Добірка наукової літератури з теми "Transition to asexuality"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Transition to asexuality".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Transition to asexuality":

1

Dedukh, Dmitrij, Anatolie Marta, and Karel Janko. "Challenges and Costs of Asexuality: Variation in Premeiotic Genome Duplication in Gynogenetic Hybrids from Cobitis taenia Complex." International Journal of Molecular Sciences 22, no. 22 (November 9, 2021): 12117. http://dx.doi.org/10.3390/ijms222212117.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The transition from sexual reproduction to asexuality is often triggered by hybridization. The gametogenesis of many hybrid asexuals involves premeiotic genome endoreplication leading to bypass hybrid sterility and forming clonal gametes. However, it is still not clear when endoreplication occurs, how many gonial cells it affects and whether its rate differs among clonal lineages. Here, we investigated meiotic and premeiotic cells of diploid and triploid hybrids of spined loaches (Cypriniformes: Cobitis) that reproduce by gynogenesis. We found that in naturally and experimentally produced F1 hybrids asexuality is achieved by genome endoreplication, which occurs in gonocytes just before entering meiosis or, rarely, one or a few divisions before meiosis. However, genome endoreplication was observed only in a minor fraction of the hybrid’s gonocytes, while the vast majority of gonocytes were unable to duplicate their genomes and consequently could not proceed beyond pachytene due to defects in bivalent formation. We also noted that the rate of endoreplication was significantly higher among gonocytes of hybrids from natural clones than of experimentally produced F1 hybrids. Thus, asexuality and hybrid sterility are intimately related phenomena and the transition from sexual reproduction to asexuality must overcome significant problems with genome incompatibilities with a possible impact on reproductive potential.
2

Beck, James B., Patrick J. Alexander, Loreen Allphin, Ihsan A. Al-Shehbaz, Catherine Rushworth, C. Donovan Bailey, and Michael D. Windham. "DOES HYBRIDIZATION DRIVE THE TRANSITION TO ASEXUALITY IN DIPLOID BOECHERA?" Evolution 66, no. 4 (December 8, 2011): 985–95. http://dx.doi.org/10.1111/j.1558-5646.2011.01507.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Huylmans, Ann Kathrin, Ariana Macon, Francisco Hontoria, and Beatriz Vicoso. "Transitions to asexuality and evolution of gene expression in Artemia brine shrimp." Proceedings of the Royal Society B: Biological Sciences 288, no. 1959 (September 22, 2021): 20211720. http://dx.doi.org/10.1098/rspb.2021.1720.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
While sexual reproduction is widespread among many taxa, asexual lineages have repeatedly evolved from sexual ancestors. Despite extensive research on the evolution of sex, it is still unclear whether this switch represents a major transition requiring major molecular reorganization, and how convergent the changes involved are. In this study, we investigated the phylogenetic relationship and patterns of gene expression of sexual and asexual lineages of Eurasian Artemia brine shrimp, to assess how gene expression patterns are affected by the transition to asexuality. We find only a few genes that are consistently associated with the evolution of asexuality, suggesting that this shift may not require an extensive overhauling of the meiotic machinery. While genes with sex-biased expression have high rates of expression divergence within Eurasian Artemia , neither female- nor male-biased genes appear to show unusual evolutionary patterns after sexuality is lost, contrary to theoretical expectations.
4

Kampfraath, Andries Augustus, Tjeerd Pieter Dudink, Ken Kraaijeveld, Jacintha Ellers, and Zaira Valentina Zizzari. "Male Sexual Trait Decay in Two Asexual Springtail Populations Follows Neutral Mutation Accumulation Theory." Evolutionary Biology 47, no. 4 (August 20, 2020): 285–92. http://dx.doi.org/10.1007/s11692-020-09511-z.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract The transition to asexual reproduction is frequent and widespread across the tree of life and constitutes a major life history change. Without sexual reproduction, selection on sexually selected traits is expected to be weaker or absent, allowing the decay and ultimately loss of sexual traits. In this study, we applied an experimental approach to investigate the decay of reproductive traits under asexuality in two asexual populations of the springtail Folsomia candida. Specifically, we compared several key male sexual traits of a sexual population and two distinct parthenogenetic lines. To allow direct comparisons between sexual and asexual individuals we first determined a suite of life history characteristics in the sexual F. candida population, which performs an indirect transfer of sperm packages (spermatophores).To investigate the decay of male sexual traits under asexuality we measured the size of spermatophores, quantified the amount of sperm DNA material, and tested spermatophore attractiveness to females in all three populations. The amount of sperm DNA material in the sperm droplets and the attractiveness of spermatophores were lower in the asexual lines compared to the sexual population. However, the two asexual lines differed in the extent of decay of these traits. Our results are consistent with predictions from neutral mutation accumulation theory, and thus suggest this to be the main evolutionary process underlying the decay of male traits in F. candida.
5

Paland, S. "Transitions to Asexuality Result in Excess Amino Acid Substitutions." Science 311, no. 5763 (February 17, 2006): 990–92. http://dx.doi.org/10.1126/science.1118152.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Larose, Chloé, Darren J. Parker, and Tanja Schwander. "Fundamental and realized feeding niche breadths of sexual and asexual stick insects." Proceedings of the Royal Society B: Biological Sciences 285, no. 1892 (November 28, 2018): 20181805. http://dx.doi.org/10.1098/rspb.2018.1805.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The factors contributing to the maintenance of sex over asexuality in natural populations remain unclear. Ecological divergences between sexual and asexual lineages could help to maintain reproductive polymorphisms, at least transiently, but the consequences of asexuality for the evolution of ecological niches are unknown. Here, we investigated how niche breadths change in transitions from sexual reproduction to asexuality. We used host plant ranges as a proxy to compare the realized feeding niche breadths of five independently derived asexual Timema stick insect species and their sexual relatives at both the species and population levels. Asexual species had systematically narrower realized niches than sexual species, though this pattern was not apparent at the population level. To investigate how the narrower realized niches of asexual species arise, we performed feeding experiments to estimate fundamental niche breadths but found no systematic differences between reproductive modes. The narrow realized niches found in asexual species are therefore probably a consequence of biotic interactions such as predation or competition, that constrain realized niche size in asexuals more strongly than in sexuals.
7

Butlin, R. "Comment on "Transitions to Asexuality Result in Excess Amino Acid Substitutions"." Science 313, no. 5792 (September 8, 2006): 1389. http://dx.doi.org/10.1126/science.1128655.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Tilquin, Anaïs, and Hanna Kokko. "What does the geography of parthenogenesis teach us about sex?" Philosophical Transactions of the Royal Society B: Biological Sciences 371, no. 1706 (October 19, 2016): 20150538. http://dx.doi.org/10.1098/rstb.2015.0538.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Theory predicts that sexual reproduction is difficult to maintain if asexuality is an option, yet sex is very common. To understand why, it is important to pay attention to repeatably occurring conditions that favour transitions to, or persistence of, asexuality. Geographic parthenogenesis is a term that has been applied to describe a large variety of patterns where sexual and related asexual forms differ in their geographic distribution. Often asexuality is stated to occur in a habitat that is, in some sense, marginal, but the interpretation differs across studies: parthenogens might not only predominate near the margin of the sexuals' distribution, but might also extend far beyond the sexual range; they may be disproportionately found in newly colonizable areas (e.g. areas previously glaciated), or in habitats where abiotic selection pressures are relatively stronger than biotic ones (e.g. cold, dry). Here, we review the various patterns proposed in the literature, the hypotheses put forward to explain them, and the assumptions they rely on. Surprisingly, few mathematical models consider geographic parthenogenesis as their focal question, but all models for the evolution of sex could be evaluated in this framework if the (often ecological) causal factors vary predictably with geography. We also recommend broadening the taxa studied beyond the traditional favourites. This article is part of the themed issue ‘Weird sex: the underappreciated diversity of sexual reproduction’.
9

Neiman, M., T. F. Sharbel, and T. Schwander. "Genetic causes of transitions from sexual reproduction to asexuality in plants and animals." Journal of Evolutionary Biology 27, no. 7 (March 26, 2014): 1346–59. http://dx.doi.org/10.1111/jeb.12357.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Paland, S., and M. Lynch. "Response to Comment on "Transitions to Asexuality Result in Excess Amino Acid Substitutions"." Science 313, no. 5792 (September 8, 2006): 1389. http://dx.doi.org/10.1126/science.1128745.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Transition to asexuality":

1

Boyer, Loreleï. "Causes et conséquences évolutives de l’asexualité non-clonale chez Artemia." Thesis, Université de Montpellier (2022-….), 2022. http://www.theses.fr/2022UMONG006.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
La majorité des espèces parthénogétiques sont souvent perçues comme clonales. La clonalité est coûteuse à long terme, car elle peut entraîner l'accumulation de mutations délétères et une moins bonne capacité d’adaptation. Cependant, les cas d’espèces asexuées non clonales s'accumulent. L’asexualité non-clonale génère des conséquences génomiques et de fitness très différentes de la clonalité, et pourraient représenter une étape-clé dans la transition du sexe vers l’asexualité. De plus, l’asexualité peut être souvent non-obligatoire, avec des événements de sexe cryptiques. Ces évènements peuvent aussi façonner le génome et l'évolution des lignées asexuées. Dans cette thèse, j'ai étudié le mode de reproduction d'Artemia parthenogenetica, et son rôle dans la transition du sexe vers l'asexualité et l'évolution des lignées asexuées. En particulier, j'ai utilisé la capacité des mâles produits par voie asexuée (“mâles rares”) à se croiser avec des femelles sexuées et à transmettre l’asexualité à leurs descendants (asexualité contagieuse), pour générer expérimentalement de nouvelles lignées. J’ai montré que les Artemia asexués diploïdes ont un mode de reproduction non-clonal, dans lequel la recombinaison entraîne une perte d'hétérozygotie (LOH, pour “loss of heterozygosity”) chez les descendants. Le LOH est coûteux car il peut révéler des mutations délétères récessives. Peut-être en raison de la sélection causée par les conséquences délétères du LOH, le taux de recombinaison chez les Artemia asexués était plus faible que chez une espèce sexuée apparentée. J'ai également constaté que les hybrides sexués avaient une reproduction mixte sexuée et asexuée, et que les femelles asexuées issues de populations naturelles étaient capables de sexe rare. Cela signifie que des événements rares de sexe chez les Artemia asexués pourraient se produire entre un mâle rare et une femelle asexuée se reproduisant sexuellement. En effectuant une revue de la façon don t les modes de reproduction asexués sont identifiés dans la littérature, j'ai constaté que l'identification et la perception générale des asexués étaient biaisées en faveur de la clonalité, car une grande partie des espèces asexuées examinées étaient en fait non-clonales, et les preuves de la clonalité étaient souvent insuffisantes. En outre, la majorité des asexués non-clonaux avaient des modes de reproduction qui entraînaient de faibles taux de LOH. Cela suggère que les asexués non-clonaux évoluent souvent secondairement vers une reproduction plus clonale. Ainsi, même les espèces clonales pourraient ne pas avoir été clonales au cours de leur histoire évolutive. Enfin, avec une analyse génomique sur de nouvelles lignées générées par contagion, j'ai démontré que chez Artemia, les mâles rares sont produits asexuellement par recombinaison et donc LOH sur les chromosomes sexuels ZW. Nous savons que l'asexualité contagieuse, et peut-être des croisements entre lignées, ont eu lieu au cou rs de l'histoire évolutive d'A. parthenogenetica. L'asexualité contagieuse et/ou des événements sexuels chez les asexués constituent peut-être des opportunités pour que le(s) gène(s) contrôlant l'asexualité s'échappe(nt) des lignées en déclin vers de nouvelles lignées. Dans ce cas, l'asexualité contagieuse par le biais de mâles rares pourrait être la raison pour laquelle la recombinaison persiste chez les Artemia asexués. Chez de nombreuses espèces, l’identification de l’asexualité non clonale et des événements de sexe n'est toujours pas claire et nécessite une étude approfondie. Théoriquement, il y a un fort besoin de modèles prenant en compte les conséquences génomiques de l'asexualité non-clonale et non-obligatoire, et leur rôle dans la transition du sexe vers l'asexualité et la maintenance du sexe
The majority of parthenogenetic species are often thought to be clonal. Clonality is costly in the long term, as it can result in accumulation of deleterious mutations and lower adaptability. However, cases reporting non-clonal asexuals are accumulating. Non-clonal asexuality has very different genomic and fitness consequences compared to clonality, and may be a key intermediate step in the transition from sex to asexuality. Additionally, asexuality may be often non-obligate, with events of cryptic sex. These events may also shape the genome and evolution of asexual lineages. In this PhD, I investigated the reproductive mode of Artemia parthenogenetica and its role in the transition from sex to asexuality and the evolution of asexual lineages. Specifically, I used the capacity of asexually produced males (“rare males”) to cross with sexual females and transmit asexuality to their offspring (contagious asexuality), to experimentally generate new lineages. I showed that diploid asexual Artemia have a non-clonal reproductive mode, in which recombination results in loss of heterozygosity (LOH) in the offspring. LOH is costly as it can reveal recessive deleterious mutations. Perhaps due to selection caused by the deleterious consequences of LOH, the recombination rate in these asexuals was lower than in a closely related sexual species. I also found that sex-asex hybrids had a mixed sexual and asexual reproduction, and that asexual females from natural populations were capable of rare sex. This means that rare events of sex in asexual Artemia could occur between a rare male and an asexual female reproducing sexually. In a review of how asexual reproductive modes were identified in the literature, I found that there was a bias in the identification and general perception of asexuals toward clonality, as an important part of the asexual species reviewed were in fact non-clonal, and evidence for clonality was often missing. Furthermore, the maj ority of non-clonal asexuals had reproductive modes that resulted in low LOH. This suggests that non-clonal asexuals often evolve secondarily toward a more clonal-like reproduction, so that even clonal species may not have been clonal throughout their evolutionary history. Finally, using genomics on contagion-generated lineages, I found that in Artemia, rare males are produced asexually through recombination and thus LOH on the ZW sex chromosomes. We know that contagious asexuality, and possibly between-lineages crosses, occurred in the evolutionary history of A. parthenogenetica. Perhaps, contagious asexuality and/or within asexual sex events provide opportunities for the gene(s) controlling asexuality to escape declining lineages into new ones. In this case, contagious asexuality through rare males may be the reason why recombination persists in asexual Artemia. Whether non-clonal asexuality and sex events occur in many parthenogenetic species is still unclear, and requires thorou gh investigation. Theoretically, there is a strong need for models taking into account the genomic consequences of non-clonal and non-obligate asexuality, and their role in the transition from sex to asexuality and the maintenance of sex
2

Defendini, Hélène. "Bases génétiques et conséquences évolutives de la perte de sexe dans le groupe des pucerons." Electronic Thesis or Diss., Rennes, Agrocampus Ouest, 2023. http://www.theses.fr/2023NSARA094.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
La reproduction sexuée est considérée comme le mode de reproduction ancestral des eucaryotes, mais elle été perdue à plusieurs reprises dans de nombreux taxons. Comprendre les mécanismes par lesquels les lignées asexuées apparaissent et persistent dans le temps reste un défi majeur de la biologie évolutive. Au cours de ma thèse, j'ai étudié les bases génétiques ainsi que les conséquences évolutives de la perte du sexe chez les pucerons, un groupe qui présente un polymorphisme de reproduction. Le mode de reproduction ancestral des pucerons est la parthénogenèse cyclique (CP, une alternance de plusieurs générations parthénogénétiques et d'une génération sexuée), mais la parthénogenèse obligatoire (OP) est fréquemment observée dans ce groupe. Les lignées OP dérivées ne sont pas capables de produire des femelles sexuées bien qu'elles conservent souvent la capacité de produire des mâles. Pour caractériser les régions génomiques impliquées dans la transition de la reproduction CP à OP, nous avons utilisé des approches de scan génomique sur différents taxons de pucerons plus ou moins proches génétiquement et présentant des variations de mode de reproduction. Nous avons montré que la base génétique de la perte du sexe est différente entre les taxons étudiés, sans convergence apparente dans le contenu génique ou les fonctions des gènes. Ainsi, plusieurs régions génomiques indépendantes peuvent être responsables de la perte du sexe chez les pucerons, ce qui suggère qu'il existe de nombreuses voies menant à l'asexualité dans ce groupe. Ensuite, nous avons étudié les conséquences évolutives de la perte du sexe sur les traits et les gènes essentiels à la reproduction sexuée. Comme il est peu probable que les mâles produits par les lignées OP transmettent leurs gènes (les lignées CP étant généralement séparées géographiquement des lignées OP), nous avons testé la prédiction selon laquelle les traits mâles dégénèrent. La production de mâles était en effet réduite dans les lignées OP, supposément en raison de la contre-sélection, mais le succès reproductif des mâles n'était que légèrement inférieur à celui des lignées CP, probablement en raison de la sélection relâchée qui agit lentement ou d’opportunités reproductives sous-estimées. Comme les lignées OP produisent rarement des mâles et ne produisent pas de femelles sexuées, l'expression génétique des femelles parthénogénétiques n'est plus contrainte par celle des autres morphes. Nous avons donc prédit que la disparition du conflit sexuel (qui survient lorsqu'il existe différents optima spécifiques à chaque morphe pour un trait partagé par différents morphes) entraînerait des changements d’expression des gènes. Nous avons donc comparé les profils d'expression génétique des lignées CP et OP pour différents morphes du puceron du pois. Nous avons observé que l'expression des gènes chez les mâles des lignées OP tendait vers l'optimum des femelles parthénogénétiques, comme le prévoyait la théorie. Plus surprenant, les mâles et les femelles parthénogénétiques des lignées OP surexpriment systématiquement des gènes exprimés dans les gonades des morphes sexués. Ces changements dans l'expression des gènes dans les lignées OP peuvent s’expliquer par un relâchement de la sélection ou la reconversion de réseaux de gènes autrement utilisés dans les lignées sexuées. Cette thèse illustre la pertinence de l'utilisation d'espèces aux systèmes de reproduction polymorphes pour comprendre l'histoire évolutive de la perte du sexe et ses conséquences
Sexual reproduction is considered the ancestral reproductive mode of eukaryotes, yet it has been lost several times in many taxa. Understanding the mechanisms by which asexual lineages appear and persist over time remains a major challenge of evolutionary biology. During my PhD, I investigated the genetic basis as well as the evolutionary consequences of sex loss in aphids, a group that displays reproductive polymorphism. The ancestral reproductive mode of aphids is cyclical parthenogenesis (CP, an alternation of several parthenogenetic generations and one sexual generation), but obligate parthenogenesis (OP) is frequently observed in this group. Derived OP lineages are not able to produce sexual females though they often retain the ability to produce males. First, to characterize genomic regions involved in the transition from CP to OP reproductive mode, we used genome scan approaches on different aphid taxa that are more or less genetically related and exhibit variation in reproductive mode. We showed that the genetic basis of sex loss is different between the studied taxa, with no apparent convergence in gene content norfunctions. Thus, several independent genomic regions may be responsible for sex loss in aphids, suggesting that there are many paths that lead to asexuality in this group. Second, we studied the evolutionary consequences of the loss of sex on traits and genes essential for sexual reproduction. Since the males produced by OP lineages are unlikely to pass on their genes (because CP lineages are usually separated from OP ones), we tested the prediction that male traits should degenerate. Male production was indeed reduced in OP lineages, supposedly resulting from counter-selection, but male reproductive success was only slightly lower than in CP lineages, presumably due to the slow action of relaxed selection orunderestimation of reproductive opportunities. As OP lineages produce rare males and also do not produce sexual females, the gene expression of parthenogenetic females in these OP lineages is no longer constrained by that of other morphs. We thus predicted that the disappearance of sexual conflict (which arises when there are different morph-specific optima for a trait shared by different morphs) would result in shifts of gene expression. We therefore compared gene expression patterns of CP and OP lineages for different morphs in the pea aphid. We observed that gene expression in males from OP lineages tended towards the parthenogenetic female optimum, as predicted by theory. More surprisingly, males and parthenogenetic females of OP lineages consistently over-expressed genes typically expressed in the gonads of sexual morphs. These changes in gene expression in OP lineages may arise from the relaxation of selection or the repurposing of gene networks otherwise used in sexual lineages. This thesis illustrates the relevance of using species with polymorphic reproductive systems to understand the evolutionary history of sex loss and its consequences

Частини книг з теми "Transition to asexuality":

1

Teather, Kevin. "The Road to Sexual Reproduction." In The Evolution of Sex, 33–49. Oxford University PressOxford, 2024. http://dx.doi.org/10.1093/9780191994418.003.0003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract Living organisms are divided into two superkingdoms: the prokaryotes and eukaryotes. Prokaryotes consist of eubacteria and archaebacteria, are single-celled, and breed asexually. All other organisms comprise eukaryotes. These are larger, more complex, often multicellular, and, with some exceptions, reproduce sexually. About two billion years ago, eukaryotes evolved from prokaryotes by incorporating oxygen-using eubacteria into anaerobic archaeans. This development was accompanied by increased oxidative metabolism using the newly acquired bacteria, or mitochondria. The mitochondrial genome interacts with the nuclear genome to provide the proteins necessary for energy production. While using oxygen is more efficient when producing energy for the cell, it also results in extensive DNA damage by releasing free oxygen radicals. Meiosis is an integral part of sexual reproduction and is present in nearly all organisms that reproduce sexually. It likely evolved during the transition between the prokaryotes and eukaryotes. Of significant importance, crossing-over during an early stage of meiosis provided the capacity to repair DNA and resulted in increased levels of variability in progeny. Both of these factors may be important in the evolution of sex.

Тези доповідей конференцій з теми "Transition to asexuality":

1

Schwander, Tanja. "Convergent gene expression changes across independent transitions to asexuality: Insights from stick insects." In 2016 International Congress of Entomology. Entomological Society of America, 2016. http://dx.doi.org/10.1603/ice.2016.94152.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії