j'ai calculé les relations de dispersions des phonons dans les nanostructures. Pour cela, j’ai mis en œuvre une méthode atomistique semi-empirique nommée ABCM (« Adiabadic Bond Charge Model »). J’ai pu ainsi calculer, dans l'ensemble de la zone de Brillouin (« Full Band »), la dispersion des phonons dans du silicium et du germanium en phase Zinc-Blende et aussi en phase Wurtzite.En outre, afin d’évaluer la résistance thermique d’interface, une extension originale du modèle « Acoustic Mismatch Model », entièrement « full-band », a été développée. Grâce à l’approche « Full-Band » la dépendance à l’orientation relative des cristaux de chaque côté de l’interface a été étudiée. Les effets d’orientations sur la transmission ont aussi été étudiés dans des nanofils polyphasés nouvellement synthétisés dans le laboratoire.En parallèle, pour étudier le transport des phonons, j'ai développé un simulateur Monte Carlo particulaire qui utilise les dispersions « Full-Band » calculées en ABCM. Ce type de simulateur est très polyvalent et permet de décrire l’ensemble des régimes de transports (du balistique au diffusif). De plus, comme il utilise une dispersion « Full-Band » les effets de confinement peuvent aussi être inclus. Ce simulateur m’a permis d’étudier les effets d’un changement d’orientation des plans cristallographiques du cristal sur la conductivité thermiques dans des nanofils de silicium et de germanium. J’ai ainsi évalué l’anisotropie du flux thermique dans ces nanostructures
The heat transfer in semiconducting nanostructures is a current research topic, covering a wide range of applications including self-heating in nanoelectronic devices and energy conversion via thermoelectric effect. The modeling of heat transport at the nanometer scale is complex as the device length is in the same order of magnitude than the mean free path of heat carriers (phonons). The local pseudo-equilibrium assumption is no longer relevant, moreover confinement effects can also appear. Therefore development of specific modeling tools is highly desirable.To take into account the confinement effects, I have calculated the phonon dispersion relations in nanostructures. For this, I have implemented an atomistic semi-empirical method called ABCM (Adiabadic Bond Charge Model). I have calculated, in the entire Brillouin zone (Full Band approach), the dispersion relationship of phonons in both Silicon and Germanium for both Zinc-Blende and Wurtzite phases.In addition, to evaluate the thermal interface resistance, an original extension of the Acoustic Mismatch Model, completely full band, was developed. Within this approach, the dependence on the relative orientation of crystals has been studied in polytype nanowires that were recently synthesized in the laboratory.In parallel, to study the transport of phonons, I developed a particle Monte Carlo simulator that uses Full-Band dispersions calculated via ABCM. This kind of simulator is very versatile and can describe all transport regimes (from ballistic to diffusive one). Moreover, as it uses a "Full-Band" dispersion confinement effects can also be included. This simulator allowed me to study the effects of a change in orientation of the crystallographic planes on the thermal conductivity in both silicon and germanium nanowires. I have thus evaluated the anisotropy of the heat fluxes in these nanostructures
23

Sohier, Thibault. "Electrons et phonons dans le graphène : couplage électron-phonon, écrantage et transport dans une configuration type transistor à effet de champ." Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066393/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Comprendre le transport électronique dans les cristaux bidimensionnels est un enjeu conceptuel majeur pour la nanoélectornique de demain. Dans cette thèse, on dévelloppe des méthodes ab initio pour étudier l'interaction électron-phonon, l'écrantage et le transport dans le graphène. Pour surpasser les limites des méthodes ab initio en ondes planes, à l'origine destinées aux matériaux périodiques en trois dimensions, on tronque l'interaction coulombienne dans la troisième dimension, isolant ainsi le système bidimensionnel de ses images périodiques. Ceci est réalisé au sein de la théorie de la fonctionnelle de la densité en perturbation, afin de calculer la réponse de la densité de charge et le spectre des phonons dans un cadre bidimensionnel. On utilise ces méthodes pour obtenir un modèle quantitatif du couplage électron-phonon dans le graphène pour une configuration de type transistor à effet de champ. Le couplage aux phonons acoustiques est dominé par le champ de jauge non-écranté, que nous calculons en incluant l'effet des interactions électron-électron au niveau GW. Nos simulations des propriétés d'écrantage statiques du graphene valident les modèles analytiques et montrent que le potentiel de déformation est fortement écranté, de sorte que sa contribution à la diffusion des électrons par les phonons acoustiques est négligeable. On montre également que le couplage avec les phonons hors-plan est faible mais fini. On obtient la contribution de la diffusion par les phonons à la résistivité en résolvant l'équation de Boltzmann pour le transport. En dessous de la température ambiante, nos résultats confirment le rôle des phonons acoustiques et une augmentation de 15% du paramètre de jauge it ab initio permet un excellent accord avec l'expérience. Au dessus de la température ambiante, on dénote l'importance des phonons optiques intrinsèques
Understanding the transport properties of two-dimensional crystals doped by field effect is a conceptual milestone for tomorrow's nanoelectronics. In this thesis we develop first-principles methods to investigate electron-phonon interactions, screening and phonon-limited transport in graphene. To overcome the limitations of existing plane-wave ab initio packages, originally devised for three-dimensional periodic solids, we truncate the Coulomb interaction in the third direction and isolate the 2D system from its periodic images. This is implemented in density-functional perturbation theory to calculate charge density responses and phonon spectra in a two-dimensional framework. We use those methods to develop a quantitative model of electron-phonon coupling for graphene in the field effect transistor configuration. We find that the coupling of electrons to acoustic phonons is dominated by the unscreened gauge field, which we compute with full inclusion of electron-electron interactions at the GW level. Our simulations of the static screening properties of graphene validate analytical models and reveal that the deformation potential is strongly screened, such that its contribution to acoustic phonon scattering is negligible. We find a small but finite linear coupling with out-of-plane phonons. By solving the Boltzmann transport equation we obtain the phonon-limited resistivity. Below room temperature, our results confirm the role of acoustic phonons and a 15% increase of the ab initio gauge field parameter leads to an excellent quantitative agreement with experiment. Above room-temperature, we point to the importance of the coupling with intrinsic optical phonons
24

Saci, Abdelhak. "Transport thermique dans les milieux nano-structurés (GaAs)n / (AlAs)n." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2011. http://tel.archives-ouvertes.fr/tel-00825305.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
GaAs et AlAs sont deux bons conducteurs de la chaleur. Or, le matériau artificiel obtenu par empilement de couches nanométriques de ces deux matériaux est un mauvais conducteur. 1 Cet effet remarquable de la nanostructuration est encore mal compris mais deux ingrédients semblent devoir être considérés : 1) la modification profonde des courbes de dispersion des phonons (effet "intrinsèque"), 2) la diffusion des phonons par les défauts localisés aux interfaces (effet "non-intrinsèque"). Il est très difficile de quantifier l'importance relative de ces deux effets. Toutefois, les théories basées uniquement sur les effets intrinsèques ne rendent pas compte de la totalité de la réduction de conductivité observée expérimentalement. Ainsi, le point de vue généralement adopté à ce jour associe le mécanisme dominant à la présence de défauts aux interfaces. Le but de cette thèse est de mieux comprendre les mécanismes de conduction thermique dans les super-réseaux. Pour celà, nous avons étudié expérimentalement l'importance relative des deux effets, intrinsèque et non-intrinsèque, en comparant les propriétés de deux familles d'échantillons, la première présentant des interfaces quasi-parfaites, la seconde présentant des interfaces dégradées. Nous nous sommes intéressés aux super-réseaux (GaAs)n/(AlAs)n. La croissance de ces matériaux est en effet bien maîtrisée et l'accord de maille quasi-parfait entre GaAs et AlAs permet l'élaboration de super-réseaux présentant des interfaces très abruptes. On contrôle alors la qualité des interfaces en ajustant les conditions de croissance. Au delà de l'intérêt fondamental, les études sur les super-réseaux peuvent être utiles à des applications telles que les dispositifs thermoélectriques ou les lasers à semi-conducteurs. Un certain nombre d'études ont montré qu'un super-réseau pouvait avoir une efficacité thermoélec- trique supérieure à celle d'un matériau massif. Or, l'efficacité d'un matériau thermoélectrique augmente lorsque sa conductivité thermique diminue. Il serait alors avantageux de diminuer la conductivité thermique des super-réseaux thermoélectriques. Par contre, les problèmes d'évacuation de chaleur rencontrés dans les lasers utilisant des super-réseaux (puits quantiques) montrent qu'il serait avantageux d'augmenter la conductivité thermique.
25

Moussavou, Manel. "Modélisation du transport quantique de transistors double-grille : influence de la contrainte, du matériau et de la diffusion par les phonons." Electronic Thesis or Diss., Aix-Marseille, 2017. http://www.theses.fr/2017AIXM0353.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Le transistor est la brique élémentaire des circuits intégrés présents dans tous les appareils électroniques. Années après années l’industrie de la microélectronique a amélioré les performances des circuits intégrés (rapidité, consommation énergétique) en réduisant les dimensions du transistor. De nos jours, en plus de la réduction de la taille du transistor d’autres techniques permettent de soutenir cette croissance: ce sont les « booster » technologiques. Les contraintes mécaniques ou encore le remplacement du Silicium par d’autres matériaux tels que germanium (Ge) et les matériaux semi-conducteurs de type III-V sont des exemples de booster technologiques. Grâce à la modélisation numérique, cette thèse propose d’étudier les effets de booster technologiques sur les performances électriques de la future génération de transistors
The transistor is the elementary brick of Integrated circuits found in all electronic devices. Years after years the microelectronic industry has enhanced the performances of integrated circuits (speed and energy consumption) by downscaling the transistor. Nowadays besides the transistor’s downscaling, other techniques have been considered to maintain this growth: they are called technological boosters. Mechanical strain or new material, such as germanium (Ge) and III-V semiconductors, to replace Silicon are example of technological boosters. By the means of numerical quantum simulations and modeling, this these work propose a study of the effect of technological boosters on the electric performances of the next generation of transistors
26

Ramière, Aymeric. "Impact des rugosités sur le transport des phonons aux surfaces et interfaces à très basses températures." Thesis, Paris 11, 2014. http://www.theses.fr/2014PA112351/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
L'objectif de cette thèse est de caractériser la résistance thermique de contact au niveau de deux interfaces bien distinctes. La première est une interface physique entre le Silicium(111) et l'Hélium-4 superfluide. La résistance thermique de contact est alors mesurée expérimentalement pour des températures allant 0.3K à 2.0K et en variant la pression depuis la pression de vapeur saturante jusqu'à la pression de solidification de l'Hélium-4 (i.e. 25bars). L'analyse des résultats expérimentaux par le modèle d'Adamenko et Fuks montre la prédominance de la nano-rugosité de surface dans la transmission de la chaleur à l'interface entre ces deux matériaux. Lors de la solidification de l'Hélium-4, une transition du premier ordre dans la résistance thermique est mise en évidence. La deuxième interface étudiée est une forte constriction créée par une jonction de taille micrométrique entre deux membranes suspendues. Sans discontinuité de matériaux, les simulations numériques Monte-Carlo montrent la présence d'une résistance thermique de contact entre la membrane et l'entrée de la jonction dans le régime de diffusion des phonons les parois du système. Les simulations permettent alors d'explorer les effets des dimensions de la jonction ainsi que de la rugosité de surface des micro-structures bidimensionnelles et tridimensionnelles
This thesis aims at characterizing the thermal contact resistance at two interfaces of different nature. The first is a physical interface between Silicon(111) and superfluid Helium-4. The thermal contact resistance is evaluated experimentally for temperatures between 0.3K and 2.0K while varying pressure from the saturated vapor pressure to the Helium-4 solidification pressure (i.e. 25bars). Experimental results, analysed with Adamenko and Fuks model, show that nanoscale surface roughness governs heat transmission at this interface. Furthermore, a first order transition in the thermal contact resistance is revealed due to Helium-4 solidification. The second studied interface is an abrupt constriction created by a micro-junction between two suspended membranes. Even though there is no material discontinuity, Monte-Carlo numerical simulations show the existence of a thermal contact resistance between the membrane and the entrance of the junction. Using simulations we explore the effects of geometry and nanoscale surface roughness in bidimensional and tridimensional micro-structure
27

Lee, Youseung. "Traitement quantique original des interactions inélastiques pour la modélisation atomistique du transport dans les nano-structures tri-dimensionnelles." Electronic Thesis or Diss., Aix-Marseille, 2017. http://www.theses.fr/2017AIXM0345.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Le formalisme des fonctions de Green hors-équilibre (NEGF pour « Non-equilibrium Green’s function) a suscité au cours des dernières décennies un engouement fort pour étudier les propriétés du transport quantique des nanostructures et des nano-dispositifs dans lesquels les interactions inélastiques, comme la diffusion des électrons-phonons, jouent un rôle significatif. L'incorporation d'interactions inélastiques dans le cadre du NEGF s’effectue généralement dans l'approximation auto-cohérente de Born (SCBA pour « Self-consistent Born approximation) qui représente une approche itérative plus exigeante en ressources numériques. Nous proposons dans ce travail de thèse une méthode efficace alternative dite LOA pour (« Lowest Order Approximation. Son principal avantage est de réduire considérablement le temps de calcul et de décrire physiquement la diffusion électron-phonon. Cette approche devrait considérablement étendre l'accessibilité de l'utilisation de codes atomistiques de transport quantique pour étudier des systèmes 3D réalistes sans faire à des ressources numériques importantes
Non-equilibrium Green’s function (NEGF) formalism during recent decades has attracted numerous interests for studying quantum transport properties of nanostructures and nano-devices in which inelastic interactions like electron-phonon scattering have a significant impact. Incorporation of inelastic interactions in NEGF framework is usually performed within the self-consistent Born approximation (SCBA) which induces a numerically demanding iterative scheme. As an alternative technique, we propose an efficient method, the so-called Lowest Order Approximation (LOA) coupled with the Pade approximants. Its main advantage is to significantly reduce the computational time, and to describe the electron-phonon scattering physically. This approach should then considerably extend the accessibility of using atomistic quantum transport codes to study three-dimensional (3D) realistic systems without requiring numerous numerical resources
28

Goldie, David John. "Quasiparticle and phonon transport in superconducting indium and quasiparticle trapping." Thesis, University of Oxford, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.300128.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Alkurdi, Ali. "Transport Thermique aux Interfaces : Angle Critique des Phonons, Transfert à Travers un Gap; Transfert Autour d'une Nanoparticule Colloïdale Cœur-Coquille." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSE1197.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Cette thèse s'inscrit dans le domaine de la nanothermique, c'est à dire, l'étude des transferts de chaleur à l'échelle du nanomètre, pour lesquels la loi de Fourier n'est plus valide. A cette échelle, l'interface domine le transport thermique par sa résistance au flux d'énergie thermique. Cetterésistance se manifeste par une discontinuité de la température aux interfaces. Il est important de pouvoir la prédire afin de contrôler et aménager les flux thermiques dans les application en microélectroniques où la taille des transistors modernes devient nanomètrique. Le but de cette thèse est d'une part, d'étudier la transmission angulaire des phonons et prédire la résistance de Kapitza aux interfaces entre solides, de quantifier le transfert d'énergie assuré par les phonons au travers d'un gap de vide nanométrique, et d'autre part d'étudier le transfert thermique dans un système nanoparticule cœur-coquille immergé dans l'eau. Nous avons développé une nouvelle méthode de dynamique de réseau couplée à l'utilisation de constantes de force issus des calculs ab-initio. Cette méthode permet d'obtenir la transmission des phonons entre deux solides, en fonction de leur fréquence et vecteur d'onde, en tenant comptede la dispersion des phonons en volume dans les deux milieux. Nous avons également appliqué la méthode pour décrire le transfert thermique à travers un gap de vide entre deux solides. Enfin, nous nous sommes intéressés au transfert thermique autour d'une nanoparticule (NP) immergée dans l'eau et chauffée par un faisceau laser. Nous avons comparé l'efficacité de chauffage des NPs homogènes d'or à celles de type cœur-coquille or-silice
This thesis is devoted to the study of interfacial thermal transport at the nanoscale where Fourier’s law is not valid. This is because, at this scale, phonon mean free path becomes smaller to the characteristic length of the system, thus the heat transfer is no longer diffusive but rather ballistic. As a consequence, the thermal boundary resistance (TBR) becomes a determinant factor in heat transfer. The goal of this thesis is, firstly, to study phonon transmission and predict the thermal boundary conductance at interface between two solids. To this end, we have developed a new approach, which combines lattice dynamics calculations and inputs from ab initio, and we have applied our LD model to two types of solid structures: the face-centered cubic (FCC) crystal solid and the diamond-like crystal solid.Secondly, we aim to quantify the phononic contribution in heat transfer across a nanometric vacuum gap that separates two solids. We have used this ab initio LD model to predict the contribution of phonons in the heat transfer across a vacuum gap in two systems: the Au/vacuum-gap/Au and the Si/vacuum-gap/Si. Our results indicate that phonons do contribute significantly to heat transfer across a nanometric/subnanometric vacuum gap. Finally, we have investigated heat transfer in a system made of a core-shell nanoparticle (NP) immersed in water and heated by a laser pulse. We have used the four temperatures model, we have solved numerically the heat transfer equations in the system, taking into account the thermal boundary resistance (TBR) and the interfacial electron-phonon coupling
30

Terris, Damian Joulain Karl Lemonnier Denis. "Transfert de chaleur à échelles de temps et d'espace ultra-courtes simulation numérique pour des nanofils et nanofilms de semiconducteur /." Poitiers : I-Médias, 2008. http://08.edel.univ-poitiers.fr/theses/index.php?id=1924.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Seijas, Bellido Juan Antonio. "Computational studies of thermal transport in functional oxides." Doctoral thesis, Universitat Autònoma de Barcelona, 2019. http://hdl.handle.net/10803/669787.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Esta Tesis recoge los trabajos computacionales que hemos realizado en el campo de la física de la materia condensada, enfocados en las propiedades de transporte térmico del Titanato de Plomo (PbTiO3) y el Óxido de Zinc (ZnO), ambos materiales representativos de muchos otros óxidos funcionales aislantes. El primero ha sido modelado usando un potencial de segundos principios, esto es, un potencial parametrizado mediante cálculos de primeros principios, que captura algunos efectos cuánticos que pueden ser relevantes en el material. Hemos modelado el segundo usando el potencial de Buckingham, una expresión analítica simple que parece describir el comportamiento del ZnO de forma bastante aproximada a los experimentos.
This Thesis collects the computational works we have done in the field of condensed matter physics, focused on the thermal transport properties of the Lead Titanate (PbTiO3) and the Zinc Oxide (ZnO), both representative materials of many other insulating functional oxides. The first has been modeled using a second-principles potential, that is, a potential parameterized from first-principles calculations, which captures some quantum effects that can be relevant in the material. We have modeled the second one using the Buckingham's potential, a simple analytical expression that seems to describe the behavior of ZnO in a fairly approximate agreement with experiments.
32

Chapelon, Olivier. "Transport en régime de porteurs chauds dans le silicium de type n." Montpellier 2, 1993. http://www.theses.fr/1993MON20066.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Il a ete mis au point un programme permettant de calculer les parametres de transport par resolution de l'equation de boltzmann dans le si-n. Une etude de l'influence de la degenerescence a montre que celle-ci jouait un role negligeable pour les dopages utilises au cours de cette etude. L'introduction de la generation recombinaison dans le programme a permis de calculer l'evolution de la fraction ionisee en regime de porteurs chauds et de mettre en evidence que le regime transitoire est fortement modifie. Dans une derniere partie, l'equation de boltzmann a ete resolue en tenant compte d'une dimension dans l'espace reel, ce qui permet d'etudier, de maniere precise, l'etalement d'un paquet de porteurs et d'en deduire le coefficient de diffusion. Les comparaisons avec l'experience ont permis de valider les differentes parties de ce programme
33

Andrea, Luc. "Modélisation du transport thermique dans des matériaux thermoélectriques." Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066122/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les matériaux thermoélectriques permettent de convertir de l'énergie thermique en énergie électrique. Leur rendement de conversion trop faible limite cependant leur utilisation à grande échelle. Plusieurs voies d'optimisation sont utilisés afin d'augmenter les rendements de conversion en diminuant la conductivité thermique. Dans cette thèse, nous modélisons les propriétés de transport thermique des matériaux half-Heusler parfaits et dopés qui présentent des propriétés thermoélectriques intéressantes. La méthode repose sur la théorie de la fonctionnelle de la densité pour calculer les propriétés harmoniques et anharmoniques des composés parfaits et déterminer les temps de vie des phonons. Ensuite, ces derniers sont utilisés pour écrire une équation de transport de Boltzmann pour la densité de phonons dont la résolution donne accès à la conductivité thermique. L'inclusion de défauts ponctuels a pour objectif de réduire la conductivité thermique par diffusion des phonons. Pour modéliser leur effet dans un régime de forte concentration une méthode champ moyen a été développée et appliquée aux half-Heusler. Pour traiter le régime dilué, une méthode faisant appel aux fonctions de Green a été utilisée. Ces deux méthodes montrent que des réductions significatives de conductivité thermique des composés NiTiSn, NiZrSn et NiHfSn sont déjà obtenues pour des concentrations de 10 % en dopants
Thermoelectric materials provide a way to convert thermal energy into electrical energy. Nonetheless, their low efficiency is the main obstacle for global scale applications. Experimentally, specific treatments can lead to great improvement in the efficiency, mainly by lowering the thermal conductivity. This thesis is aimed at calculating from first principles, the thermal transport properties in perfect and doped half-Heusler thermoelectric materials. We begin with a theoretical analysis of the harmonic and anharmonic properties of phonons for perfect phases.The density functional theory is used to deduce the phonons lifetime from phonon-phonon interactions. The lifetimes are integrated into the Boltzmann transport equation for the phonon density, which solution allows us to compute fully ab initio the lattice thermal conductivity. The purpose of point defects is to scatter the phonons and thus reduce thermal conductivity. We developed two methods to account for the defects on thermal transport. The first one, based on a mean field approach, is suitable for the high concentration regimes. The second one in the framework of Green functions theory is used for dilute regimes. Both methods consistently show that the main reduction of thermal conductivity is already obtained within around 10 % of solute elements in NiTiSn, NiZrSn and NiHfSn
34

Maire, Jérémie. "Thermal phonon transport in silicon nanostructures." Thesis, Ecully, Ecole centrale de Lyon, 2015. http://www.theses.fr/2015ECDL0044/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Lors de deux dernières décennies, la nano-structuration a permis une augmentation conséquente des performances thermoélectriques. Bien qu’à l’ origine le silicium (Si) ait une faible efficacité thermoélectrique, son efficacité sous forme de nanostructure, et notamment de nanofils, a provoqué un regain d’intérêt envers la conduction thermique au sein de ces nanostructures de Si. Bien que la conductivité thermique y ait été réduite de deux ordres de grandeur, les mécanismes de conduction thermique y demeurent flous. Une meilleure compréhension de ces mécanismes permettrait non seulement d’augmenter l’efficacité thermoélectrique mais aussi d’ouvrir la voie à un contrôle des phonons thermiques, de manière similaire à ce qui se fait pour les photons. L’objectif de ce travail de thèse était donc de développer une plateforme de caractérisation, d’étudier le transport thermique au sein de différentes nanostructures de Si et enfin de mettre en exergue la contribution du transport cohérent de phonons à la conduction thermique. Dans un premier temps, nous avons développé un système de mesure allant de pair avec une procédure de fabrication en salle blanche. La fabrication se déroule sur le site de l’institut de Sciences Industrielles et combine des manipulations chimiques, de la lithographie électronique, de la gravure plasma et du dépôt métallique. Le système de mesure est base sur la thermoreflectance : un changement de réflectivité d’un métal a une longueur d’onde particulière traduit un changement de température proportionnel. Nous avons dans un premier temps étudié le transport thermique au sein de simples membranes suspendues, suivi par des nanofils, le tout étant en accord avec les valeurs obtenues dans la littérature. Le transport thermique au sein des nanofils est bien diffus, à l’exception de fils de moins de 4 μm de long a la température de 4 K ou un régime partiellement balistique apparait. Une étude similaire au sein de structures périodiques 1D a démontré l’impact de la géométrie et l’aspect partiellement spéculaire des réflexions de phonons a basse température. Une étude sur des cristaux phononiques (PnCs) 2D a ensuite montré que même si la conduction est dominée par le rapport surface sur vole (S/V), la distance inter-trous devient cruciale lorsqu’elle est suffisamment petite. Enfin, il nous a été possible d’observer dans des PnCs 2D un ajustement de la conductivité thermique base entièrement sur la nature ondulatoire des phonons, réalisant par-là l’objectif de ce travail
In the last two decades, nano-structuration has allowed thermoelectric efficiency to rise dramatically. Silicon (Si), originally a poor thermoelectric material, when scaled down, to form nanowires for example, has seen its efficiency improve enough to be accompanied by a renewed interest towards thermal transport in Si nanostructures. Although it is already possible to reduce thermal conductivity in Si nanostructures by nearly two orders of magnitude, thermal transport mechanisms remain unclear. A better understanding of these mechanisms could not only help to improve thermoelectric efficiency but also open up the path towards high-frequency thermal phonon control in similar ways that have been achieved with photons. The objective of this work was thus to develop a characterization platform, study thermal transport in various Si nanostructures, and ultimately highlight the contribution of the coherent phonon transport to thermal conductivity. First, we developed an optical characterization system alongside the fabrication process. Fabrication of the structures is realized on-site in clean rooms, using a combination of wet processes, electron-beam lithography, plasma etching and metal deposition. The characterization system is based on the thermoreflectance principle: the change in reflectivity of a metal at a certain wavelength is linked to its change in temperature. Based on this, we built a system specifically designed to measure suspended nanostructures. Then we studied the thermal properties of various kinds of nanostructures. Suspended unpatterned thin films served as a reference and were shown to be in good agreement with the literature as well as Si nanowires, in which thermal transport has been confirmed to be diffusive. Only at very low temperature and for short nanowires does a partially ballistic transport regime appear. While studying 1D periodic fishbone nanostructures, it was found that thermal conductivity could be adjusted by varying the shape which in turn impacts surface scattering. Furthermore, low temperature measurements confirmed once more the specularity of phonon scattering at the surfaces. Shifting the study towards 2D phononic crystals (PnCs), it was found that although thermal conductivity is mostly dominated by the surface-to-volume (S/V) ratio for most structures, when the limiting dimension, i.e. the inter-hole spacing, becomes small enough, thermal conductivity depends solely on this parameter, being independent of the S/V ratio. Lastly, we were able to observe, at low temperature in 2D PnCs, i.e. arrays of holes, thermal conduction tuning based on the wave nature of phonons, thus achieving the objective of this work
35

Andrea, Luc. "Modélisation du transport thermique dans des matériaux thermoélectriques." Electronic Thesis or Diss., Paris 6, 2016. http://www.theses.fr/2016PA066122.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les matériaux thermoélectriques permettent de convertir de l'énergie thermique en énergie électrique. Leur rendement de conversion trop faible limite cependant leur utilisation à grande échelle. Plusieurs voies d'optimisation sont utilisés afin d'augmenter les rendements de conversion en diminuant la conductivité thermique. Dans cette thèse, nous modélisons les propriétés de transport thermique des matériaux half-Heusler parfaits et dopés qui présentent des propriétés thermoélectriques intéressantes. La méthode repose sur la théorie de la fonctionnelle de la densité pour calculer les propriétés harmoniques et anharmoniques des composés parfaits et déterminer les temps de vie des phonons. Ensuite, ces derniers sont utilisés pour écrire une équation de transport de Boltzmann pour la densité de phonons dont la résolution donne accès à la conductivité thermique. L'inclusion de défauts ponctuels a pour objectif de réduire la conductivité thermique par diffusion des phonons. Pour modéliser leur effet dans un régime de forte concentration une méthode champ moyen a été développée et appliquée aux half-Heusler. Pour traiter le régime dilué, une méthode faisant appel aux fonctions de Green a été utilisée. Ces deux méthodes montrent que des réductions significatives de conductivité thermique des composés NiTiSn, NiZrSn et NiHfSn sont déjà obtenues pour des concentrations de 10 % en dopants
Thermoelectric materials provide a way to convert thermal energy into electrical energy. Nonetheless, their low efficiency is the main obstacle for global scale applications. Experimentally, specific treatments can lead to great improvement in the efficiency, mainly by lowering the thermal conductivity. This thesis is aimed at calculating from first principles, the thermal transport properties in perfect and doped half-Heusler thermoelectric materials. We begin with a theoretical analysis of the harmonic and anharmonic properties of phonons for perfect phases.The density functional theory is used to deduce the phonons lifetime from phonon-phonon interactions. The lifetimes are integrated into the Boltzmann transport equation for the phonon density, which solution allows us to compute fully ab initio the lattice thermal conductivity. The purpose of point defects is to scatter the phonons and thus reduce thermal conductivity. We developed two methods to account for the defects on thermal transport. The first one, based on a mean field approach, is suitable for the high concentration regimes. The second one in the framework of Green functions theory is used for dilute regimes. Both methods consistently show that the main reduction of thermal conductivity is already obtained within around 10 % of solute elements in NiTiSn, NiZrSn and NiHfSn
36

Lindsay, Lucas R. "Theory of Phonon Thermal Transport in Single-walled Carbon Nanotubes and Graphene." Thesis, Boston College, 2010. http://hdl.handle.net/2345/1167.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Thesis advisor: David A. Broido
A theory is presented for describing the lattice thermal conductivities of graphene and single-walled carbon nanotubes. A phonon Boltzmann transport equation approach is employed to describe anharmonic phonon-phonon, crystal boundary, and isotopic impurity scattering. Full quantum mechanical phonon scattering is employed and an exact solution for the linearized Boltzmann transport equation is determined for each system without use of common relaxation time and long-wavelength approximations. The failures of these approximations in describing the thermal transport properties of nanotubes is discussed. An efficient symmetry based dynamical scheme is developed for carbon nanotubes and selection rules for phonon-phonon scattering in both graphene and nanotubes are introduced. The selection rule for scattering in single-walled carbon nanotubes allows for calculations of the thermal conductivities of large-diameter and chiral nanotubes that could not be previously studied due to computational limitations. Also due to this selection rule, no acoustic-only umklapp scattering can occur, thus, acoustic-optic scattering must be included in order to have thermal resistance from three-phonon processes. The graphene selection rule severely restricts phonon-phonon scattering of out-of-plane modes. This restriction leads to large contributions to the total thermal conductivity of graphene from the acoustic, out-of-plane modes which have been previously neglected. Empirical potentials used to model interactions in carbon-based materials are optimized to better describe the lattice dynamics of graphene-derived systems. These potentials are then used to generate the interatomic force constants needed to make calculations of the thermal conductivities of graphene and carbon nanotubes. Calculations of the thermal conductivities of single-walled carbon nanotubes and graphene for different temperatures and lengths are presented. The thermal conductivities of SWCNTs saturate in the diffusive regime when the effects of higher-order scattering processes are estimated and correctly reproduce the ballistic limit for short-length nanotubes at low temperatures. The effects of isotopic impurity scattering on the thermal conductivities of graphene and SWCNTs are explored. Isotopic impurities have little effect in the low (high) temperature regime where boundary (umklapp) scattering dominates the behavior of the thermal conductivities. In the intermediate temperature regime, modest reductions in the thermal conductivities, 15-20%, occur due to impurities. The thermal conductivities of a wide-range of SWCNTs are explored. The thermal conductivities of successively larger-diameter, one-dimensional nanotubes approach the thermal conductivity of two-dimensional graphene
Thesis (PhD) — Boston College, 2010
Submitted to: Boston College. Graduate School of Arts and Sciences
Discipline: Physics
37

Mittal, Arpit. "Prediction of Non-Equilibrium Heat Conduction in Crystalline Materials Using the Boltzmann Transport Equation for Phonons." The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1316471562.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Blanc, Christophe. "Nanoscale structuration effects on phonon transport at low temperatures." Thesis, Grenoble, 2013. http://www.theses.fr/2013GRENY079/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Cette thèse, intitulé « Effet de structuration à l'échelle du nanomètre sur le transport de phonon à basse température » c'est déroulé pendant trois ans au sein du groupe Thermodynamique et Biophysique des Petits Systèmes de l'Institut Néel.Il s'agit de comprendre et de contrôler le transport de chaleur au sein d'échantillons ayant des variations de l'ordre du nanomètre. Ces échantillons ont surtout été des nanofils suspendus en silicium. La fabrication a été réalisée au sein de l'Institut Néel. Lors de ces trois années, trois résultats importants ont été réalisés.Tout d'abord, il a fallu vérifier que le transport de chaleur ne soit pas dominé par un effet dû aux contacts entre le nanofil suspendu et le bain thermique. Cela a pu être mis en évidence grâce à la concordance entre les mesures et le modèle appelé Casimir-Ziman. Mais cela a surtout été vérifié avec des fils dont la jonction au bain thermique a été adaptée afin de permettre une transmission proche de l'unité. Ces fils profilés ayant la même conductance thermique que les fils avec une jonction abrupte au bain thermique, cela prouve que la transmission est toujours proche de 1.Ensuite des mesures sur des fils dont la section est ondulée ont permis de montrer une réduction de la conductance thermique. Cette réduction est expliquée par la présence de rétrodiffusion des phonons à la surface, ce qui entraîne une grande réduction de leur libre parcours moyen. Ainsi, les phonons dans un nanofil droit ont un libre parcours moyen jusqu'à 9 fois plus grand que dans ces nanofils à la section ondulée. Des simulations avec la méthode de Monte-Carlo ont permis de mettre en évidence cet effet.Si ces premiers résultats ont été réalisés pour des fils de silicium monocristallin, le dernier travail a porté sur l'étude d'échantillon en nitrure de silicium. Ce matériau est un matériau amorphe. La physique du transport de chaleur au sein des matériaux amorphes n'est pas encore complètement comprise. Cependant les mesures faites sur ces matériaux montrent un comportement similaire, tant qualitatif que quantitatif, pour presque tous les matériaux amorphes. Nous avons donc mesurés des échantillons de différentes sortes, afin de vérifier si ce comportement était toujours valable, lorsque la dimension de l'échantillon est réduite. Le résultat de nos mesures est que la dimension joue un rôle sur le transport. Tout comme dans les matériaux cristallins, la basse dimension de l'échantillon va limiter le transport de chaleur. Cependant le transport dans les échantillons de basses dimensions montre le même comportement qualitatif que les matériaux amorphes massifs. Ce travail peut permettre de donner des pistes pour la compréhension du transport de chaleur au sein des matériaux amorphes.En conclusion ce travail m'a permis de fabriquer puis de mesurer le transport de chaleur dans différents types d'échantillons. Les résultats obtenus permettent une meilleur connaissance du transport des phonons, et donc aident à ouvrir la voie vers un meilleur contrôle du transport de la chaleur
This PhD entitled "Nanoscale structuration effect on the phonon transport at low temperature" take place for three years in the Thermodynamique et Biophysique des Petits Systèmes of the Institut Néel.The context of this PhD is to understand and control the heat transport in samples with variations at the nanoscale. These samples were mostly suspended silicon nanowires. The production was performed in the Néel Institute. During these three years, three important results have been demonstrated.First, we verify that heat transport is not dominated by an effect due to the contact between the suspended nanowire and the thermal bath. This has been demonstrated by the agreement between the measurements and the model called Casimir-Ziman. It was also mainly verified with wires whose junction to the thermal bath has been adapted to allow transmission close to unity. These profiles nanowires have the same thermal conductance as a nanowire with abrupt junction to the thermal bath. This proves that the transmission is always close to 1.Then measurements on nanowires whose section is corrugated have shown a reduction in thermal conductance. This reduction is explained by the presence of backscatter phonons at the surface, resulting in a large reduction of their mean free path. Thus, the phonons in a smooth nanowire have a mean free path up to 9 times greater than in these corrugated nanowires. Simulations with the Monte-Carlo method also demonstrate this effect.If these first results were achieved for monocrystalline silicon nanowires, my last work has focused on the study sample of silicon nitride. This material is an amorphous one. Physics of heat transport in amorphous materials is not yet fully understood. However, measurements on these materials show a similar behavior, both qualitatively and quantitatively, for almost all amorphous materials. We have measured samples of different kinds, to see if this behavior was still valid when the sample size is reduced. The result of our measurements is that the size plays a role in transport. As in crystalline materials, the small sample size will limit the heat transport. However transport in low-dimensional samples shows the same behavior qualitatively as in bulk amorphous materials. This can help provide clues for understanding the heat transport in amorphous materials.In conclusion, this work has allowed me to make and measure the heat transport in different types of samples. The results allow a better knowledge of the phonon transport, thus helping to pave the way towards a better control of heat transport
39

Hützen, Roland [Verfasser], Reinhold [Akademischer Betreuer] Egger, and Jürgen [Akademischer Betreuer] Horbach. "Transport through interacting quantum dots with Majorana fermions or phonons / Roland Hützen. Gutachter: Reinhold Egger ; Jürgen Horbach." Düsseldorf : Universitäts- und Landesbibliothek der Heinrich-Heine-Universität Düsseldorf, 2013. http://d-nb.info/1041322119/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Brendel, Christian [Verfasser], Florian [Akademischer Betreuer] Marquardt, and Kai Phillip [Gutachter] Schmidt. "Topologically Protected Transport of Phonons at the Nanoscale / Christian Brendel ; Gutachter: Kai Phillip Schmidt ; Betreuer: Florian Marquardt." Erlangen : Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2019. http://d-nb.info/1192512766/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Ezzahri, Younès. "Etude du transport des phonons dans les micro-réfrigérateurs à base de super-réseaux Si/Si/Ge." Bordeaux 1, 2005. http://www.theses.fr/2005BOR13090.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Le travail de cette thèse comporte deux parties. La première consiste en une caractérisation de micro-réfrigérateurs à base de super-réseau Si/SiGe en régimes continu, transitoire et harmonique. D'un point de vue expérimental, la thermoréflectance conventionnelle et la microscopie thermique à balayage ont été utilisées pour une analyse thermique. Parallèlement à cela, nous avons utilisé la méthode des quadripôles thermiques pour simuler les comportements de ces micro-réfrigérateurs, et optimiser leur performance en fonction de leurs différents paramètres géométriques et physiques. Dans la deuxième partie, nous avons appliqué la technique d'acoustique picoseconde pour étudier les propriétés thermiques et acoustiques d'un ensemble de super-réseaux Si/SiGe. Dans cette partie nous avons développé deux modèles théoriques pour simuler la diffusion du front thermique dans la structure sous test après excitation par une impulsion laser de "pompe". Les deux modèles diffèrent suivant l'épaisseur du transducteur métallique qui couvre le super-réseau. Les résultats expérimentaux sont par la suite confrontés aux résultats théoriques. Cette technique pompe-sonde optique est très prometteuse pour l'étude de nanomatériaux tels que des nanoparticules, des nanotubes ou des nanofils, etc.
42

Terris, Damian. "Transfert de chaleur à échelles de temps et d'espace ultra-courtes : simulation numérique pour des nanofils et nanofilms de semiconducteur." Poitiers, 2008. http://theses.edel.univ-poitiers.fr/theses/2008/Terris-Damian/2008-Terris-Damian-These.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Le développement des nouvelles technologies entraîne une réduction considérable de la taille des systèmes des composants. Afin de prédire leur comportement, il est nécessaire de connaître leurs propriétés physiques. Dans ce contexte, ce travail s’attache à approfondir les connaissances des propriétés thermiques des semiconducteurs en effectuant des simulations numériques des transferts de chaleur dans des nanostructures. Les transferts de chaleur sont analysés grâce à l’équation de Boltzmann en utilisant la méthode des ordonnées discrètes. Le comportement spectral des porteurs de chaleur, caractérisés par les phonons, est pris en compte à travers leurs vitesses de déplacement et leurs temps de relaxation. Des résultats sont exploités en régime stationnaire afin d’établir les propriétés thermiques des composants. Il a été montré que la loi de Fourier décrit correctement les transferts de chaleur dans les nanofils. En revanche, pour que cette loi soit valable dans les films à température ambiante l’épaisseur de ces structures doit être supérieure au micromètre. Pour des plus petites épaisseurs, les transferts de chaleur par conduction présente une forte composante balistique et ont un comportement analogue à celui du rayonnement en milieu faiblement absorbant. Enfin, la prise en compte de la dépendance spectrale a permis des études en régime instationnaire. Il est, ainsi, montré l’évolution thermique dans les nanostructures aux échelles ultracourtes. On observe que la propagation de la chaleur par conduction dans les systèmes balistiques présente deux vagues, conséquence de la différence entre les vitesses propres aux polarisations des phonons
Since high technology progress decreases system dimensions, it is necessarily to understand their physical properties. Therefore, this work contributes in the thermal property knowledge. Numerical simulations are then done to predict heat transfer. To achieve this request, Boltzmann transfer equation is solved, using the discrete ordinate method. Since nanowires and nanofilms are frequently found in microelectronics, their geometries are studied. Furthermore, heat carrier spectral dependence is taken into account trough their velocities and relaxation times. In a first hand, steady state results are used to define thermal properties. It is shown that, in nanowires, diffusive regime is always observed whereas, in films, Fourier’s law can only be used for thickness greater than 1 m, at ambient temperature. For lower temperatures or thicknesses, heat transfers are governed by ballistic phenomena. Finally, taken into account spectral dependences allow us to predict heat transfer at small time scales. It is then viewed that conduction heat transfers in ballistic regime have two temperature waves due to phonon polarizations
43

Chauhan, Vinay Singh. "Impact of Nanoscale Defects on Thermal Transport in Materials." The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1586440154974469.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

He, Fei. "Microscopic approach to the thermal transport in model non conducting oxides under extreme conditions." Electronic Thesis or Diss., Sorbonne université, 2018. http://www.theses.fr/2018SORUS568.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
La dynamique du réseau cristallin et les propriétés vibrationnelles des matériaux à des températures basses ou modérées peuvent être, dans la plupart des cas, expliquées avec précision sur la base d'un modèle harmonique, qui suppose que les phonons soient indépendants les uns des autres. Cependant, à des températures élevées, ce modèle trouve ses limites, car le couplage entre les phonons devient de plus en plus important. Une meilleure compréhension des interactions anharmoniques entre les modes du réseau cristallin présente non seulement un intérêt fondamental, mais est également nécessaire en vue des éventuelles applications technologiques. Cette thèse a pour objectif d'étudier la dynamique anharmonique du réseau cristallin dans l'oxyde de magnésium (MgO) en fonction de la pression et de la température, en prenant en compte les interactions impliquant jusqu’à trois phonons. Les énergies des phonons et les largeurs de raies seront discutées en relation avec les propriétés diélectriques et de transport thermique. Avec sa structure cubique à faces centrées le MgO représente un système model idéal à la fois pour les expériences et pour les calculs, avec l’avantage supplémentaire d’être d’un intérêt majeur pour les géosciences, étant un minéral archétype des manteaux planétaires. Nous avons combiné des mesures de spectroscopie infrarouge et de diffusion inélastique des rayons X pour accéder aux énergies et largeurs des raies phononiques dans toute la zone de Brillouin. La comparaison directe des mesures et des calculs permet de mieux comprendre la dynamique anharmonique du système et de tester la validité de la méthode théorique
Lattice dynamics and vibrational properties of materials at low and moderate temperatures can be, in most of the cases, accurately explained on the basis of an harmonic model, which assumes that phonons are independent of each other. However, at high temperatures this model finds its limitations, as the coupling between phonons become increasingly important. An improved understanding of the anharmonic interactions between lattice modes not only has a fundamental interest, but is also necessary on a more applied basis, as phonons play a major role in many physical properties such as thermal and electrical conductivity, or superconductivity. This thesis aims at investigating the anharmonic lattice dynamics of magnesium oxide (MgO) as a function of pressure and temperature, considering up to three-phonons scattering processes. Phonon energies and line widths will be discussed in relation to the dielectric and thermal transport properties. The simple rock-salt structured MgO represents a first ideal target for both experiments and calculations, with the further advantage of being of primary interest in geoscience, being an archetypal mineral for planetary mantles. We combined infrared spectroscopy and inelastic X-ray scattering measurements to probe phonon energies and line widths across the entire Brillouin zone. Results of high-pressure and high-temperature experiments are complemented by density functional perturbation theory calculations. The direct comparison of measurements and calculations allows to get insight on the anharmonic dynamics of the system and to test the validity of the theoretical approach
45

Park, Junbum. "Monte Carlo simulations of phonon transport in nanostructures based on ab-initio methods." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPAST068.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Alors que la tendance à la miniaturisation des appareils électroniques se poursuit, la compréhension du transport de chaleur à l'échelle nanométrique devient de plus en plus cruciale pour développer des systèmes fiables et économes en énergie. La loi de Fourier conventionnelle ne parvient pas à capturer la dynamique complexe du transport de chaleur basé sur les phonons dans de tels dispositifs miniaturisés. Avec la recherche de dispositifs plus compacts et plus performants, l'exploration de matériaux alternatifs au-delà du silicium est tout aussi essentielle, en se concentrant sur leurs propriétés thermiques. Dans cette thèse, nous étudions le transport des phonons au sein de nanostructures en utilisant des méthodes stochastiques de Monte Carlo (MC). La précision des simulations est améliorée grâce à l'utilisation d'une description complète des matériaux de bande dérivée de calculs ab-initio basés sur la théorie fonctionnelle de la densité (DFT) sans recourir à des paramètres empiriques. Cette approche méthodologique permet des calculs précis de diffusion de phonons sur une large plage de températures de 0,1 à 1 000 K, intégrant des mécanismes de diffusion normale, Umklapp et isotopique pour tenir compte des interactions anharmoniques. Nous nous concentrons sur l'examen de matériaux alternatifs, tels que l'arséniure de gallium (GaAs) et de matériaux bidimensionnels (2D) comme le graphène, le nitrure de bore hexagonal (h-BN) et les dichalcogénures de métaux de transition (TMDC), chacun sélectionné pour ses propriétés thermiques uniques. Cette thèse présente un contexte théorique complet sur la DFT, soulignant l'importance des effets anharmoniques dans le transport des phonons, et discute des algorithmes de Monte Carlo pour résoudre l'équation de transport de Boltzmann. Les résultats présentés dans cette thèse incluent une analyse approfondie des propriétés thermiques des nanostructures de GaAs et de leur réponse à différentes conditions aux limites, dimensions du dispositif et températures. De plus, nous explorons les propriétés thermiques des matériaux 2D et de leurs hétérostructures latérales, en évaluant leur conductance thermique d'interface (ITC) et la variation des contributions modales des phonons à proximité de l'interface. Utilisant le concept de température directionnelle, l'étude fournit des calculs ITC précis, élucidant ainsi la dynamique thermique complexe au sein de ces hétérostructures. Enfin, nous étudions la réponse thermique transitoire dans des hétérostructures latérales 2D h-BN/graphène de 100 nm de long. Grâce à la cartographie positionnelle et à la caractérisation de la réponse temporelle, nous fournissons une compréhension détaillée du comportement thermique transitoire au sein de ces nanostructures. Ces travaux offrent non seulement des contributions substantielles au domaine du transport thermique dans les nanostructures, mais ouvrent également de nouvelles voies pour la conception et l'application de matériaux avancés en électronique
As the trend towards miniaturization of electronic devices continues, understanding heat transport at the nanoscale becomes increasingly crucial for developing energy-efficient and reliable systems. Conventional Fourier's law fails to capture the complex dynamics of phonon-based heat transport in such miniaturized devices. With the drive for more compact and high-performance devices, exploring alternative materials beyond silicon is equally essential, focusing on their thermal properties. In this thesis, we study the phonon transport within nanostructures employing stochastic Monte Carlo (MC) methods. The accuracy of the simulations is enhanced by utilizing full band material description derived from ab-initio calculations based on density functional theory (DFT) without reliance on empirical parameters. This methodological approach allows for precise phonon scattering calculations across a broad temperature range of 0.1 to 1000 K, incorporating normal, Umklapp, and isotope scattering mechanisms to account for anharmonic interactions. We focus on examining alternative materials, such as gallium arsenide (GaAs) and two-dimensional (2D) materials like graphene, hexagonal boron nitride (h-BN), and transition metal dichalcogenides (TMDCs), each selected for their unique thermal properties. This thesis presents a comprehensive theoretical background on DFT, emphasizing the importance of anharmonic effects in phonon transport, and discusses the Monte Carlo algorithms for solving the Boltzmann transport equation. The results presented in this thesis include a thorough analysis of the thermal properties of GaAs nanostructures and their response to varying boundary conditions, device dimensions, and temperatures. Furthermore, we explore the thermal properties of 2D materials and their lateral heterostructures, assessing their interface thermal conductance (ITC) and the variation of phonon modal contributions near the interface. Employing the concept of directional temperature, the study provides precise ITC calculations, thereby elucidating the intricate thermal dynamics within these heterostructures. Finally, we investigate the transient thermal response in 100 nm long 2D h-BN/graphene lateral heterostructures. Through positional mapping and temporal response characterization, we provide a detailed understanding of the transient thermal behavior within these nanostructures. This work not only offers substantial contributions to the field of thermal transport in nanostructures but also opens new pathways for the design and application of advanced materials in electronics
46

Wu, Yunhui. "Experimental Investigation of Size Effects on Surface Phonon Polaritons and Phonon Transport." Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLC012/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
La conduction thermique devient moins efficace à mesure que la taille des struc-tures diminuent en desous du micron, car la diffusion de surface des phononsdevient prédominante et limite plus efficacement les phonons que la diffusionphonon-phonon Umklapp. Des études récentes ont indiqué que les phonon po-laritons de surface (SPhPs), qui sont les ondes électromagnétiques évanescentesgénérées par l’hybridation des phonons optiques et des photons et se propageantà la surface d’une surface diélectrique polaire, pourraient servir de nouveauxvecteurs de chaleur pour améliorer les performances thermiques dans des dis-positifs micro- et nano-métriques. Nous étudions l’état des SPhPs existantdans un film submicronique diélectrique dans une large gamme de fréquences.Le calcul de la conductivité thermique des SPhPs basé sur l’équation de trans-port de Boltzmann (BTE) montre que le flux de chaleur transporté par lesSPhPs est supérieur à celui des phonons. Nous effectuons également une mesurede réflectance thermique dans le domaine temporel (TDTR) de films submi-croniques deSiNet démontrons que la conductivité thermique due aux SPhPsà haute température augmente lorsque l’épaisseur du film dimine. Les résultatsprésentés dans cette thèse ont des applications potentielles dans le domaine dutransfert de chaleur, de la gestion thermique, du rayonnement en champ proche et de la polaritoniques
Thermal conduction becomes less efficient as structures scale down into submicron sizes since phonon-boundary scattering becomes predominant and impede phonons more efficiently than Umklapp scattering. Recent studies indicated that the surface phonon polaritons (SPhPs), which are the evanescent electromagnetic waves generated by the hybridation of the optical phonons and the photons and propagating at the surface of a polar dielectric material surface, potentially serve as novel heat carriers to enhance the thermal performance in micro- and nanoscale devices. We study the condition of SPhPs existing in a dielectric submicron film with a broad frequency range. The calculaton of SPhPs thermal conductivity based on Boltzmann transport equation (BTE) demonstrates that the heat flux carried by SPhPs exceeds the one carried by phonons. We also conduct a time-domain-thermal-reflectance (TDTR) measurement of $SiN$ submicron films and demonstrate that the thermal conductivity due to the SPhPs at high temperatures increases by decreasing the film thickness. The results presented in this thesis have potential applications in the field of heat transfer, thermal management, near-field radiation and polaritonics
47

Mazzamuto, Fulvio. "Etude théorique des propriétés thermiques et thermoelectriques des nanorubans de graphène." Phd thesis, Université Paris Sud - Paris XI, 2011. http://tel.archives-ouvertes.fr/tel-00652733.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Le graphène planaire se présente comme un des matériaux les plus prometteurs pour la nanoélectronique de demain, grâce particulièrement à sa conductivité thermique et sa mobilité électronique qui sont les plus élevées jamais mesurées dans un solide. Parmi ses allotropes, le graphène découpé en nanorubans est une des formes les plus intéressantes, notamment pour les possibilités d'ingénierie de bandes qu'il offre. Ses propriétés électroniques et vibrationnelles sont fortement influencées par la présence des bords et s'éloignent de celles du graphène planaire. A ce jour, ses propriétés thermiques et thermoélectriques ont été encore peu explorées. Dans ce travail de thèse, grâce à une modélisation atomistique du réseau cristallin, les modes de vibration caractéristiques de chaque type de ruban ont été identifiés et, dans le cadre du formalisme des fonctions de Green hors équilibre, le transport de ces modes a été simulé. On a ainsi évalué les propriétés thermiques des nanorubans en identifiant les types de rubans offrant la plus forte conductance thermique pour envisager une meilleure gestion de la chaleur dans les dispositifs du futur. Dans la direction opposée, des techniques de nanostructuration du ruban permettent de dégrader le transport des phonons et d'amplifier la figure de mérite thermoélectrique en bénéficiant simultanément d'un phénomène de transport électronique résonant. En exploitant ces techniques, un premier dispositif thermoélectrique basé sur les nanorubans de graphène a été conçu et ses performances ont été évaluées par une approche multi-échelle. La possibilité de très forte densité d'intégration du graphène fait l'intérêt d'un tel dispositif qui pourrait fournir des puissances électriques ou de refroidissement très supérieures à celles des dispositifs thermoélectriques actuels.
48

Aristone, Flavio. "Contribution à l'étude des processus de diffusion sur les propriétés de transport vertical par minibande." Toulouse, INSA, 1994. http://www.theses.fr/1994ISAT0029.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Une etude des phenomenes de transport dans les structures semi-conductrices du type super-reseau a ete developpee. On etudie la conduction par minibande dans le cadre de la solution semi-classique des equations de transport. Les differents processus de diffusion sont analyses a l'aide des outils d'investigations tels que le champ magnetique et la pression hydrostatique. Ainsi, le transfert electronique entre la minibande de caracteristique directe et les etats indirects x a ete etudie. A partir de nos resultats il a ete propose une methode d'estimation de la largeur de la minibande pour les systemes de gaas-alas, a travers les techniques de transport. Dans la configuration de champs electrique et magnetique croises, on a etudie les defauts d'interfaces des differentes couches composant les super-reseaux. Les processus de diffusion a travers l'emission et/ou l'absorption des phonons thermiques sont etudies dans la configuration de champs paralleles. Les modes longitudinaux optiques des phonons de gaas et alas ont ete observes, et les masses effectives associees a chaque processus sont obtenues. En effectuant le meme type de mesure sur les systemes gainas-alinas on a observe l'effet dit quasi shubnikov de haas, qui donne la concentration electronique des regions dopees de nos structures
49

Arabshahi, Hadi. "Simulations of electron transport in GaN devices." Thesis, Durham University, 2002. http://etheses.dur.ac.uk/4119/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This thesis deals with the development and application of Monte Carlo simulations to study electron transport in bulk GaN in the wurtzite crystal structure and the properties of field effect transistors made from the material. There is a particular emphasis on transport in the high electric field regime and transistors operating at high voltages. The simulation model includes five sets of non-parabolic conduction band valleys which can be occupied by electrons during high field transport. The effects on electron transport of impurities and the relevant phonon scattering mechanisms have been considered. Results for electron transport at both low and high electric field are presented and compared with the properties of GaN in the zincblende structure, of other group-III nitride semiconductors, and of GaAs. The dependence of the transport properties on the material parameters is discussed and also with regard to the temperature, donor concentration and electric field magnitude and direction. The transport properties of electrons in wurtzite GaN n+-i(n)-n+ diodes are also explored, including the effect of the upper valleys and the temperature on hot electron transport. Simulations have also been carried out to model the steady-state and transient properties of GaN MESFETs that have recently been the subject of experimental study. It has been suggested that traps have a substantial effect on the performance of GaN field effect transistors and we have developed a model of a device with traps to investigate this suggestion. The model includes the simulation of the capture and release of electrons by traps whose charge has a direct effect on the current flowing through the transistor terminals. The influence of temperature and light on the occupancy of the traps and the /- V characteristics are considered. It is concluded that traps are likely to play a substantial role in the behaviour of GaN field effect transistors. Further simulations were performed to model electron transport in AlGaN/GaN hetero-junction FETs. So called HFET structures with a 78 nm Alo.2Gao.8N pseudomorphically strained layer have been simulated, with the inclusion of spontaneous and piezoelectric polarization effects in the strained layer. The polarization effects are shown to not only increase the current density, but also improve the electron transport by inducing a higher electron density close to the positive charge sheet that occurs in the channel.
50

Randrianalisoa, Jaona Harifidy Baillis Dominique. "Transfert thermique par rayonnement et conduction dans les matériaux poreux micro et nanostructurés analogie transfert de phonons et de photons /." Villeurbanne : Doc'INSA, 2007. http://docinsa.insa-lyon.fr/these/pont.php?id=randrianalisoa.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії