Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Transferts de charge et de la SEI.

Статті в журналах з теми "Transferts de charge et de la SEI"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Transferts de charge et de la SEI".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Feldman, Marion, Yoram Mouchenik, and Marie Rose Moro. "Prise en charge des dyades mère traumatisée-bébé: une contrainte à la pensée et à la pratique." Revista Latinoamericana de Psicopatologia Fundamental 18, no. 2 (June 2015): 253–67. http://dx.doi.org/10.1590/1415-4714.2015v18n2p253.5.

Повний текст джерела
Анотація:
Dans le champ de la protection de l’enfance, la prise en charge de certaines dyades mère-bébé met en difficultés les professionnels et on constate une mise en échec des suivis. L’objectif est de montrer qu’il faut penser un soin plus adapté pour ces dyades. Au travers de la présentation d’une situation clinique et de son suivi, les auteurs montrent l’impact des traumas vécus par une mère dans son pays d’origine sur le développement de son bébé né en France, et de quelles façons ces traumas contaminent également les professionnels prenant en charge la dyade. Les contre-transferts négatifs peuvent créer parfois des divergences de points de vue dans les prises en charge et mettre en échec le soin proposé aux dyades mère-bébé. Ces contre-transferts témoignent d’un “partage du traumatisme”...
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kobayashi, Karen. "Vern L. Bengtson and Ariela Lowenstein (Eds.). Global Aging and Challenges to Families. Hawthorne, NY: Aldine de Gruyter, 2003." Canadian Journal on Aging / La Revue canadienne du vieillissement 23, no. 4 (2004): 375–77. http://dx.doi.org/10.1353/cja.2005.0023.

Повний текст джерела
Анотація:
RÉSUMÉCette collection éditée contient les essais d'auteurs de neuf pays qui analysent les retombées du vieillissement de la population sur les familles aux niveaux individuel, collectif et socio-structurel. Fondés sur la notion de perspectives du tracé de vie et de la modernisation, les thèmes clés comprennent, notamment : 1) l'importance continué de la solidarité familiale et intergénérationnelle dans la vie des personnes âgées; 2) l'incidence de la longévité croissante des aînés sur la prise en charge par les familles; 3) la diversité et la complexité croissantes des relations familiales, et leur incidence sur les transferts et le soutien intergénérationnels; 4) les rapports entre attentes et attitudes et transferts et soutien intergénérationnels; et 5) les liens d'interdépendance entre la solidarité publique (d'État) et privée (la famille). L'ouvrage, qui réunit les perspectives diverses d'un groupe de chercheurs internationaux spécialisés dans le trajet de vie et le vieillissement, permet d'amorcer un débat mondial sur des sujets émergents, tels que le rôle du capital social dans la création de réseaux sociaux pour les personnes âgées prises en charge par leur famille, et l'importance de la nature et du sens des transferts privés sur la solidarité intergénérationnelle et le bien-être des familles.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

SAUVET, F., S. BANZET, N. KOULMANN, and L. BOURDON. "Transferts de chaleur et coup de chaleur d’exercice. Applications à l’hyperthermie d’exercice et au refroidissement." Médecine et Armées Vol. 40 No. 3, Volume 40, Numéro 3 (June 1, 2012): 241–48. http://dx.doi.org/10.17184/eac.6612.

Повний текст джерела
Анотація:
L’hyperthermie d’exercice est par définition l’un des éléments constitutifs du coup de chaleur d'exercice. Elle résulte de la conjonction de facteurs intrinsèques, tels que le niveau d’adaptation à la chaleur et l’état de fatigue, et extrinsèques : l’intensité et la durée de l’effort, les conditions météorologiques et les facteurs vestimentaires. Les facteurs extrinsèques sont discutés sous l’angle des modifications aux transferts de chaleur qu’ils imposent entre le corps et son environnement. La compréhension des mécanismes de ces transferts de chaleur permet aussi d’optimiser les moyens de refroidissement à mettre en oeuvre sur le terrain, dans les moyens d’évacuation et à l’hôpital, lors de la prise en charge du coup de chaleur d'exercice.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Richard, François. "Transferts et contre-transfert dans les prises en charge multifocales." Revue de psychothérapie psychanalytique de groupe 21, no. 1 (1993): 167–82. http://dx.doi.org/10.3406/rppg.1993.1215.

Повний текст джерела
Анотація:
Cet article envisage les translations latérales du transfert au cours des prises en charge multifocales en institution médico-psychologique ainsi que le risque de clivage entre la psychothérapie psychanalytique et les autres types d’intervention thérapeutique, ce qui introduit à une conception polytopique de l’Inconscient. Dans une première partie est étudiée la virtualité polytopique du transfert, les contre-attitudes et contre-transfert s ainsi suscités, à propos de plusieurs exemples cliniques. Quelques conclusions techniques sont proposées. La réflexion est ensuite élargie à une tentative de contribution à la théorie du transfert et du contre-transfert dès lors que l’on conçoit l’Inconscient tout à la fois comme société interne où entrent en relation des objets internalisés et comme projection des instances topiques individuelles. Le contre-transfert se voit alors défini comme spécification mais aussi comme point aveugle des transferts du patient. Les prises en charges multifocales contribuent à l’analyse des nœuds intersubjectifs et des alliances inconscientes qui lient un sujet à son symptôme. La théorie de leur technique peut contribuer à un projet de métapsychologie du sujet maillon de la chaîne généalogique et membre du groupe, c’est-à-dire à une métapsychologie de l’intersubjectivité transindividuelle.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Chollet-Xémard, C., D. Michel, P. Szuster, D. Cervellin, and E. Lecarpentier. "Retour d’expérience des transferts en HéliSmur de patients Covid-19." Annales françaises de médecine d’urgence 10, no. 4-5 (September 2020): 266–71. http://dx.doi.org/10.3166/afmu-2020-0262.

Повний текст джерела
Анотація:
L’augmentation du nombre d’hospitalisations en réanimation de patients graves atteints de la Covid-19 a nécessité le transfert d’un certain nombre d’entre eux vers des régions moins touchées que le Grand Est et l’Île-de-France afin de ne pas dégrader la qualité des soins. Les HéliSmur ont fait partie intégrante du dispositif d’évacuation de ces patients. Utilisés au quotidien, ils ont confirmé leur utilisation en cas de crise où la problématique des élongations est une difficulté. Cependant, le recours aux HéliSmur a nécessité une adaptation de tous à de nouvelles modalités opérationnelles. Le transport de patients critiques, le port d’un équipement de protection individuelle par l’équipe médicale et les membres d’équipage ainsi que les procédures renforcées de bionettoyage ont impacté les temps d’intervention mais aussi la charge mentale des personnes à bord. La mise en place d’équipes médicales dédiées et rompues aux transferts héliportés a permis d’optimiser la prise en charge complexe de ces patients tant sur le plan médical qu’aéronautique. Nous présentons notre retour d’expérience des transferts en HéliSmur que nous avons réalisés au départ de la région francilienne.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Wolff, François-Charles. "Les transferts ascendants au Bangladesh, une décision familiale?" Articles 82, no. 1-2 (August 28, 2006): 271–316. http://dx.doi.org/10.7202/013472ar.

Повний текст джерела
Анотація:
Résumé Cet article apporte un éclairage sur la prise de décision dans la famille, dans le domaine des transferts versés par les enfants adultes à leurs parents âgés. D’un côté, un enfant doit composer avec son éventuel conjoint pour s’occuper de ses parents et beaux-parents. De l’autre, chaque enfant peut compter sur un éventuel soutien de ses frères et soeurs pour la prise en charge des ascendants. Nous cherchons ici à savoir dans quelle mesure il importe de prendre en compte ces effets de fratrie pour comprendre les solidarités ascendantes. Nous examinons l’existence d’éventuels arrangements intrafamiliaux à partir de l’enquête MHSS réalisée en 1996 au Bangladesh. Nos résultats économétriques pour les transferts ascendants indiquent que les comportements des frères et soeurs ne sont pas indépendants les uns des autres.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Lagergren, Mårten. "Transfers between Levels of Care in a System of Long-term Care for the Elderly and Disabled." Canadian Journal on Aging / La Revue canadienne du vieillissement 15, no. 1 (1996): 97–111. http://dx.doi.org/10.1017/s0714980800013313.

Повний текст джерела
Анотація:
RÉSUMÉLes modes de référence de patients entre différents niveaux de soins dans un système local de soins de longue durée pour personnes âgées et handicapées sont décrits et analysés à l'aide des données collectées de 1985 à 1991 dans la commune de Solna grâce au système de contrôle appelé ASIM. Ces références entre niveaux de soins avaient lieu dans les deux sens, mais la fréquence des transferts vers le bas était faible comparée au nombre de transferts vers le haut – en particulier pour les foyers-logements et les résidences-hôtels. Pour tous les niveaux de soins, on a constaté de grandes variations dans le degré d'incapacité des personnes prises en charge, suggérant le charactère non-systématique des procédés d'évaluation lors de l'admission dans les services de soins. Une analyse des changements intervenus avec le temps dans les modes de référence a illustré l'interdepéndence des différents niveaux des soins. La réduction des ressources des services de soins hospitaliers de longue durée a eu pour résultats un arrêt presque total des références à partir des résidences-hôtels et une augmentation générale de l'incapacité moyenne des patients pris en charge.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Cigno, Alessandro, and Anna Pettini. "Traitement fiscal optimal des familles quand la fécondité est endogène." Textes d’analyse 75, no. 1-2-3 (February 9, 2009): 239–52. http://dx.doi.org/10.7202/602291ar.

Повний текст джерела
Анотація:
RÉSUMÉ Les effets et le choix optimal d’instruments de politique destinés aux familles (allocations pour enfants à charge, taxes sur les biens consommés spécifiquement par les enfants, etc.) sont analysés à l’aide d’un modèle économique où les ménages possèdent un choix en matière de fécondité. Quand la fécondité est un facteur endogène, nous obtenons des résultats remarquables si nous considérons simultanément les avantages pour enfants à charge et l’imposition du revenu et de la consommation. Entre autres, les différentes capacités des familles à élever des enfants et, par conséquent, toutes choses étant égales par ailleurs, les variations du nombre d’enfants, peuvent ne pas être pertinentes d’un point de vue fiscal si l’État peut effectuer des transferts forfaitaires (impôts/subventions) personnalisés aux familles. Plus surprenant encore, on peut montrer que, si l’État est dans l’impossibilité de procéder à des transferts forfaitaires personnalisés, mais qu’il est en mesure de distinguer les biens consommés exclusivement par les enfants de ceux qui sont propres aux adultes, il pourrait alors être optimal d’imposer selon le nombre d’enfants et de subventionner les biens propres aux enfants (c’est-à-dire d’aider financièrement les parents de manière à les inciter à dépenser davantage pour chaque enfant mis au monde, plutôt que de les amener à avoir plus d’enfants et à lésiner quand il s’agit de subvenir à leurs besoins).
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Doyen-Lang, S., L. Lang, A. Charlier, M. F. charlier, and E. McRae. "Calcul des energies et transferts de charge des mercurographitures KHgC4 et RbHgC4 par une methode quantique." Carbon 32, no. 6 (1994): 1059–65. http://dx.doi.org/10.1016/0008-6223(94)90215-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Maillet, Grégoire M., Guillaume Raccasi, Mireille Provansal, François Sabatier, Christelle Antonelli, Claude Vella, and Thomas J. Fleury. "Transferts sédimentaires dans le Bas-Rhône depuis le milieu du 19e siècle : essai de quantification." Géographie physique et Quaternaire 61, no. 1 (March 26, 2009): 39–53. http://dx.doi.org/10.7202/029569ar.

Повний текст джерела
Анотація:
Résumé En raison des contraintes géographiques et hydrographiques qui le caractérisent (influence des affluents méditerranéens, affaiblissement du profil longitudinal, proximité du niveau marin), le Bas-Rhône présente une tendance historique au stockage des sédiments dans sa plaine d’inondation, responsable de la progradation de la plaine deltaïque. Il constitue aujourd’hui une zone-clé essentielle à la compréhension des relations entre le bassin-versant et le milieu océanique, aussi bien pour le transfert de la charge sédimentaire que pour les différents polluants dont celle-ci est le vecteur. Il apparaît donc nécessaire de déterminer quelle est sa capacité de transfert et quelle part du transit sédimentaire est stockée dans les différents compartiments de cet espace. Les données utilisées sont issues de sources bibliographiques directes (mesures in situ, travaux de quantification) et indirectes (superposition de cartes bathymétriques, reconstitution de l’historique des débits). Disponibles à diverses échelles temporelles et spatiales, ces sources permettent de proposer un bilan du fonctionnement sédimentaire depuis 150 ans et d’analyser les discontinuités du transit particulaire, en tenant compte de la part du stockage (permanent ou temporaire) dans les lits fluviaux et du transfert vers l’embouchure, puis le littoral et la plate-forme continentale. Ce bilan démontre que le Rhône actuel est un bon conducteur de sa charge solide jusqu’à l’embouchure et que cette dernière stocke de moins en moins le flux sédimentaire. Ce fonctionnement est interprété comme étant la conséquence des aménagements qui contraignent l’écoulement fluvial depuis le milieu de 19e siècle.
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Lamy, Loïck, Anne Joyeau, and Dominique Philippe Martin. "Quels impacts des événements de vie personnelle du salarié sur ses relations de travail avec l’équipe ?" @GRH N° 51, no. 2 (August 9, 2024): 81–104. http://dx.doi.org/10.3917/grh.051.0081.

Повний текст джерела
Анотація:
La littérature en Gestion des Ressources humaines s’intéresse peu aux incidences possibles des événements de vie personnelle sur le comportement au travail des salariés, encore moins à celles sur leurs relations de travail avec leurs équipes. Quels impacts les événements de vie personnelle rencontrés par un salarié peuvent avoir sur ses relations de travail avec l’équipe ? L’article explore cette problématique par le biais du point de vue des managers. Une approche par les transferts interpersonnels a été utilisée comme cadre conceptuel général. Deux théories, affiliées à cette approche, ont été utilisées pour interpréter les données empiriques : la théorie du crossover et la théorie de l’échange social. Nous employons une méthodologie qualitative. Des entretiens semi-directifs ont été menés auprès de 27 managers d’une grande entreprise des Industries électriques et gazières françaises. Ils ont été analysés à partir d’un codage mixte, basé sur des concepts préexistants et émergents. L’article apporte deux contributions à l’étude du lien entre événements de vie et travail : il met en lumière les transferts (« crossovers ») négatifs (ex. : charge de travail, affects négatifs…) ou positifs (ex. : soutien émotionnel, instrumental…) survenant en séquences dynamiques entre les salariés en difficulté et leurs équipes ; il souligne l’influence que peut jouer la norme de réciprocité.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Gauthier, Hervé. "Variables démographiques et charges sociales : comparaisons annuelles et intergénérationnelles." Articles 24, no. 2 (March 25, 2004): 285–321. http://dx.doi.org/10.7202/010190ar.

Повний текст джерела
Анотація:
RÉSUMÉ À l'aide d'un profil de dépenses selon l'âge pour un ensemble de programmes gouvernementaux (services et transferts), nous examinons l'effet des changements démographiques et de la participation au marché du travail sur la charge que vont représenter les dépenses sociales dans les prochaines décennies. La croissance de l'activité et notamment le recul de l'âge de la retraite auraient un effet majeur à cet égard, comme d'ailleurs l'adoption de profils de dépenses sociales par âge différents. C'est le point de vue transversal. Par ailleurs, il est possible d'établir un bilan entre les bénéfices reçus par les générations et leurs contributions. Alors que les bénéfices reçus par une génération dépendent essentiellement de l'effectif de cette génération, ses contributions vont dépendre de l'importance des dépenses sociales de chaque année. Les structures démographiques font que les générations nées avant 1991 bénéficieront d'un excédent, parfois très élevé (autour de 30 %), alors que les suivantes connaîtront un bilan négatif, en général assez faible. Tous les scénarios dans lesquels la population décroît impliquent un déficit dans le bilan des dépenses sociales des générations futures. La croissance de l'activité ne modifie que très peu l'évolution du bilan des dépenses sociales des générations futures.
Стилі APA, Harvard, Vancouver, ISO та ін.
13

O'Rafferty, Alden, Peter Benedek, Valerie Anne Niemann, Sang-Won Lee, Adam C. Nielander, and Thomas F. Jaramillo. "Effect of Temperature on Faradaic Efficiency and SEI Formation in Lithium Mediated Nitrogen Reduction." ECS Meeting Abstracts MA2024-01, no. 53 (August 9, 2024): 2860. http://dx.doi.org/10.1149/ma2024-01532860mtgabs.

Повний текст джерела
Анотація:
Lithium-mediated nitrogen reduction (Li-N2R) can be distributed and powered by renewable energy, making it a sustainable ammonia production alternative to the Haber Bosch process. While Haber Bosch is responsible for 1.3% of CO2 emissions yearly and requires centralized facilities with high temperatures and pressures, Li-N2R works at near-ambient conditions and therefore allows for decentralized production.1 First, lithium (Li+) ions electroplate as lithium metal on the working electrode. Second, the deposited lithium reacts with N2 gas to form lithium nitride (Li3N). Lastly, Li3N reacts with a proton source to form ammonia (NH3) (Figure Right). During Li-N2R, the NH3 selectivity is controlled through the mass transport of N2, Li+, and protons to the working electrode electrode (WE). The transport of these species is limited by the solid electrolyte interface (SEI), a passivation layer formed on top of the WE.2 The thickness and ratio of organic and inorganic species in the SEI change at different cycling temperatures, thus affecting the rates of transport between charge and uncharged species traveling to and from the electrode. Here, we study the impacts of temperature on FE and SEI composition in 1M LiBF4 in both diglyme (DG) and tetrahydrofuran (THF) with a 1v% ethanol (EtOH) proton source (Figure Left). Using ion chromatography (IC), nuclear magnetic resonance (NMR), and inductively coupled plasma mass spectrometry (ICP-MS) on the SEI dissolved in D2O, we quantify the SEI species formed at different cycling temperatures. Our correlation of temperature and SEI compositions to FE provide opportunities to engineer the SEI for improved Li-N2R FE and stability. 1J. W. Erisman et al., Nat. Geosci 2008. 1, 636–639 2K. Steinberg et al., Nat. Energy 2022, 8 (2), 138 Figure 1
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Benmostefa Harig, Fatima Zohra. "Assimilation et transferts sémantiques des emprunts lexicaux dans le discours médiatique." Traduction et Langues 13, no. 2 (December 31, 2014): 156–64. http://dx.doi.org/10.52919/translang.v13i2.813.

Повний текст джерела
Анотація:
Assimilation and semantic transfers of lexical borrowings in media discourse The word hijab can be presented as a xénisme, but it knew a semantic change in media discourse, the integration process allows to see its evolution in relation to the historical, cultural and ideological events and of course political. The original reference, the garment (clothing) is not present in the Hexagone; That is why, by metonymy slip, media discourse such as lexicographical discourse retains, at the semantic level, just a portion of the garment (clothing, the veil. This is what some suggest discursive denominations. Hijab, at least in this metonymic sense, denominates not a non-existent reality in France, but a new reality; the label of "xénisme" appears once in partially inadequate. For their part, the words scarf and veil expanded their polysemy in the form of semantic neologisms as they can name this new reality; the Islamic veil, as well as to the Islamic headscarf.
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Genov, Ivan, Alexander Tesfaye, Svetlozar Ivanov, and Andreas Bund. "Investigations on the Initial-Stages of Lithium Deposition/Dissolution Processes in Sulfolane Based Electrolytes." ECS Meeting Abstracts MA2023-02, no. 5 (December 22, 2023): 833. http://dx.doi.org/10.1149/ma2023-025833mtgabs.

Повний текст джерела
Анотація:
Li metal could be the ideal anode for rechargeable battery technologies, due to its negative redox potential (ca. -3 V vs. SHE), high specific capacity (3860 mAh g−1), and low density (0.534 g cm−3) [1-3]. Recent advances show a new design concept where there are no initial active materials in the anode (no carbon, Si, or Li metal) and the corresponding Li quantity is directly deposited on the current collector during charging. This approach will result in important practical advantages such as enhanced volumetric and gravimetric specific energies, ease of manufacturing and reduced complexity/safety concerns of the recycling process (ideally Li is completely removed in the discharged state). However, the applicability of the Li-metal batteries is constrained by the nonuniform lithium deposition, accompanied by dendrite growth and the formation of dead lithium during long-term cycling, which lead to low Coulombic efficiency and even cell failure [2]. The initial structure and morphology of the Li deposit has a vital influence on the later progression of the Li layer [4]. This underpins the importance of a fundamental understanding of the electrodeposition process. However, the presence of a solid-electrolyte interphase (SEI) makes such investigations difficult, since after the transport of the Li ions through the SEI, a subsequent charge transfer and nucleation growth process at the substrate-SEI interface, instead of substrate-liquid electrolyte interface occurs. This contribution will discuss lithium electrodeposition in a sulfolane based, localized high concentrated electrolyte system. Possible phase formation mechanisms as well as kinetic and thermodynamic aspects during the initial stages of the process are studied by classical electrochemical methods (Fig. 1, left). Furthermore, the mass-charge balance during deposition and stripping was monitored (Fig. 1, right) via in-situ microgravimetry (electrochemical quartz crystal microbalance). In the contribution we will discuss these transients in terms of lithium layer growth and SEI formation. References: [1] X. Cheng et al., (2017) Chemical Reviews, 117 (15), p. 10403-10473. [2] J. Cui et al., (2017) Chinese Chemical Letters, 28 (12), p. 2171-2179. [3] Z. Hu et al., (2020) Frontiers in chemistry 8, p. 409. [4] A. Pei et al., (2017) Nano Letters, 17 (2), p. 1132–1139. Figure 1
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Bolay, Linda, Eiji Hosono, Yoshitsugu Sone, Arnulf Latz, and Birger Horstmann. "Degradation and Multi-Time-Scale State Estimation of Li-Ion Batteries in Satellites." ECS Meeting Abstracts MA2023-01, no. 45 (August 28, 2023): 2465. http://dx.doi.org/10.1149/ma2023-01452465mtgabs.

Повний текст джерела
Анотація:
In-orbit satellite REIMEI, developed by the Japan Aerospace Exploration Agency (JAXA), has been relying on off-the-shelf Li-ion batteries since its launch in 2005 [1]. The performance and durability of Li-ion batteries is impacted by various degradation mechanisms, one of which is the growth of the solid-electrolyte interphase (SEI). Long-term SEI growth is the greatest contributor to capacity fade in lithium-ion batteries. In this contribution, we will address several aspects of the modeling and simulation of the batteries of satellite REIMEI. We simulate long-term degradation under the generic LEO satellite cycling conditions in a P2D framework. The simulations are validated with experiments and in-flight data provided by JAXA [1]. Our group has developed models for long-term SEI growth [2,3]. To show the inhomogeneous growth of the SEI in 3D, we perform microstructure-resolved simulations [4]. These studies are the foundation for analyzing the states of the batteries, which cannot be measured in operando. To estimate the state of charge and state of health, we make use of filter techniques and the in-flight data of the satellite batteries. Kalman filters are particularly suitable for the noisy data. Since the states change on different timescales, a multi-time-scale algorithm is applied, where two filters are combined. With this approach, we aim to reliably predict the lifetime of satellite batteries in orbit. References [1] M. Uno, et al., J. Power Sources, 196(20) (2011) 8755–8763. [2] F. Single, et al., ChemSusChem, 11(12) (2018) 1950–1955. [3] L. von Kolzenberg, et al., ChemSusChem, 13(15) (2020) 3901–3910. [4] L. Bolay, et al., J. Power Sources Advances, 14 (2022) 100083.
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Cazelles, B., and D. Fontvieille. "Modélisation d'un écosystème lotique pollué par une charge organique : prise en compte de l'hydrodynamique et des mécanismes de transport." Revue des sciences de l'eau 2, no. 2 (April 12, 2005): 183–209. http://dx.doi.org/10.7202/705028ar.

Повний текст джерела
Анотація:
L'article décrit la partie hydrophysique d'un modèle écologique de simulation des transferts de carbone organique dans un cours d'eau pollué par le rejet d'une porcherie. Cette partie est constituée d'un modèle hydrodynamique inspiré du modèle de Saint-Venant, couplé à un modèle de transport basé sur l'équation classique de convection-diffusion. Ces modèles sont appliqués à un écoulement unidirectionnel, non uniforme et non stationnaire. Les équations de ces deux modèles sont résolues par une méthode aux différences finies utilisant des schémas implicites. L'ajustement des paramètres est réalisé à partir de résultats d'expériences de traçage à la rhodamine. Appliqués au carbone organique dissous de l'Albenche, les modèles montrent l'extrême étalement des nuages dû aux seuls phénomènes physiques. L'une des interprétations possibles de l'écart entre les valeurs expérimentales et les valeurs calculées au niveau de la station aval, peut être l'importance de la consommation du carbone par les biocoenoses benthiques.
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Gossage, Zachary Tyson, Nanako Ito, Tomooki Hosaka, Ryoichi Tatara, and Shinichi Komaba. "Understanding the Development and Properties of SEI in Concentrated Aqueous Electrolytes Via Scanning Electrochemical Microscopy." ECS Meeting Abstracts MA2023-02, no. 60 (December 22, 2023): 2900. http://dx.doi.org/10.1149/ma2023-02602900mtgabs.

Повний текст джерела
Анотація:
Solid-electrolyte interphases (SEI) are essential to the stability of high voltage lithium-ion batteries (LIBs) where they act as a protective barrier that prevents electrolyte decomposition during charge-discharge and during storage of the energy. Within emerging water-in-salt electrolytes (WISE), the SEI are thought to play a similar role in preventing electrolyte decomposition and expanding the potential window.(1, 2) The SEI reported in WISE are derived from the electrolyte ions, producing inorganic SEI (e.g. LiF) of similar thickness to non-aqueous batteries.(1) Others suggest the superconcentrated regimes promote anion reduction and shift its reduction potential at similar or more positive potentials to hydrogen evolution. However, our knowledge on the SEI found in concentrated aqueous electrolytes and their properties remains quite limited. Furthermore, WISE full cells can access >1000 cycles at high rates, but their capacities and retention are still heavily lacking compared with commercial LIBs.(2) Improving our understanding of the WISE-based SEI formation process, its stabilization, and prevention of gas evolution are key to achieving higher performing aqueous batteries. Herein, we explore the use of advanced scanning electrochemical microscopy (SECM) methods(3) to characterize an SEI within a highly concentrated K(FSA)0.6(OTf)0.4 electrolyte. Focusing on a 3,4,9,10-perylenetetracarboxylic diimide (PTCDI) composite electrode, we use both ex situ, approach curves as well as in situ single spot measurements to analyze SEI formation (Figure 1a). The approach curves were collected before and after galvanostatic cycling by using a three-electrode cell that could easily be converted between closed (cycling) and open-cell (SECM) measurements. After cycling, we observed passivating SEI structures with electron transfer rates comparable to those found in LIBs (Figure 1b). At the same time, our results indicated the SEI deposition was discontinuous with some regions showing reactivity comparable to an uncycled electrode. We noted an increase in roughness with cycling, which could produce some of the more reactive regions exposed at the electrode surface. Thereafter, we conducted in situ measurements at a constant distance from the PTCDI surface.(4) During the first cycle, we observed a reversible/transient decrease in the feedback current at ~ -0.7 V vs. Ag/AgCl, far positive to H2 evolution (Figure 1c,d). In addition, more stable passivation was observed when the PTCDI electrode reached more negative potentials accessing the second redox process of PTCDI (Figure 1c,e). As the electrode reached potentials more negative to -1.3 V, we observed significant hydrogen evolution. Our results were further confirmed with operando electrochemical mass spectrometry (OEMS). OEMS showed similar potentials for evolving hydrogen as well as the evolution of other gases indicative of SEI formation. In all, our interfacial SECM analyses combined with traditional battery measurements and OEMS provides direct quantification of the passivating properties of the SEI as well as identification of local and bulk gas evolution that can be expanded for other emerging aqueous systems. References 1 L. Suo, et al., Science, 2015, 350, 938-943. 2 L. Droguet, et al., Adv. Energy Mater., 2020, 10, 2002440. 3 Gossage, Z.T., et al., "Application to Batteries and Fuel Cells." Scanning Electrochemical Microscopy. CRC Press, 2022. 481-512. 4 G. Zampardi, et al., RSC Advances, 2015, 5, 31166-31171. Figure 1
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Guillemard, Anne-Marie. "Re-Writing Social Policy and Changes within the Life Course Organisation. A European Perspective." Canadian Journal on Aging / La Revue canadienne du vieillissement 16, no. 3 (1997): 441–64. http://dx.doi.org/10.1017/s0714980800008734.

Повний текст джерела
Анотація:
RÉSUMÉLe mouvement de sortie précoce d'activité observé ces dernières années en Europe résulte d'autres mécanismes de protection sociale que ceux de l'assurance vieillesse et n'est pas dû à une simple avance du calendrier de l'âge de départ à la retraite.Deux systèmes ont été particulièrement sollicités pour assurer la prise en charge des travailleurs âgés: l'assurance invalidité et l'assurance chômage. Des dispositifs de «préretraite» ont également facilité, par une indemnisation, les sorties anticipées de ces travailleurs, actifs ou au chômage.L'édifice de protection sociale des pays européens a été ainsi profondément intransformé, les risques et les logiques de prise en charge, se mêlant de manière inextricable.De plus, ces nouvelles formes de transition entre activité et retraite sont révélatrices de réorganisations en cours, sur tous les parcours des âgées. Une des implications du mouvement massif de sortie précoce d'activité a été que le cycle de vie ternaire marqué par des seuils (âge de scolarité, âge de droit à la retraite …), facteur important de socialisation, se décompose. Il est remplacé progressivement par une nouvelle flexibilité de l'organisation de la fin du cycle de vie. Une telle évolution incite à repenser le système de protection sociale dans le sens d'une moindre articulation à une division ternaire du cycle de vie. Dans cette perspective le concept même de retraite et de transferts sociaux pour l'inactivité définitive perd de sa pertinence.
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Felteau, Claude, Liliane Brouillette, and Pierre Lefebvre. "Les effets des impôts et des allocations familiales sur les comportements de fécondité et de travail des Canadiennes. Résultats d'un modèle de choix discrets." Population Vol. 49, no. 2 (February 1, 1994): 415–56. http://dx.doi.org/10.3917/popu.p1994.49n2.0456.

Повний текст джерела
Анотація:
Résumé Lefebvre (Pierre), Brouillette (Liliane), Felteau (Claude). - Les effets des impôts et des allocations familiales sur les comportements de fécondité et de travail des Canadiennes : résultats d'un modèle de choix discrets Nous utilisons un modèle logistique de choix discrets (conditionnel et séquentiel) pour évaluer la sensibilité des comportements des Canadiennes, mariées ou vivant en union consensuelle, à des changements dans les flux attendus de revenu faisant suite à des modifications de la politique fiscale liée à la présence d'enfant(s) à charge et de la politique des allocations familiales. On suppose que les femmes (couples) font face à trois types de décisions séquentielles : la décision de fécondité, la décision quant au nombre d'enfants et la décision de travailler ou de ne pas travailler. Ce processus hiérarchique de prise de décision définit huit options où chacune est caractérisée par sa valeur. Le modèle est estimé, à l'aide de micro-données provenant de 9 coupes transversales et portant sur les années 1975 à 1987, par une procédure de maximum de vraisemblance à information complète, en tenant compte du problème d'autosélection des échantillons. En prenant en considération les estimations empiriques de la sensibilité des comportements des femmes selon les provinces, on obtient un cadre empirique permettant de simuler les effets de changements apportés aux politiques fiscales et de transferts en faveur des familles avec des enfants à charge sur la fécondité et l'ampleur des déboursés pour les deux niveaux de gouvernement au Canada.
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Witt, Daniel, Lars Bläubaum, Florian Baakes, and Ulrike Krewer. "In-Depth Analysis of the Substantial Effect of Fast Formation on Lithium-Ion Cell Characteristics." ECS Meeting Abstracts MA2022-02, no. 6 (October 9, 2022): 623. http://dx.doi.org/10.1149/ma2022-026623mtgabs.

Повний текст джерела
Анотація:
The formation of lithium-ion batteries is a crucial process step in battery production. Although it covers only the first few charging and discharging cycles, it impacts both the long-term degradation as well as the performance characteristics of the final cell. Commonly, formation times are on the order of multiple days due to relatively low C-rates. Although this prevents safety-critical lithium plating, research has shown that neither the slowest nor the fastest formation result into the best possible cell characteristics. [1] To allow for a knowledge-based design of the cell formation process, detailed cell diagnostics including the characterization of the formed solid electrolyte interphase (SEI) are indispensable. However, the preparative effort for most experimental methods for SEI characterization like SEM or XPS is significant and will also require cell disassembly. An in-operando cell diagnosis can be realized with physicochemical modeling based on non-destructive dynamic electrochemical measurements. However, the dynamics of the SEI are commonly either modeled in a simplified way or the models are not designed for the simulation of various measurement types. To overcome these limitations, we extended the classic battery model from Doyle et al. [2] with a detailed SEI modeling. This finally allows to describe C-Rate and EIS data with the same parameter set (see Fig. 1a,1b), providing detailed insights into performance-limiting processes and their changes along cell aging. [3] On the experimental side, we performed a broad formation study at different temperatures with different currents and current profiles, using small-scale three-electrode test cells. Fig. 1c) shows the discharge capacity for different formation procedures. Clearly, the performance significantly depends on the chosen formation conditions. The model-based cell diagnosis helps to shed light onto this interrelation. Surprisingly, we found that the bulk and interfacial properties of the SEI are not the root cause for the substantial differences in the cell’s fast charge/discharge capability. In fact, the effective transport properties in the anode electrolyte phase are driving the performance differences. Furthermore, the cathode reaction kinetics are affected by the chosen cell formation protocol. Ultimately, our experimental formation study in combination with the model-based cell diagnosis highlights that the cell formation process is not only about a stable SEI but also about minimizing the impact of reaction products from the SEI formation on the bulk electrolyte phase. References: [1] H. Mao et al. (2018) J Power Sources 402, 107-115 [2] M. Doyle et al. (1993) J Electrochem Soc 140 (6), 1526-1533 [3] D. Witt et al. (2022) Batteries Supercaps, 10.1002/batt.202200067 Figure 1
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Lefebvre, Pierre, Liliane Brouillette, and Claude Felteau. "Comportements de fécondité des Québécoises, allocations familiales et impôts : résultats et simulations d’un modèle de choix discrets portant sur les années 1975-1987." Articles 70, no. 4 (March 23, 2009): 399–451. http://dx.doi.org/10.7202/602157ar.

Повний текст джерела
Анотація:
RÉSUMÉ On suppose que les femmes « mariées » (les couples) font face à trois types de décisions séquentielles : la décision de fécondité, la décision quant au nombre d’enfants et la décision de travailler ou de ne pas travailler. Ce processus hiérarchique de prise de décision définit différentes options (huit) caractérisées par leur valeur. Un modèle logistique de choix discrets évaluant la sensibilité des comportements des Québécoises à des changements dans les flux attendus de revenu liés à des modifications de la politique familiale gouvernementale (exemptions, crédits d’impôt, allocations familiales) a été estimé, à l’aide de micro-données provenant de 9 coupes transversales et portant sur les années 1975 à 1987, par une procédure de maximum de vraisemblance à information complète, en tenant compte du problème d’autosélection des échantillons. Les résultats empiriques du modèle montrent que la fiscalité personnelle conditionnelle à la présence des enfants et les allocations familiales influencent à la hausse la fécondité dans le cas des familles qui ont déjà des enfants. Ceci permet donc de simuler certains changements apportés aux politiques fiscales et de transferts en faveur des familles avec enfant(s) à charge et d’évaluer les effets sur la fécondité et la participation au marché du travail ainsi que l’ampleur des déboursés pour les deux paliers de gouvernements.
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Hong, Chulgi Nathan, Mengwen Yan, Oleg Borodin, Travis Pollard, Manuel Reiter, Dario Gomez Vazquez, Netanel Shpigel, Jeremy I. Feldblyum, and Maria R. Lukatskaya. "Stable Lithium Metal Batteries Enabled by Dilute Cationic Additives." ECS Meeting Abstracts MA2024-01, no. 2 (August 9, 2024): 389. http://dx.doi.org/10.1149/ma2024-012389mtgabs.

Повний текст джерела
Анотація:
Conventional Li-ion electrolytes consist of carbonate solvents and Li-ion salts that were made for carbonaceous negative electrodes. When the electrolytes are used with metallic lithium anodes, carbonate electrolytes lead to low charge-discharge cycle stability due to adverse reactive species at the anode surface.1-4 This reactive species are called the solid electrolyte interface (SEI).1 SEI instabilities/inhomogeneities result in its continuous thickening and formation of electronically non-active dead lithium.2 SEI composition and structure are affected by both solvent and electrolyte chemistry in bulk solution and, more importantly, at the electrode-electrolyte interface.4 Current research studies suggest that X-rich (where X is a halogen) SEI yields superior performance compared to halogen-free SEI.1,5 Electrolytes that have large volume fractions of halogenated species have statistically higher probability to be reduced at the electrode surface and yield X-rich SEI layers.6 Therefore, the use of halogenated solvent and/or high concentrated (> 1 M) lithium salt with halogenated anions has been actively explored for LiMBs. However, the high cost of Li salts and high viscosity of the electrolyte at high salt concentration make the concentrated electrolytes unrealistic for commercial battery applications. In search of a cost-effective solution for high performance LiMBs, halogenated electrolyte additives could serve as an ideal approach since only a small amount of the additive would be potentially required to induce similar X-rich interface that can be seen in the case of the halogenated ether electrolyte. In this meeting abstract, we present a new concept that leverages favorable electrostatic interactions with the electrolyte additive to drive the formation of robust SEI layers even at low additive content. Specifically, custom-designed additives can be electrostatically attracted to the negatively charged electrode, creating a high population of halogenated species at the anode surface even at a dilute Li salt concentration. Effective SEI formation with a low-concentration additive circumvents the challenges associated with the current state-of-the-art approach of using halogenated species at high concentration (i.e., unfavorably high solution viscosity and high cost). Reference 1 Louli, A. J. et al. Diagnosing and correcting anode-free cell failure via electrolyte and morphological analysis. Nature Energy 5, 693-702, (2020). 2 Chen, K.-H. et al. Dead lithium: mass transport effects on voltage, capacity, and failure of lithium metal anodes. Journal of Materials Chemistry A 5, 11671-11681, (2017). 3 Lin, D. et al. Three-dimensional stable lithium metal anode with nanoscale lithium islands embedded in ionically conductive solid matrix. Proc Natl Acad Sci U S A 114, 4613-4618, (2017). 4 Lin, D., Liu, Y. & Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat Nanotechnol 12, 194-206, (2017). 5 Yu, Z. et al. Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries. Nature Energy 5, 526-533, (2020). 6 Yamada, Y., Wang, J., Ko, S., Watanabe, E. & Yamada, A. Advances and issues in developing salt-concentrated battery electrolytes. Nature Energy 4, 269-280, (2019).
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Wanko, A., R. Mose, and A. Liénard. "Capacités de traitement d'un effluent de synthèse en infiltration percolation." Revue des sciences de l'eau 18, no. 2 (April 12, 2005): 165–75. http://dx.doi.org/10.7202/705554ar.

Повний текст джерела
Анотація:
Dans cet article, nous présentons des travaux mettant en évidence les capacités de traitement biologique des eaux résiduaires urbaines au sein des milieux poreux de textures différentes. Une étude comparative du développement de la biomasse couplé aux mécanismes généraux de transferts gazeux à travers deux réacteurs biologiques est menée. Des lits d’infiltration percolation sont simulés par des colonnes garnies de sables d’origine et de structures différentes. Ils sont alimentés périodiquement via un automate de commande avec un influent d’une charge de 525 mgDCO/l et de 54 mgNK/l. Les résultats obtenus établissent le fait qu’un développement équilibré de la biomasse incluant les phases de croissance et de régression est intrinsèquement lié à la nature physique du matériau support. A l’aide des carottes prélevées sur les massifs filtrants et des sondes d’oxymétrie introduites à différentes hauteurs des lits d’infiltration, nous montrons que la répartition verticale du biofilm dans les colonnes ainsi que l’oxygénation des milieux poreux lors des périodes de repos sont également corrélées à la structure des supports pourtant de diamètres moyens similaires. L’efficacité de traitement biologique du carbone est supérieure pour un sable d’origine alluvionnaire comparativement à un sable concassé ; la tendance s’inversant significativement lorsqu’il s’agit de la diminution de l’azote.
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Kameoka, Yuto, Takashi Hakari, Daisuke Okuda, Naoto Yasumura, Minako Deguchi, Shinji Ozaki, and Masashi Ishikawa. "Factors Improving Lithium Sulfur Battery Performance with Mesoporous Carbon-Sulfur Cathode by Mixing Vinylene Carbonate Electrolyte with Fluoroethylene Carbonate." ECS Meeting Abstracts MA2023-02, no. 4 (December 22, 2023): 683. http://dx.doi.org/10.1149/ma2023-024683mtgabs.

Повний текст джерела
Анотація:
1. Introduction Lithium-ion batteries (LIB) are used in a variety of applications, including portable devices such as smartphones. More recently, the development of rechargeable batteries is expected for applications such as next-generation electric mobility, requiring energy storage devices with higher energy density than conventional LIB, and lithium-sulfur (Li-S) batteries are attracting attention among these applications. To realize Li-S batteries with high energy density and safety, we have focused on mesoporous carbon-sulfur cathodes and carbonate-based electrolytes. In previous studies, we have reported that Li-S batteries using vinylene carbonate (VC) and fluoroethylene carbonate (FEC) as electrolyte solvents exhibit superior rate characteristics than using only VC solvent 1). This study investigates the factors that contribute to the improved performance when using a FEC-VC mixed electrolyte. 2. Experimental method (1) We assembled the cells using 1.0 M lithium bis(trifluoromethanesulfonyl)imide / VC (Only VC electrolyte) or 1.0 M lithium bis(trifluoromethanesulfonyl)imide / FEC: VC (FEC-VC electrolyte). The cell was pre-cycled at 0.1C in the voltage range of 1 - 3 V, and then discharged at 10 C or 0.1 C and charged at 0.1 C for three cycles. After discharging and charging, each cell and electrode were evaluated using electrochemical impedance spectroscopy (EIS) or XPS. (2) Radical polymerization of VC with 2,2'-azobis(isobutyronitrile) (AIBN) was made by mixing VC and AIBN (VC radical polymer). Anionic polymerization of VC with lithium ethoxide (LiOEt) was also obtained by mixing VC and LiOEt (VC anionic polymer). These polymers were analyzed using XPS and MALDI-TOFMS. (3) The cathode materials after discharging and charging were stripped from the current collector. The powder was analyzed by APCI-TOFMS. (4) The cathode after 10 cycles was analyzed by STEM-EELS. 3. Results and discussion We conducted EIS on Li-S batteries charged and discharged with Only VC electrolyte or FEC-VC electrolyte at 10 C or 0.1 C, respectively. As a result, in the case of Only VC electrolyte, the interfacial resistance increased significantly after charge-discharge at 10 C when compared to that after charge-discharge at 0.1 C. On the other hand, when using FEC-VC electrolyte, the increase in interfacial resistance was suppressed. In addition, XPS investigation of the electrodes after discharging and charging showed that the SEI film thickness increased significantly after discharging and charging at 10 C when using Only VC electrolyte, whereas the increase in SEI film thickness was suppressed when using FEC-VC electrolyte. These suggest that when using FEC-VC electrolyte, a good SEI that suppresses electrolyte decomposition more is formed, and thin and low-resistance SEI is maintained even after rapid discharge, thereby improving rate performance. In addition, the XPS C1s spectra observed on the electrode film showed similar profiles to those of the VC radical polymer when using Only VC electrolyte, and to those of the VC anionic polymer when using FEC-VC electrolyte. Therefore, these polymers were used as models for the assumed SEI organic components when using respective electrolytes and were investigated by MALDI-TOFMS. As a result, the molecular weight of the monomer unit of the polymer was 250 for the VC radical polymer, while it was 60 for the VC anionic polymer. The results of the APCI-TOFMS investigation on the cathode materials after discharging and charging showed that the components with higher molecular weight decreased as using the electrolyte solvent with a higher mixing ratio of FEC to VC. Therefore, we considered that the mixing of FEC makes the SEI organic components less bulky and denser, which suppresses the continuous formation of SEI kinetically and reduces the interfacial resistance. We conducted further investigation about SEI that could suppress electrolyte degradation more when using FEC-VC electrolyte. STEM-EELS investigation of the cathode after 10 cycles of charge-discharge showed that the SEI layer is divided into two layers when using FEC-VC electrolyte, and the SEI inner layer is mainly composed of S, F and Li. The XPS results also revealed the presence of LiF and Li2Sx (x=2-8) inside the SEI. Therefore, it is suggested that when using FEC-VC electrolyte, the formation of a layer that mainly composed of LiF and Li2Sx (x=2-8) inside the SEI acts as a barrier between the electrode and the electrolyte, which can suppress excessive decomposition of the electrolyte. Acknowledgements This research was partly performed as a subcontract (JPNP15005) from the New Energy and Industrial Technology Development Organization (NEDO) (contractor: GS Yuasa Corporation; subcontractor: Kansai University). Reference 1) K. Kishida et al., The 60th Battery Symposium in Japan, The Committee of Battery Technology, The Electrochemical Society of Japan, p. 2D04 (2019).
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Miliani, Y., S. Deruddre, and D. Benhamou. "Régionalisation des services d’obstétrique et charge de travail anesthésique lors des transferts in utero dans un centre périnatal de niveau III." Annales Françaises d'Anesthésie et de Réanimation 24, no. 3 (March 2005): 244–48. http://dx.doi.org/10.1016/j.annfar.2004.11.004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Groher, Christiane, Damian Marlon Cupid, Erwin Rosenberg, and Juergen Kahr. "Investigation of Gas Evolution by Operando GC/MS from SEI Forming Additives in Lithium-Ion-Batteries." ECS Meeting Abstracts MA2023-01, no. 2 (August 28, 2023): 515. http://dx.doi.org/10.1149/ma2023-012515mtgabs.

Повний текст джерела
Анотація:
Due to the chemical reactivity of the electrolyte, electrolyte decomposition often occurs at the electrode-electrolyte interface during cycling, which can lead to a loss in LIB performance. On the anode side, however, the formation of a stable Solid Electrolyte Interphase (SEI) is essential for the safe operation of Lithium-ion batteries (LIBs). The SEI layer, which is permeable for Li+ ions, protects the electroactive materials from direct contact with the electrolyte, thereby inhibiting further electrolyte decomposition. In the formation cycles of fresh cells, electrolyte degradation is primarily attributed to the SEI formation processes at the anode. Several literature reports have confirmed that the newly formed interphase consists of organic and inorganic decomposition products of the electrolyte.1 To increase battery performance, cycle life and safety, it is essential to form a stable SEI.2 A common strategy to stabilize the SEI is to use additives in the electrolyte composition. The additives should exhibit higher reduction potentials than other electrolyte components to enable preferential reduction and incorporation into the SEI. The most common SEI forming additives are fluoroethylene carbonate (FEC) and vinylene carbonate (VC). They both decompose during the formation cycle to form a polymeric layer at the electrode surface. The electrolyte decomposition reactions which lead to SEI formation are usually accompanied by gaseous side products. The evolving gas species form a complex gas mixture which can be separated by gas chromatography (GC) into their individual components and subsequently identified by mass spectrometry (MS). While operando GC/MS gives information on the volatile side products of the electrolyte decomposition reactions, X-ray photoelectron spectroscopy (XPS) can be used to identify the degradation products that form on the surface of the electrode and are incorporated into the SEI. The combination of the two techniques allows a more comprehensive picture of SEI formation processes to be drawn. In this work, operando GC/MS of Lithium-ion full cells with NMC 811 cathodes and graphite anodes was used to compare the gas species evolving during the formation reactions in an electrolyte with the composition of 1M LiPF6 in EC/DEC 1:1 with FEC and VC electrolyte additives in a ratio of 1w%, respectively. In a comparative study we present the decomposition pathways of the electrolytes with and without SEI forming additives by analysing the composition of the gas phase as a function of cell potential. We observe that the complex gas mixture consists of carbonate components originating from transesterification reactions and evaporation of the volatile electrolyte. In addition, inorganic components such as carbon monoxide and carbon dioxide are produced, which mainly stem from the degradation of cyclic carbonates. Furthermore, the gas phase consists of saturated and unsaturated hydrocarbons which can be ascribed to the linear carbonate components as well as ether and carbonyl components. We have also observed that it is possible to distinguish between volatile compounds which form during the charge and discharge processes, respectively. The increased gas evolution at the beginning of the formation cycle confirms that a substantial part of the passivation layer is formed during charge. Finally, operando GC/MS was also used to monitor the evolution of the decomposition products during battery operation at overcharge conditions. Acknowledgement: The author gratefully acknowledges the FFG (Austrian Research Promotion Agency) for funding this research within project No. 879613 References: Verma, P., Maire, P. & Novák, P. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochim. Acta 55, 6332–6341 (2010). Qian, Y. et al. Investigations on the electrochemical decomposition of the electrolyte additive vinylene carbonate in Li metal half cells and lithium ion full cells. J. Power Sources 332, 60–71 (2016).
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Toure, Fatouma. "L’essentiel pour une gestion sans stress des patients porteurs d’une polykystose hépato-rénale en dialyse péritonéale." Bulletin de la Dialyse à Domicile 6, no. 1 (April 26, 2023): 35–39. http://dx.doi.org/10.25796/bdd.v6i1.76683.

Повний текст джерела
Анотація:
Résumé La polykystose hépatorénale autosomique dominante (PKR) est une maladie rénale chronique fréquente. La dialyse péritonéale (DP) concerne moins de 7% de ces patients. La sous-utilisation de la DP est due à la crainte d’un échec technique en raison de volumineux organes intra-péritonéaux.Pour illustrer la faisabilité de la DP chez les patients PKR malgré les organomégalies. nous rapportons le cas d’une patiente de 70 ans atteinte de polykystose hépatorénale, traitée par DP après une longue histoire de transplantation rénale et d’hémodialyse. L’évolution de la patiente en DP a été satisfaisante en termes d’adéquation et d’équilibre hydrosodé. Nous faisons ensuite une revue de la littérature sur les spécificités de la prise en charge des patients PKR en DP. La survie des patients atteints de polykystose est identique en DP et en hémodialyse. Il n’y a pas de surrisque d’échec technique ni de péritonites chez les patients polykystiques en DP. Cependant, il y a un peu plus de hernies symptomatiques chez les patients polykystiques, sans impact sur la survie technique. La mesure de la pression intra-péritonéale (PIP) est une aide à la prescription, permettant d’adapter le volume de dialysat pour les échanges. En cas de nécessité de réduction néphronique, l’embolisation artérielle rénale semble être la technique à privilégier. Elle est associée à une meilleure survie technique, à une réduction des transferts temporaires ou permanents en hémodialyse et à une réduction du temps d’hospitalisation.En conclusion, la dialyse péritonéale est une option viable pour les patients atteints de polykystose hépatorénale malgré les organomégalies. Une orientation précoce en DP pourrait préserver le capital vasculaire des patients. Les professionnels de santé doivent être informés sur la survie, l’échec technique, les péritonites, les hernies symptomatiques et l’utilisation de la presssion intrapéritonéale (PIP) pour optimiser la prise en charge des patients polykystiques en DP.
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Yoshida, Luna, Yuki Orikasa, and Masashi Ishikawa. "Mechanism of Improved Lithium-Sulfur Battery Performance by Oxidation Treatment to Microporous Carbon as Sulfur Matrix." ECS Meeting Abstracts MA2022-02, no. 64 (October 9, 2022): 2299. http://dx.doi.org/10.1149/ma2022-02642299mtgabs.

Повний текст джерела
Анотація:
1. Introduction Lithium-sulfur (Li-S) batteries are rechargeable devices assembled with a sulfur cathode and a lithium metal anode. Li-S batteries have twice the volumetric energy density and 5 times the gravimetric energy density of lithium-ion batteries (LIB). Hence, Li-S batteries are expected to be applied to stationary power sources and EV vehicles [1]. However, Li-S batteries have the following issues: ・Sulfur and the final discharge product (Li2S) are insulators. ・In the discharge process, sulfur expands up to 1.8 times, so the structure of batteries is unstable. ・Intermediate products (Li2Sx (x = 4 – 8)) dissolve in an electrolyte; Li2Sx (x = 4 – 8) diffused to an anode to provide an insulating layer at the anode surface. ・In the charge process, Li2Sx (x = 4 – 8) causes redox shuttling. As a result, Li-S batteries cannot charge and discharge stably. In order to deal with this problem, Nazar et al. reported the method that sulfur is confined in porous carbon [2]. This approach provides a cathode realizing good electronic conductivity, restriction of sulfur expansion, and suppression of Li2Sx (x = 4 – 8) dissolution. Although these improved characteristics allow Li-S batteries to operate, The discharge capacity of Li-S batteries is still not high enough and this needs to be addressed. In our previous study, we reported that oxidation treatment to microporous carbon (MC) with HNO3 improves Li-S batteries' discharge capacity [3]. Moreover, we clarified that the discharge capacity of Li-S batteries has an approximate proportional relation with the amount of oxygen-containing functional groups on the MC surface [4]. This work attempts to elucidate the mechanism of improved Li-S battery performance by oxidation treatment to MC. Our report would lead to the proposal of a novel strategy to improve the performance of Li-S batteries. 2. Method 2.1 Preparation of Oxidized MC-Sulfur composite (Ox MC-S) MC was added into 69 wt.% HNO3 and refluxed at 120ºC for 2 h. By vacuum filtration and washing with deionized water, Ox MC was obtained. Ox MC dried in vacuum at 80ºC overnight was mixed with sulfur at a weight ratio of Ox MC: S = 48: 52. The mixture was thermally annealed at 155ºC for 5 h (Ox MC-S). Untreated MC was also composited with sulfur by the same method (MC-S). 2.2 Assembling of Cells Each MC-S cathode was prepared by mixing the MC-S, acetylene black, carboxymethyl cellulose, and styrene butadiene rubber at a respective weight ratio of 89: 5: 3: 3 and coating the resulting aqueous slurry on an Al foil current collector. The cells with the MC-S electrode and Li metal foil as an anode were assembled in a glove box filled with Ar. Lithium bis(trifluorosulfonyl)imide (LiTFSI): tetraglyme (G4): hydrofluoroether (HFE) = 10: 8: 40 (by mol) was used as the electrolyte. 2.3 Electrochemical Impedance Spectroscopy (EIS) To elucidate the effect of oxidation treatment on the internal resistance of Li-S batteries, EIS was carried out at various potentials (Discharge 2.0 – 1.0 V and Charge 1.0 – 3.0 V). The obtained Nyquist plots were used for the evaluation of solid electrolyte interphase (SEI) resistance (Rsei), charge-transfer resistance (Rct), and Warburg impedance (Rw). Rw was investigated with the calculation of Warburg coefficient (σ). 3. Major results and conclusion Since oxidation treatment to MC significantly increased the discharge capacity of Li-S batteries [3][4], it was expected that oxidation treatment would lower the internal resistance of Li-S batteries. EIS of MC-S and Ox MC-S at various potentials showed that oxidation treatment reduced Rsei by an average of 12.2 Ω. This indicates that the SEI thickness was reduced, or the SEI was composed of highly ion-conductive components by the oxidation treatment. Rct decreased only at lower potentials, and the Warburg coefficient decreased except at the end of charge and discharge potential. These results suggest that the oxidation treatment decreases overall resistance, but especially SEI resistance and Warburg impedance, which may improve the discharge capacity of Li-S batteries. We will also report the activation energy of Rsei and Rct and mechanism analysis of decreasing Rsei by oxidation to MC. This work was supported by “Advanced Low Carbon Technology Research and Development Program, Specially Promoted Research for Innovative Next Generation Batteries (ALCA-SPRING [JPMJAL1301])” from JST. [1] Y. Guo et al., Angew. Chem. Int. Ed., 52 (2013) 13186. [2] X. Ji et al., Nat. Mater., 8 (2009) 500. [3] S. Okabe et al., Electrochemistry, 85 (2017) 671. [4] L. Yoshida et al., ECS 238th PRiME Meeting Abstracts (2020).
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Mesnil, P., C. Szymanski, C. Fontaine, and C. Chantelot. "Prise en charge d’une avulsion du flexor pollicis longus et flexor profundus indicis par transferts tendineux en urgence. À propos d’un cas." Chirurgie de la Main 32, no. 2 (April 2013): 104–7. http://dx.doi.org/10.1016/j.main.2013.02.009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Lissillour, Raphael, and Emmanuel Monod. "L’instrumentalisation de la transparence : les jeux de pouvoirs lors de l’implémentation de l’intelligence artificielle." Revue internationale de psychosociologie et de gestion des comportements organisationnels Vol. XXX, no. 80 (April 16, 2024): 79–114. http://dx.doi.org/10.3917/rips1.080.0079.

Повний текст джерела
Анотація:
La transparence organisationnelle est souvent perçue comme synonyme de plus d’équité et facteur de performance. En parallèle, malgré le faible taux de réussite de sa mise en œuvre, la diffusion de l’intelligence artificielle (IA) et son intégration dans les outils sont considérées comme des avancées technologiques permettant plus de transparence au sein des entreprises. Comment la notion de transparence est-elle impliquée, voire instrumentalisée, lors de la mise en œuvre de l’IA ? Pour répondre à cette question animant notre recherche, nous mobilisons la théorie de la pratique de Bourdieu afin de conceptualiser la transparence comme une pratique située dans des champs de pouvoir caractérisés par une répartition inégale de différents types de capitaux. Dans cette étude, nous cherchons à révéler les pratiques associées à la mise en œuvre de l’IA dans les équipes en charge de la relation client. Sur la base de deux études de cas, nous discutons des discordances entre la rhétorique initiale qui a soutenu la mise en œuvre de l’IA et ses conséquences sur le terrain. L’analyse met l’accent sur les jeux et transferts de pouvoir dans l’organisation et sur les types de transparence promus par l’IA. Les résultats montrent que si l’implémentation a été justifiée par une transparence fondée sur une plus grande visibilité des processus et sur la révélation de données nouvelles – deux dimensions qui visent à supporter le travail des utilisateurs, elle peut in fine être vue comme un moyen d’accroître la capacité de contrôle et de surveillance de leur travail.
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Rangom, Yverick, and Michael Pope. "Covalently Joined Electrode Architectures for Extreme Fast Charging Li-Ion Batteries." ECS Meeting Abstracts MA2023-02, no. 2 (December 22, 2023): 177. http://dx.doi.org/10.1149/ma2023-022177mtgabs.

Повний текст джерела
Анотація:
Li-ion batteries are the backbone of all electric vehicles (EVs) in production today [1]. However, they compete poorly against the few-minute refueling time of fossil fuel powered vehicles [2, 3]. To successfully replace fossil fuel powered vehicles, the EV batteries must support charging rates under the 15-minute mark as determined by the eXtreme Fast Charging (XFC) standard defined by the U.S. Department of Energy [4]. When subjected to XFC charging rates, well-known problems of lithium plating and delamination plague graphite anodes due to local potential gradients and binder degradation respectively [5]. Our work replaces the traditional polymer binder with conductive titanium carbide interconnects that covalently join graphite particles as well as bond them to the current collector [6]. This new architecture demonstrates ~400% increase in electrical conductivity compared to traditional architectures with polymer binders while maintaining interparticle integrity and improving adhesion. The adhesion and mechanical properties are provided by conductive chemical bonds mitigating delamination as these novel bonds suffer less mechanical and chemical degradation under high current rates than adhesion provided by polymer binders. The improved conductivity was also utilized to form a solid electrolyte interphase (SEI) at rates up to 4C reducing the ionic impedance of the SEI interface significantly [7]. The improved graphite electrodes can sustain 15-minute charge maintaining 80% of the specific capacity of the graphite particles for 800 cycles at commercially relevant loadings. Our studies introduce an effective strategy to engineer Li-ion battery electrode architectures that simultaneously improve electrical and ionic conductivity mitigating lithium plating and delamination under XFC charging rate needed for the mass adoption of EVs. Habib, A.A., S. Motakabber, and M.I. Ibrahimy. A comparative study of electrochemical battery for electric vehicles applications. in 2019 IEEE International Conference on Power, Electrical, and Electronics and Industrial Applications (PEEIACON). 2019. IEEE. Balali, Y. and S. Stegen, Review of energy storage systems for vehicles based on technology, environmental impacts, and costs. Renewable and Sustainable Energy Reviews, 2021. 135: p. 110185. Andwari, A.M., et al., A review of Battery Electric Vehicle technology and readiness levels. Renewable and Sustainable Energy Reviews, 2017. 78: p. 414-430. Dufek, E.J., et al., Developing extreme fast charge battery protocols–A review spanning materials to systems. Journal of Power Sources, 2022: p. 231129. Ahmed, S., et al., Enabling fast charging–A battery technology gap assessment. Journal of Power Sources, 2017. 367: p. 250-262. Rangom, Y., Covalently Joined Carbonaceous and Mettalloid Powders by Carbide-Based Interconnects and Method of Fabrication for High-Performance Electrodes. 2021: United States preliminary patent #63/248,293. Rangom, Y., T.T. Duignan, and X. Zhao, Lithium-ion transport behavior in thin-film graphite electrodes with SEI layers formed at different current densities. ACS Applied Materials & Interfaces, 2021. 13(36): p. 42662-42669. Figure 1
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Vashishth, Surishi, and Muthusamy Eswaramoorthy. "Investigation of Heteroatom Doped Graphene Anode for High-Capacity Alkali Metal-Ion Batteries." ECS Meeting Abstracts MA2023-02, no. 4 (December 22, 2023): 518. http://dx.doi.org/10.1149/ma2023-024518mtgabs.

Повний текст джерела
Анотація:
The drastic growth of Li-ion batteries (LIBs) in global electronic market and low crustal abundance of Li demands for more abundant alternatives such as sodium and potassium having similar electrochemical properties. Sodium-ion battery (SIB) and potassium-ion battery (PIB) can be used “side-by-side” to LIB which can help battery technology progress efficiently. 1Graphite has been a commercial anode in LIB due to its low cost, high abundance, high electrical conductivity, with a theoretical storage capacity (LiC6) of 372 mAh g-1. In contrast the utilization of graphite in SIBs and PIBs is challenging. This is due to the large radius and unstable graphite-intercalation compounds (NaC64) giving very low theoretical capacity of 30 mAh g-1. In PIBs, graphite exhibits a theoretical capacity of 279 mAh g-1 but suffers from poor stability due to huge volume expansion (60%) in fully potassiated state (KC8). Thus, focus is now shifted on to class of amorphous carbon materials such as hard carbon, soft carbon, graphene etc. with variations in micro-structures, larger interlayer spacing, and defect rich sites promoting enhanced capacity and stability even at high current densities. 2 In my presentation I will be discussing about the synthesis of heteroatom doped graphene with high charge storage and stability for LIB, SIB and PIB compared to graphite. The heteroatom doped graphene exhibits nearly 1000 mAh g-1 (LIB), 380 mAh g-1 (SIB) and 379 mAh g-1 (PIB) at a low current density of 25 mAg-1. Additionally, the elastic nature of ultrathin graphene nanosheets aids in attaining long term cyclability at 1 A g-1 with high-capacity retention of 83% for 300 cycles (LIB), 73% for 400 cycles (SIB) and 91% for 600 cycles (PIB). The enhanced stability in case of PIB, is attributed to optimizing solid electrolyte interphase (SEI) components and improving interfacial reaction kinetics at high current densities. Choice of high concentrated electrolyte (HCE) over conventional KPF6 in EC:DEC determines the nature of SEI and thereby helps in achieving cycling stability. The stability in SEI is characterized via voltage profile and understanding chemical composition by ex-situ X-ray photoelectron spectroscopy. Robust SEI in HCE is due to difference in anion structure studied by Raman spectroscopy. Furthermore, the charge-discharge mechanism, alkali ion diffusion kinetics and structure-activity relationship of electrode materials was investigated using various techniques like cyclic voltammetry profiles at different scan rates and Galvanostatic intermittent titration technique (GITT). Additionally, deeper insights into the fundamental understanding of interfacial and bulk behavior were provided with the help of in-situ Raman spectroscopy and in-situ potentiostatic electrochemical impedance spectroscopy (PEIS) analysis. The investigation of peak area and shift in D (defect) and G (graphitic) band analyzed from in-situ Raman studies helped in understanding the evolution and reversibility of alkali ion storage behavior during charging and discharging. PEIS analysis gave us a thorough understanding of the evolution of stable SEI on charging-discharging and after cycling, which helps us to understand the long-term stability in LIB, SIB and PIB. References: Durmus, Y. E. et al. Side by Side Battery Technologies with Lithium-Ion Based Batteries. Adv Energy Mater 10, 2000089 (2020). Zhang, W. et al. A Cyclized Polyacrylonitrile Anode for Alkali Metal Ion Batteries. Angewandte Chemie 133, 1375–1383 (2021).
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Kim, Subin, and Kwang Sup Eom. "The Effect of Surface-Abundant Hydrogen Bonding on the Electrolyte Reduction for the Stable SEI in Lithium Metal Batteries." ECS Meeting Abstracts MA2022-02, no. 64 (October 9, 2022): 2318. http://dx.doi.org/10.1149/ma2022-02642318mtgabs.

Повний текст джерела
Анотація:
Lithium (Li) metal anodes (LMAs) have been attracted world-wide attention as an ideal anode because of its extra-high theoretical capacity (3860 mAh g-1) and low electrode potential (-3.04 V vs S.H.E.). However, the dendritic growth of Li and low Coulombic efficiency (CE) are still hindering their practical uses [1]. To date, numerous methods such as construction of artificial solid electrolyte layer (ASEI) [2], adoption of 3D current collector [3], and tuning of the electrolyte composition [4] have been proposed to prevent Li dendrite growth and increase the CE. Among them, introducing functional additives is one of the most efficient approaches for practical application considering its cost-effectiveness. Until now, various functional additives were introduced to form stable and robust SEI layer in LMBs [4]. Among them, lithium nitrate (LiNO3) is considered as the most efficient electrolyte additive, ensuring high coulombic efficiency (CE) as well as long lifespan of LMBs. When LiNO3 is dissolved in the electrolyte, NO3 - anions are mainly reduced to form inorganic species such as Li3N, which has a high ionic conductivity and mechanical strength. As such species contribute to the construction of the robust and ionic-conductive SEI layer, and hence the reduction of NO3 - is important for stable Li cycling. In this regard, many researchers have focused on increasing reduction of NO3 - by using high-concentration LiNO3 [4], or adding solubilizer to increase more NO3 - in the electrolyte [5]. However, those remedies are still insufficient because most of them increase the viscosity of electrolyte leading to low kinetics, hence a novel and more efficient way to increase NO3 - reduction is needed for practical application. On the other hand, recent researches have reported that the preferential reduction of specific anions is possible by regulation of inner Helmholtz plane (IHP) structure [6]. For instance, Huang et al. reported that intermolecular force between PF6 - anions and surface adsorbent tris(trimethylsilyl) borate could derive in PF6 --abundant IHP, successfully resulted in LiF-rich SEI layer to increase the stability of LMA [6]. Inspired by those works, we expected that NO3 --derived SEI layer would be achieved by using surface adsorbent showing strong intermolecular interaction with NO3 -. In this context, we introduce the adoption of thiourea (TU) as a catalytic additive for the LiNO3 reduction during the SEI formation. Due to its unique molecular structure, addition of TU could induce NO3 - derived SEI layer. Firstly, TU could adsorb onto metallic surface by its S atom. Meanwhile, thiourea could form hydrogen bonding with NO3 - anion by its N-H bonds [7]. Hence in the presence of TU, we suggest that NO3 --abundant electrode surface would be achieved by interaction between TU-NO3 -, resulting in Li3N-rich SEI layer. The adsorption behavior of TU on the Cu electrode was investigated by potential of zero charge (PZC) measurement (Figure 1(a)). As the TU concentration increases, PZC decreases, indicating more surface coverage by TU. Figure 1(b) shows 1H NMR spectra of electrolytes with different components. Upshift displacement of N-H bond of TU were detected after addition of DME and LiTFSI, indicating that intramolecular H-bond of TU were weakened. By contrast, downshift displacement appeared when LiNO3 was added, which means NO3 - would form strong hydrogen bonding with TU. Furthermore, linear scanning voltammetry (LSV) curves at different concentration of TU were measured to investigate the effect of TU on electrolyte reduction (Figure 1(c)). The distinct peaks at 1.6 V and 1.3 V in the cell with 5 wt% LiNO3 indicate reduction of LiNO3 and LiTFSI, respectively. Interestingly, in the presence of TU, negative potential shift and increased current of those redox peaks were shown, indicating that the TU significantly increases the LiNO3 reduction. Importantly, from the XPS analysis, it was found that more abundant Li3N components are in the ASEI layer with TU than that without TU, implying that TU accelerates the reduction of LiNO3 (Figure 2(a-b)). As a result, Li|Cu@ASEI with TU shows better cyclability and higher average CE of 96.44% during 80 cycles compared to Li|Cu@NSEI and Li|Cu@ASEI w/o TU (Figure 3). In addition, morphological and chemical investigation on the favorable ASEI layers assisted by TU, and its electrochemical performance in LMBs will be discussed in this presentation. [1] Cheng et al, Chem. Rev, 117, 10403, 2017. [2] Lopez Jeffrey, et al. JACS 140.37 (2018): 11735-11744. [3] Yang Chun-Peng et al. Nature communications 6.1 (2015): 1-9. [4] Kang et al. Journal of Power Sources 490 (2021): 229504. [5] Zhang et al. Advanced Materials 32.24 (2020): 2001740. [6] Huang et al. Angewandte Chemie. 60.35 (2021): 19232-19240. [7] Nishizawa et al. Tetrahedron letters 36.36 (1995): 6483-6486. Figure 1
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Garcia - Quismondo, Enrique, Sandra Alvarez-Conde, Guzmán García, Jesús Inocente Medina-Santos, Jesus Palma, and Edgar Ventosa. "Accelerated Solid Electrolyte Interface Quality Assessment of Lithium - Ion Batteries By Mediator-Enhanced Coulometry." ECS Meeting Abstracts MA2022-02, no. 6 (October 9, 2022): 639. http://dx.doi.org/10.1149/ma2022-026639mtgabs.

Повний текст джерела
Анотація:
Li-ion batteries (LIBs) offer particularly high performance among rechargeable batteries and are used in a variety of industrial domains. They were primarily used as a power supply for portable devices in the past. In recent years their applications have expanded to encompass stationary energy storage systems and electric vehicles (EVs), driving demand for lower-cost LIBs with even higher performance. Demand for LIBs for use in EVs is growing particularly rapidly as governments around the world fast-track measures to promote automobile electrification1 , 2. The quality of the Solid Electrolyte Interphase (SEI) on the negative electrode of Li-ion batteries has a strong impact on the cycle life so that clear determination of their properties is of essential importance to achieve progress in manufacturing processes3. Many kinds of measurements and tests are necessary at each state of the battery manufacturing process to assure the quality of each process. In addition, measurements and testing are essential in a variety of settings, during not only manufacturing, but also for battery research and finished-product inspections. In this work, a new, cheap and easily-implementable methodology to estimate the electrically-insulating quality of the SEI in LIBs is proposed. First, a redox-mediator is added in the electrolyte after the SEI formation cycle, and the redox mediator leads to an internal self-discharge process that is inversely proportional to the electrically-insulating character of the SEI. Second, a few charge and discharge cycles are applied to the battery and the presence of the redox-mediator provokes a shuttle effect enables by the lack of electrically protecting character of the SEI which consumes charges decreasing the coulombic efficiencies, enhancing the sensibility to the SEI protecting nature. The proposed methodology is probed on lithium iron phosphate batteries in pouch cell configuration with two redox mediators (ferrocene (FC) and methyl phthalimide (PHT)) by evaluating the influence of vinylene carbonate as electrolyte additive in the resulting SEI. We believe that the findings based on the application of this mediator-enhanced coulometry can be used to accurately predict the cyclic behavior of LIBs under extended operating conditions, which is especially relevant for a better comprehension of future industrial needs for battery R&D in cell components and production fields. Acknowledgment The authors acknowledge the financial support by the NanoBat project. NanoBat has received funding from the European Union’s Horizon 2020 research and innovation programme under Grant Agreement no. 861962 References S. Manzetti and F. Mariasiu, Renewable & sustainable energy reviews, 51, 1004–1012 (2015). E. Fan et al., Chemical Reviews (2020). E. Ventosa, Current Opinion in Electrochemistry, 25, 100635 (2021) https://www.sciencedirect.com/science/article/pii/S2451910320301708. Figure 1
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Schmidt-Meinzer, Noah, and Ingo Krossing. "Synthesis and Electrochemical Characterization of Novel Electrolyte Additives for High Performance in Lithium-Ion Batteries with Si-Based Anodes." ECS Meeting Abstracts MA2023-02, no. 65 (December 22, 2023): 3093. http://dx.doi.org/10.1149/ma2023-02653093mtgabs.

Повний текст джерела
Анотація:
Silicon is a promising active material for the anode in lithium-ion batteries (LIB), since it enables much higher energy densities than graphite - the state-of the art material for LIB-anodes. However, the utilization of silicon brings many challenges, which originate mainly from the enormous volume change between the lithiated and delithiated state (300%). One of the consequences is a constant re-formation of the solid electrolyte interphase (SEI), which is accompanied by a loss of active Li+. This leads to a strong capacity fading, which results in a very short cycle life. [1] An efficient and economical approach to tackle these problems is the utilization of additives in the electrolyte. Additives are small molecules or salts that decompose during the first cycles of the battery life resulting in an interphase with modified composition and thereby an improved SEI. Depending on the additive the SEI can reduce the impedance of the cell and help to maintain the structural stability of the anode. [2] In this work four new additives were synthesized and electrochemically tested with a silicon-based anode. Improvements regarding capacity retention were found for all additives in half-cell measurements. Hence, after 500 cycles additive 1 showed a 26 % increased capacity retention, while additive 4 induced an improvement of 43 % compared to the base electrolyte. Electrochemical impedance measurements were conducted and simulated directly after the formation as well as after 100 cycles. The resistance of the first semi-circle showed a reduction of 40 % and 26 % after formation and 100 cycles respectively, when the additive 1 is used. The second semi-circle showed no significant change after formation, but a 27 % reduction of resistance after 100 cycles, when the additive 1 is used. The semi-circles can be attributed to the Li ion migration in the SEI. Therefore, the SEI build from the decomposition of additive 1 favours charge-transfer compared to the SEI build from the base electrolyte. Scanning electron microscopy (SEM) images of lithiated and delithiated electrodes show smaller cracks on the surface when using additive 1 compared to the electrode treated with the base electrolyte. This phenomenon shows an increased cohesive force of the new formed SEI mitigating the effects of the enormous volume expansion in the electrode. [1] Zuo X., Zhu J., Müller-Buschbaum P. & Cheng Y.-J. Silicon based lithium-ion battery anodes: A chronicle perspective review. Nano Energy. 31, 213-143; 10.1016/j.nanoen.2016.11.013 (2017) [2] Eshetu, G.G., Zhang, H., Judez, X. et al. Production of high-energy Li-ion batteries comprising silicon-containing anodes and insertion-type cathodes. Nat Commun 12, 5459; 10.1038/s41467-021-25334-8 (2021) Figure 1
Стилі APA, Harvard, Vancouver, ISO та ін.
37

BARALE-PENANGUER, MA, S. BERNAUDON, J. CARVELLI, A. JANCZEWSKI, and J. FORTE. "POURQUOI TRANSFERE-T-ON AUX URGENCES DES RESIDENTS D'EHPAD EN FIN DE VIE ? UNE ETUDE QUALITATIVE AUPRES DES PROFESSIONNELS DES HAUTES ALPES." EXERCER 34, no. 194 (June 1, 2023): 252–58. http://dx.doi.org/10.56746/exercer.2023.194.252.

Повний текст джерела
Анотація:
Introduction. Les résidents d’EHPAD sont des personnes âgées fragiles et vulnérables. En situation de fin de vie, un transfert en service d’urgence, pourtant souvent évitable, est parfois décidé. Objectif. Explorer les raisons de ces transferts aux urgences, en étudier le vécu par les soignants et faire ressortir des pistes d’amélioration de l’accompagnement en fin de vie des résidents. Mé thode. Étude qualitative inspirée de la théorisation ancrée par entretiens individuels semi-dirigés réalisés auprès de tout professionnel actif dans le parcours de soins de résidents d’EHPAD en fin de vie, exerçant dans les Hautes-Alpes. Les intervenants ont été recrutés de juin 2021 à mars 2022. Les informations ont été recueillies jusqu’à l’obtention d’une suffisance des données. Une analyse inductive a été réalisée, avec triangulation des données par deux chercheurs. Résultats. 18 professionnels ont participé à l’étude. Le travail des soignants d’EHPAD est peu valorisé, avec un épuisement du personnel en carence de recrutement. EHPAD, services d’urgence et acteurs extérieurs doivent renforcer leur communication pour une prise en charge coordonnée des résidents. L’élaboration d’un projet de fin de vie se prépare tôt dans la vie d’un patient, mais les outils existants sont difficiles à mettre en oeuvre. Le soin du résident d’EHPAD n’est plus adapté à l’activité du médecin traitant libéral. Pour coordonner les soins et salarier un médecin traitant, les modèles de financement et de tarification des EHPAD doivent être remodelés. Conclusion. Le transfert de résidents d’EHPAD en fin de vie met en lumière un épuisement des soignants dans une activité peu valorisée au sein de structures dont les modèles de financement et de gestion médicale ne sont plus adaptés.
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Cáceres, Denise, Ben Marzeion, Jan Hendrik Malles, Benjamin Daniel Gutknecht, Hannes Müller Schmied, and Petra Döll. "Assessing global water mass transfers from continents to oceans over the period 1948–2016." Hydrology and Earth System Sciences 24, no. 10 (October 13, 2020): 4831–51. http://dx.doi.org/10.5194/hess-24-4831-2020.

Повний текст джерела
Анотація:
Abstract. Ocean mass and thus sea level is significantly affected by water storage on the continents. However, assessing the net contribution of continental water storage change to ocean mass change remains a challenge. We present an integrated version of the WaterGAP global hydrological model that is able to consistently simulate total water storage anomalies (TWSAs) over the global continental area (except Greenland and Antarctica) by integrating the output from the global glacier model of Marzeion et al. (2012) as an input to WaterGAP. Monthly time series of global mean TWSAs obtained with an ensemble of four variants of the integrated model, corresponding to different precipitation input and irrigation water use assumptions, were validated against an ensemble of four TWSA solutions based on the Gravity Recovery and Climate Experiment (GRACE) satellite gravimetry from January 2003 to August 2016. With a mean Nash–Sutcliffe efficiency (NSE) of 0.87, simulated TWSAs fit well to observations. By decomposing the original TWSA signal into its seasonal, linear trend and interannual components, we found that seasonal and interannual variability are almost exclusively caused by the glacier-free land water storage anomalies (LWSAs). Seasonal amplitude and phase are very well reproduced (NSE=0.88). The linear trend is overestimated by 30 %–50 % (NSE=0.65), and interannual variability is captured to a certain extent (NSE=0.57) by the integrated model. During the period 1948–2016, we find that continents lost 34–41 mm of sea level equivalent (SLE) to the oceans, with global glacier mass loss accounting for 81 % of the cumulated mass loss and LWSAs accounting for the remaining 19 %. Over 1948–2016, the mass gain on land from the impoundment of water in artificial reservoirs, equivalent to 8 mm SLE, was offset by the mass loss from water abstractions, amounting to 15–21 mm SLE and reflecting a cumulated groundwater depletion of 13–19 mm SLE. Climate-driven LWSAs are highly sensitive to precipitation input and correlate with El Niño Southern Oscillation multi-year modulations. Significant uncertainty remains in the trends of modelled LWSAs, which are highly sensitive to the simulation of irrigation water use and artificial reservoirs.
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Delattre, G., A. S. Ducloy-Bouthors, J. Sicot, P. Goldstein, and E. Wiel. "Impact du protocole 2005 du réseau de périnatalité Ombrel sur la prise en charge et les transferts des hémorragies du post-partum immédiat sur la métropole lilloise." Journal Européen des Urgences 21 (March 2008): A170. http://dx.doi.org/10.1016/j.jeur.2008.03.394.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Liu, Haoyu, Sohyun Park, Fulya Dogan, John T. Vaughey, and Baris Key. "Understanding the Role of Al(TFSI)3 Additive at the Solid Electrolyte Interphase (SEI) for Improved Lithium-Ion Batteries with Silicon Anodes Via Solid-State NMR." ECS Meeting Abstracts MA2022-02, no. 7 (October 9, 2022): 2575. http://dx.doi.org/10.1149/ma2022-0272575mtgabs.

Повний текст джерела
Анотація:
Introducing multivalent cation salts (e.g., Ca2+, Mg2+, and Al3+) has been proven to improve electrochemical performance such as capacity, cyclability, Coulombic efficiency, and calendar life of Si anode by the in situ formation of inert Li-Metal-Si ternary phases.1–3 Among these ions Al3+ is of great interest with large positive charge and small radius, providing potential new chemistry. In this work, Al(TFSI)3 was synthesized and purified and 0.1 M was added as a second salt into the Gen2 (1.2 M LiPF6 in 30 wt % EC + 70 wt % EMC) electrolyte with 3 wt % FEC. Then NMC532/commercially relevant Si anode full-cells were assembled, stabilized with three formation cycles at a C/10 rate and divided into two groups, one with extended cycling and the other held at 4.1 V for one month to investigate calendar life. Meanwhile, non-Al(TFSI)3 cells were also prepared and tested from the same batch as baselines for the study. Multi-nuclei solid-state MAS-NMR including 1H, 7Li, 13C, 19F, 27Al, and 29Si of the Si powder collected from those samples after electrochemical testing at both 300 MHz and 500 MHz showed detailed information of different species formed. It was confirmed that Al additive stabilized Si species at the SEI and suppressed side reactions with the electrolyte by forming Li-Al-Si Zintl phase. Specifically, cross-polarization (CP) experiments such as 13C{1H} and 29Si{1H} allowed the selective investigation and detection of the species in close proximity to protons at the SEI. This additive strategy can be combined with the novel electrolyte, binder, and Si anode material to pave new avenues towards the commercialization of Si-based lithium-ion batteries. Acknowledgement This work was part of the Silicon Consortium Program (SCP) and was done at Argonne supported by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy under grant DE-AC02-06CH11357. References B. Han et al., ACS Appl. Mater. Interfaces, 11, 29780–29790 (2019). X. Li et al., Chem. Mater., 33, 4960–4970 (2021). Y. Zhang et al., Advanced Energy Materials, 11, 2101820 (2021).
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Das, Sourav, Mohammad Behtash, Sina Navidi, Abhishek Sarkar, Chao Hu, and Pranav Shrotriya. "Physics-Based State of Health Prediction of Lithium-Ion Battery during Fast Charging." ECS Meeting Abstracts MA2024-01, no. 2 (August 9, 2024): 469. http://dx.doi.org/10.1149/ma2024-012469mtgabs.

Повний текст джерела
Анотація:
Electrification of the transportation sector and increased use in consumer electronics have driven the increasing demand for lithium-ion batteries (LiBs) (1). Despite their high energy density and long service life, LiBs suffer from capacity degradation due to continuous growth of solid electrolyte interface (SEI) layer and plating of lithium on the anode surface. Graphite, the anode in most LiBs, has a high tendency to catalyze the degradation of the electrolyte consisting of LiPF6 and ethylene carbonate to form an SEI of Li-rich carbonate, phosphate, and fluoride compounds (2, 3). The SEI film grows during service due to the deposition of reaction products and repeated cycles of damage and reformation due to the contraction and expansion associated with volume changes during Li-ion intercalation and deintercalation. Additionally, fast or low-temperature charging of batteries results in lithium plating on the anode surface because the elevated concentration of Li+ on the anode surface results in graphite potential falling below 0V vs. Li+/Li and increased likelihood of Li deposition compared to intercalation (4). Lithium loss due to the side reactions of SEI growth and plating contributes to capacity loss and may increase the likelihood of battery failure. Hence, accurate modeling of the side reactions is required to determine the state of health (SOH) and predict the remaining capacity of LiBs during operation (5). We report an experimentally validated single particle model (SPM) to estimate the influence of SEI growth and Li plating on the capacity changes in Lithium Cobalt Oxide (LCO)/Carbon cells during repeated cycling (6-8). The SPM model idealizes each electrode as a single particle to approximate the cell response. A. Sarkar et al. (5) included the influence of SEI growth, plating, SEI fracture, and temperature in the SPM model to determine the influence of the side reactions on battery performance. The parameters corresponding to side reactions, such as the SEI film growth rate, conductivity of the SEI film, and reversibility of the plating reaction, were determined through comparison of numerical predictions of cell voltage and capacity change with experimental response measured at charging rates of 0.1C and fast charging rate of 2C on PowerStream 35 mAh LCO/C coin cells (Lir2032) as shown in Figure 1. In addition, the coin cells were subjected to charge/discharge experiments at charging rates varying from 0.1C – 5C for 100 cycles. Experimental measurements of the cell capacity changes were compared to model predictions for the different charging rates to validate the modeling assumptions and determine the efficacy of the estimated parameters in describing the cell degradation. The agreement between the model prediction and measured experimental response showed that the single particle model augmented with side reaction mechanisms can describe the cell degradation and is suitable for predicting the remaining capacity and safety of LiBs subjected to a range of charging rates. The model can also predict the accumulation of irreversibly plated lithium on the anode surface during repeated fast charging. The amount of plated lithium determines the severity of dendritic growth, and thus, model predictions of lithium accumulation may be used to estimate the likelihood of battery failure under fast charging conditions. Acknowledgment:This work was supported by the National Science Foundation, Iowa State University, and University of Connecticut. References: L. Usai, J. J. Lamb, E. Hertwich, O. S. Burheim and A. H. Strømman, Environmental Research: Infrastructure and Sustainability, 2, 011002 (2022). A. N. Dey and B. P. Sullivan, Journal of The Electrochemical Society, 117, 222 (1970). J. B. Goodenough and K. S. Park, Journal of the American Chemical Society, 135, 1167 (2013). L. E. Downie, L. J. Krause, J. C. Burns, L. D. Jensen, V. L. Chevrier and J. R. Dahn, Journal of The Electrochemical Society, 160, A588 (2013). A. Sarkar, I. C. Nlebedim and P. Shrotriya, Journal of Power Sources, 502, 229145 (2021). M. Doyle, T. F. Fuller and J. Newman, Journal of The Electrochemical Society, 140, 1526 (1993). G. Ning and B. N. Popov, Journal of The Electrochemical Society, 151, A1584 (2004). S. J. Moura, F. B. Argomedo, R. Klein, A. Mirtabatabaei and M. Krstic, IEEE Transactions on Control Systems Technology, 25, 453 (2017) Figure 1
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Asakura, Daisuke, Eiji Hosono, Miho Kitamura, Koji Horiba, Eisuke Magome, Hiroyuki Setoyama, Eiichi Kobayashi, et al. "X-Ray Absorption Spectroscopy Studies of Ti-Mn Redox Flow Battery to Clarify the Redox Reaction." ECS Meeting Abstracts MA2023-02, no. 59 (December 22, 2023): 2853. http://dx.doi.org/10.1149/ma2023-02592853mtgabs.

Повний текст джерела
Анотація:
Redox flow battery (RFB) is a promising candidate of large-scale stationary energy storage which is necessary to utilize renewable energy. For RFBs, the capability to easily increase the capacity by enlarging the electrolyte tank, high charge-discharge cycle performance, and wide flexibility to high- and low-frequency fluctuations are highly advantageous. Nowadays vanadium RFBs are used for practical use, but the material cost of vanadium is problematic to further spread them. An alternative candidate for commercial use is titanium-manganese (Ti-Mn) RFBs [1] whose material cost should be lower. On the other hand, the stability of the electrolyte for positive electrode (catholyte) need to be improved, because precipitates are created by a charge disproportionation reaction of Mn ions in the charged catholyte [2]. The formation of precipitates decreases the energy density and degrades the cyclability. To improve the characteristics, the chemical state and redox reaction of the electrolytes of Ti-Mn RFBs should be clarified by precise analyses. We performed synchrotron radiation X-ray absorption spectroscopy (XAS) for the electrolytes of a Ti-Mn RFB to directly observe the redox reaction [3]. In this study, the same Ti-Mn RFB electrolyte was used for both positive and negative electrodes. The Ti K-edge XAS of the electrolyte for negative electrode (anolyte) revealed gradual reduction reaction of Ti from Ti4+ on the charge process. The Ti L 2,3-edge XAS spectrum for the anolyte at state of charge (SOC) of 80% was mostly attributed to Ti3+ state. The results for Ti are consistent with electrochemical views in previous reports [2]. The Mn K-edge XAS of the catholyte gradually shifted to higher energy-side up to SOC of 50%, indicating a slight oxidation reaction of Mn from Mn2+. However, the Mn L 2,3-edge XAS spectrum for the catholyte solution at SOC of 80% was of Mn2+ state that was not changed from the initial state. Instead, scanning transmission X-ray microscopy (STXM; XAS mapping with a high spatial resolution) at the Mn L 3-edge unveiled that the precipitates mostly consist of Mn4+. Thus, the charge disproportionation reaction of 2Mn3+ -> Mn2+ (solution) + Mn4+ (precipitates) in the charged catholyte was confirmed. In the presentation, the electronic-structure change of the Ti and Mn ions in both catholyte and anolyte will be discussed in detail. References [1] T. Shigematsu, Curr. Opin. Electrochem. 18 (2019) 55-60. [2] Y. R. Dong et al., SEI Technical Review 84 (2017) 35-40. [3] D. Asakura et al., Chem. Asian J. 18 (2023) e202201047.
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Uppaluri, Maitri, Akshay Subramaniam, Jin-hyung Lim, and Venkat R. Subramanian. "Accelerated Prediction and Analysis of Lithium-Ion Battery Lifetime Using Efficient Electrochemical Models." ECS Meeting Abstracts MA2023-01, no. 2 (August 28, 2023): 710. http://dx.doi.org/10.1149/ma2023-012710mtgabs.

Повний текст джерела
Анотація:
Lithium-ion batteries degrade over their lifetime due to several parasitic reactions that occur in the cell. These reactions lead to loss of lithium inventory, loss of active material, mechanical and thermal damage to the cell’s component. Predicting cell aging and capacity fade is crucial for battery management systems (BMS) to monitor and control the battery's state of health. Physics-based models are valuable in battery management systems (BMS) to monitor the battery’s state of health and predict battery failure. BMS algorithms require fast codes that can predict and estimate battery parameters in real-time and control the battery’s performance under different loads.1 Common reduced-order models, such as the SPM (Single Particle Model) consider approximations that may not be valid as the cell ages. The Tanks-in-Series model is a model developed by Subramaniam et al., where the governing equations from the full-order ‘pseudo-2-D’ (p2D) model are volume-averaged over each cell region.2 This ensures that the physics captured by the mass and charge conservation equations are maintained without loss of accuracy while providing simulation solutions at a few milliseconds. The Tanks-in-Series model is ideal for predicting cell aging due to its reduced computation speed and predictability beyond other reduced-order models. This work combines the Tanks-in-Series model with governing equations for several degradation mechanisms, including the growth of the SEI layer, lithium plating, particle cracking, etc. A comprehensive analysis of capacity fade predictions is shown, with comparisons to predictions from the P2D model. References V. Ramadesigan et al., J. Electrochem. Soc., 159, R31–R45 (2012). A. Subramaniam et al., J. Electrochem. Soc., 167, 013534 (2020).
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Nishida, Tetsuo, Yasuhiro Fukunaka, Takayuki Homma, and Toshiyuki Nohira. "Initial Stage of Galvanostatic Li Electrodeposition in PC Electrolyte." ECS Meeting Abstracts MA2022-01, no. 23 (July 7, 2022): 1170. http://dx.doi.org/10.1149/ma2022-01231170mtgabs.

Повний текст джерела
Анотація:
Lithium with an atomic number of 3 has a small electrochemical equivalent of 6.9 g per Faraday, and a standard electrode potential of -3.045 V, the lowest among metals. For this reason, batteries using lithium as the anode are lightweight and have a high operating voltage. Li/MnO2 batteries and Li/(CF) n batteries have been commercialized using lithium anode, but they are all primary batteries. Lithium metal anodes are prone to generate dendrite during charging. The key to their practical use as anodes for secondary batteries is whether or not dendrite formation can be suppressed. The success technique of dendrite suppression will be indispensable for not only the realization of liquid electrolyte type battery with high energy density such as Li-S batteries and Li-air batteries but also all solid-state lithium metal battery. Thus, it is urgently required to interdisciplinary accumulate our profound understanding of the lithium metal nucleation and growth phenomena. Since Li metal is conventionally electrodeposited in organic electrolytes because of electrochemical window restriction, Li deposition essentially accompanies the adsorption or decomposition of the organic species on the substrate and deposited Li metal. In galvanostatic or constant current electrolysis, the electrolyte decomposes prior to Li deposition and so-called SEI is formed. Therefore, the nucleation and growth of Li is naturally affected by the existence of SEI layer. Characteristics of SEI strongly influences the charge and/or mass transfer kinetics, which affects the nucleation and growth process followed by the morphological variations. Recent work revealed that Li deposition proceeded underneath SEI(1). Also, TEM observations indicated SEI microstructure(2) and the competitive deposition on tip and root of Li dendrite(3). In this study, constant current electrodeposition of Li was carried out in common organic electrolyte instead of ionic liquid(4) to focus on the effect of current density in the initial stage of the electrodeposition. The electrolyte composed of lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and PC. A typical three electrode cell was used in Ar glove box (dew point < -90 ℃), varying current density, salt concentration and temperature. The working electrode was Ni wire 500 μm in diameter (Nilaco Corp.). It was coated with FEP fluoroplastic tube as a sleeve so that the portion in contact with the electrolyte was 10 mm in depth. A lithium foil (200 μm in thickness, Honjo Metal Co., Ltd.) was used as the counter electrode and the reference electrode. The cell was mounted in the temperature-controlled aluminum block. The working electrode was immersed in dimethyl carbonate to rinse the surface and dried in vacuum after electrochemical measurements, followed by XPS and UPS analysis, and SEM observation of deposits. Fig. 1 shows the potential behavior for 0 – 10 mC cm-2 immediately after starting at 0.04 - 60 mA cm-2. In all the current densities, the potential did not immediately jump into the equilibrium potential of Li. The coulomb quantity passing before Li precipitation decreases from 8 to 4 mC cm-2 as the current density increases under the lower current densities of 0.04 - 4 mA cm-2. On the other hand, under the higher current densities of 4 - 60 mA cm-2, it is about 4 mC cm-2 which does not change much with the current density. It is deduced that the SEI formed prior to Li precipitation under constant current conditions shows differences depending on the current density and there may be a transition point around 4 mA cm-2. The typical SEM images of the electrode surface after the electrolysis of 100 mC cm-2 at 0.2 and 8 mA cm-2 are demonstrated in Fig. 2. The appearance is quite different between lower and higher current densities. At 0.2 mA cm-2, both whiskers with several micrometers in length and granular precipitates of 300 - 400 nm in size can be seen. On the other hand, at 8 mA cm-2, no granular shapes are noticed and substantially only whiskers of around 500 nm in length are homogeneously distributed. Li nucleation and growth behaviors will be further examined to focus the effect of not only current density but also salt concentration and temperature. Nucleation & growth behavior of Li electrodeposited in PC electrolyte may be compared with conventional metal electrodeposition researches in aqueous solution system in order to find out any similarity or dissimilarity between both systems. References Jana, R. E. García, Nano Energy, 41, 552–565 (2017). Li, Y. Cui et al., Joule, 2, 2167−2177 (2018). Li, Y. Yu et al., Science, 358, 506–510 (2017). Nishida, K. Nishikawa, M. Rosso and Y. Fukunaka, Electrochim. Acta, 100, 333-341 (2013). Figure 1
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Saneifar, Hamidreza, and Jian Liu. "Optimization of Loading Content of Li4Ti5O12-Hard Carbon Composite Anode for the Fast Charging Li-Ion Battery." ECS Meeting Abstracts MA2022-01, no. 2 (July 7, 2022): 226. http://dx.doi.org/10.1149/ma2022-012226mtgabs.

Повний текст джерела
Анотація:
Fast charge of lithium-ion batteries (LIBs) needs anode and cathode materials operating at high current densities. Li4Ti5O12 (LTO) can enable fast lithium ion (Li+) transport due to its 3D crystal structure. Nonetheless, this material suffers from low specific capacity and high operating voltage. In contrast, Hard Carbon (H.C) with high specific capacity and low practical voltage is one of the promising anode materials for high-energy lithium-ion batteries. However, practical application of this material is compromised with its slow kinetic, and reduced cycling performance associated with irreversibly trapped ions in its structure [1]. In this report, effect of loading ratio of H.C and LTO composite anode on the electrochemical behavior of fast charging lithium ion battery is studied. Electrochemical characterization results show that a certain loading of H.C plays a critical role in improving the electrochemical performance of LTO-H.C composite electrodes. Specifically, superior cycling stability and specific capacity achieved for the composite electrode with 20 wt.% H.C. It is believed that composite electrodes with an optimized ratio can effectively contribute to Li-ion storage and form a robust protective solid electrolyte interface (SEI) on the electrode surface. The latter might minimize further electrolyte decomposition and continuous growth of the SEI layer upon cycling, then improves the cycling stability of the electrode. In addition, the cycling performance and rate capability of LiNiMnCoO2 (NMC) with different nickel (Ni) and manganese (Mn) contents were evaluated and compared. The results clearly suggest that higher Ni content can improve specific capacity (115 mAhg-1for NMC333 vs 149 mAhg-1 for NMC811 at 1C). However, cycling stability deteriorates with increasing the Ni content (77% capacity retention for NMC333 vs 45% for NMC811 after 300 cycles). It is postulated that electrodes with higher Ni content are susceptible to transition metal dissolution and side reactions at electrode-electrolyte interface, which could lead to performance degradation by impeding Li+ diffusion across the electrode, and irreversible consumption of Li+ [2]. Finally, the possibility of use of the optimized anode for fabricating full cell with the selected NMC cathode is investigated. References: [1] Weiss, M., Ruess, R., Kasnatscheew, J. et al. Fast Charging of Lithium‐Ion Batteries: A Review of Materials Aspects. Adv. Energy Mater 11,2101126 (2021). [2] Lin, R., Bak, SM., Shin, Y. et al. Hierarchical nickel valence gradient stabilizes high-nickel content layered cathode materials. Nat Commun 12, 2350 (2021).
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Uppaluri, Maitri, Akshay Subramaniam, Jin-hyung Lim, and Venkat R. Subramanian. "Efficient Determination and Analysis of Model-Based Optimal Charging Protocols to Minimize Li-Ion Battery Degradation." ECS Meeting Abstracts MA2023-01, no. 25 (August 28, 2023): 1661. http://dx.doi.org/10.1149/ma2023-01251661mtgabs.

Повний текст джерела
Анотація:
Alternate charging protocols for lithium-ion batteries have been proposed to reduce aging and improve their lifetime.1 Physics-based models capture the mass and charge transport of lithium ions within the cell by solving their corresponding governing equations. Optimal charging profiles can be derived from physics-based models by controlling the cell's internal state and restricting phenomena that lead to cell degradation. Our previous efforts have shown that optimal charging profiles that restrict intercalation-induced stresses, lithium plating, and the SEI layer growth can be derived with reformulated physics-based models. 2 - 4 Deriving optimal charging profiles in real-time can be performed through the optimization of reduced-order models. This work demonstrates several optimal charging profiles derived from the Tanks-in-Series model 5 to minimize various degradation mechanisms. We test these profiles under several cycling protocols and analyze the effect of each mechanism on capacity loss. We have also shown cases of deriving optimal profiles during the cycling period to update the profile based on the aging trajectory of the cell. References A. Tomaszewska et al., eTransportation, 1, 100011 (2019). B. Suthar, V. Ramadesigan, S. De, R. D. Braatz, and V. R. Subramanian, Phys. Chem. Chem. Phys., 16, 277–287 (2014). B. Suthar, P. W. C. Northrop, R. D. Braatz, and V. R. Subramanian, J. Electrochem. Soc., 161, F3144–F3155 (2014). M. Pathak, D. Sonawane, S. Santhanagopalan, R. D. Braatz, and V. R. Subramanian, ECS Trans., 75, 51–75 (2017). A. Subramaniam et al., J. Electrochem. Soc., 167, 013534 (2020).
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Hisatomi, Takashi, and Kazunari Domen. "(Invited) Particulate Photocatalyst Systems for Sunlight-Driven Water Splitting." ECS Meeting Abstracts MA2018-01, no. 31 (April 13, 2018): 1891. http://dx.doi.org/10.1149/ma2018-01/31/1891.

Повний текст джерела
Анотація:
Sunlight-driven water splitting has been studied actively for production of renewable solar hydrogen as a storable and transportable energy carrier [1-3]. Both the efficiency and the scalability of water-splitting systems are important factors for practical utilization of renewable solar hydrogen because of the low areal density of solar energy. Particulate photocatalyst systems do not involve any secure electric circuit and thus can be spread over a wide area by inexpensive processes potentially. In this regard, activation of particulate photocatalysts and development of their reaction systems are important subjects. A semiconductor photocatalyst can split water into hydrogen and oxygen thermodynamically when the band gap straddles the potentials of the hydrogen evolution reaction (0 V vs. RHE) and the oxygen evolution reaction (+1.23 V vs. RHE). In addition, it is generally necessary to modify photocatalysts with appropriate cocatalysts in order to facilitate charge separation and surface redox reactions. The authors’ group has studied various semiconducting materials including oxides, (oxy)nitrides, and (oxy)chalcogenides for photocatalytic water splitting [1]. Recently, we have found that doping Al into SrTiO3 boosts the water splitting activity by two orders of magnitude [4]. The resultant Al-doped SrTiO3 achieved an apparent quantum yield (AQY) of 30% at 360 nm. Through the optimization of the preparation and modification methods of Al-doped SrTiO3, the AQY of photocatalytic water splitting has been upgraded to 56% and higher at 365 nm. Processing of such particulate photocatalysts into potentially extensible forms is to be presented [5]. Two different photocatalysts can also be combined so that hydrogen and oxygen are generated on the different photocatalysts [1,3]. Recently, the authors’ group has developed particulate photocatalyst sheets consisting of the hydrogen evolution photocatalyst (HEP) and the oxygen evolution photocatalyst (OEP) embedded into conductive layers by particle transfer [6-11]. A photocatalyst sheet consisting of La- and Rh-codoped SrTiO3 as the HEP and Mo-doped BiVO4 as the OEP embedded into a carbon conductor exhibits a solar-to-hydrogen energy conversion efficiency of 1.0% at ambient pressure [10]. The photocatalyst sheet shows significantly higher water splitting activity than the corresponding powder suspension systems, because the conductor layer transfers photogenerated electrons between photocatalyst particles effectively. In addition, evolution of hydrogen and oxygen in close proximity allows to prevent generation of pH gradient during the water splitting reaction. Therefore, the photocatalyst sheet is scalable directly without sacrificing the high activity. However, the absorption edge wavelengths of La- and Rh-codoped SrTiO3 and Mo-doped BiVO4 are 520 nm at most. It is necessary to utilize photocatalysts with longer absorption edge wavelengths to pursuit higher STH values. We have found that some (oxy)chalcogenides and (oxy)nitrides with narrower band gap energies are applicable as the HEP and the OEP of particulate photocatalyst sheets. In this talk, recent progress and future challenges in photocatalytic water splitting and system development will be presented. Hisatomi et al., Chem. Soc. Rev. 2014, 43, 7520. Hisatomi et al., Catal. Lett. 2015, 145, 95. Hisatomi et al., Faraday Discuss. 2017, 198, 11. Ham et al., J. Mater. Chem. A 2016, 4, 3027. Xiong et al., Catal. Sci. Technol. 2014, 4, 325. Minegishi et al., Chem. Sci. 2013, 4, 1120. Wang et al., J. Catal. 2015, 328, 308 Wang et al., Nat. Mater. 2016, 15, 611 Wang et al., Faraday Discuss. 2017, 197, 491 Wang et al., J. Am. Chem. Soc. 2017, 139, 1675. Hisatomi et al., Curr. Opin. Electrochem. 2017, 2, 148.
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Ghimire, Govinda, Archana Loganathan, Osama Awadallah, and Bilal El-Zahab. "Sulfurized Electrolyte Additives for Stable Lithium Metal Anodes." ECS Meeting Abstracts MA2022-02, no. 3 (October 9, 2022): 187. http://dx.doi.org/10.1149/ma2022-023187mtgabs.

Повний текст джерела
Анотація:
Researchers around the world are striving to develop new materials for energy-efficient and high energy density lithium-ion batteries [1]. Lithium metal with a theoretical specific capacity of 3860 mAh/g, low density (0.534 g/cm3), and the lowest potential (−3.040 V vs. standard hydrogen electrode) is consider the ultimate anode material for high specific energy batteries [2]. However, various issues remain to be address that hinder its use in commercial batteries, namely, cycling stability, Coulombic efficiency, and safety aspects associated with dendritic growth [3]. Inactive lithium, also known as “dead lithium,” originating from the dendrites that become separated from the surface over prolonged cycling contribute to anode capacity loss and require high negative to positive electrode capacity ratio (N/P). In addition, due to the extremely low standard redox potential of lithium, electrolytes readily react with the lithium metal surface even without any potential polarization. These reactions lead to the formation of mostly insoluble species in a layer often referred to as solid electrolyte interface, SEI. Ideally, the SEI layer is self-terminating; however, as fresh lithium gets exposed via dendritic growth, SEI formation continues. The steady and uncontrollable growth of SEI throughout the functional life of the battery leads to gradual resistant growth responsible for the capacity fade and eventual “death” of the battery. In previous art, alternative electrolytes, electrolyte additives, and artificial SEIs were studied [4] [5]. For example, the electrolyte additive lithium fluoride (LiF) was used in carbonate electrolytes and provided a strong protective layer that reduced side reactions and improved the life capacity of the battery [6]. Recently, 3-dimensional design of the anode’s current collector was shown to accommodate Li deposition resulting in suppressed SEI growth and volume expansion during cycling [7]. In the present work, we use sulfur-containing compounds as additives at a very low concentration (1 – 50 mM) in standard 1M LiPF6 EC:DMC (v:v = 1:1). Coin cells (2032) were assembled using lithium foil (100 mm thick), separator (Celgard), and NMC811 cathode (> 10 mg/cm2). Cells were first rested and activated at a slow rate then cycled at C/3 and 1C for charge and discharge respectively in prescribed voltage cutoff window. As shown in Figure 1, the sulfur-containing cell had more than 300 cycles before 90% capacity retention relative to the beginning of life (BOL) capacity. The sulfur-free control cell lasted less than 150 cycles above the 90% retention line. Electrochemical impedance spectroscopy (EIS) measurements for cycled cells showed lower interfacial resistance for cells with sulfur-containing additives compared to control cells. The reason for the improved cycle stability can be attributed to the stability afforded by the additives to the SEI layer. Figure 1: A comparison of cell performance between control (black) and sulfur-containing additive (green). The Red line indicates the 90% retention of the battery. References Yoshio, Masaki, Ralph J. Brodd, and Akiya Kozawa. Lithium-ion batteries. Vol. 1. New York: Springer, 2009. Liu, Bin, Ji-Guang Zhang, and Wu Xu. "Advancing lithium metal batteries." Joule2, no. 5 (2018): 833-845. Xiao, Jie, Qiuyan Li, Yujing Bi, Mei Cai, Bruce Dunn, Tobias Glossmann, Jun Liu et al. "Understanding and applying coulombic efficiency in lithium metal batteries." Nature Energy5, no. 8 (2020): 561-568. Tikekar, Mukul D., Snehashis Choudhury, Zhengyuan Tu, and Lynden A. Archer. "Design principles for electrolytes and interfaces for stable lithium-metal batteries." Nature Energy1, no. 9 (2016): 1-7. Wang, Qian, Chengkai Yang, Jijin Yang, Kai Wu, Cejun Hu, Jing Lu, Wen Liu, Xiaoming Sun, Jingyi Qiu, and Henghui Zhou. "Dendrite‐free lithium deposition via a superfilling mechanism for high‐performance Li‐metal batteries." Advanced Materials31, no. 41 (2019): 1903248. Choudhury, Snehashis. "Lithium fluoride additives for stable cycling of lithium batteries at high current densities." In Rational Design of Nanostructured Polymer Electrolytes and Solid–Liquid Interphases for Lithium Batteries, pp. 81-94. Springer, Cham, 2019. Yun, Qinbai, Yan‐Bing He, Wei Lv, Yan Zhao, Baohua Li, Feiyu Kang, and Quan‐Hong Yang. "Chemical dealloying derived 3D porous current collector for Li metal anodes." Advanced Materials28, no. 32 (2016): 6932-6939. Figure 1
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Alvi, Sajid Ali, Ashley Black Serra, Ignacio Samir Jozami, Farid Akhtar, and Patrik Johansson. "Stable Cycling of BiSbSe1.5Te1.5 Conversion-Alloying Anodes." ECS Meeting Abstracts MA2023-02, no. 4 (December 22, 2023): 648. http://dx.doi.org/10.1149/ma2023-024648mtgabs.

Повний текст джерела
Анотація:
Conversion-alloying anodes based on metal-selenides/tellurides have been explored extensively during the past decade for usage in lithium-ion batteries (LIBs), in order to increase cell energy density.1,2 Due to the large expansion and contraction during (de)lithiation, however, deterioration due to pulverization is a main hurdle to overcome for stable cycling. Strategies such as nano-structuring and composites have been applied to improve the mechanical stability, but no silver-bullet has yet been found. Here we present proof-of-concept for a conversion-alloying based anode BiSbSe1.5Te1.5, a medium high-entropy alloy (MHEA). The main idea is that the increased entropy can enhance the mechanical properties via solid solution strengthening. The MHEA was synthesized using high-energy ball milling to get a single phase (R3m), which was subsequently used as the anode active material, and this without compositing with any carbon material, in contrast to previously reported Se/Te-based alloys.3,4 As a result, our half-cells (Li//MHEA) were able to attain stable cycling with high capacity (420 mAh g-1), agreeable capacity retention (84%), and coulombic efficiency (>99%) for 100 cycles at C/5 rate (Figure 1).5 The formation of a stable solid electrolyte interphase (SEI) was inferred by electrochemical impedance spectroscopy (EIS) data, showing reduced charge transfer resistance with cycling. Furthermore, operando XRD showed reversibility of the initial phases during (de)lithiation. We furthermore believe that moving from MHEAs to “proper” HEAs might further enhance the mechanical properties and stabilize the structure for even longer duration. Figure 1: a) Charge-discharge curves and b) galvanostatic cycling of Li//BiSbSe1.5Te1.5. References Li, L., Zhao, J., Zhao, H. & Mao, J. Bi2Se0.5Te2.5/S, N-doped reduced graphene oxide as anode materials for high-performance lithium ion batteries. J. Alloys Compd. 920, 166003 (2022). Fan, H. et al. Recent advances of metal telluride anodes for high-performance lithium/sodium-ion batteries. Mater. Horizons 9, 524–546 (2022). Zhang, Z., Zhao, X. & Li, J. SnSe/carbon nanocomposite synthesized by high energy ball milling as an anode material for sodium-ion and lithium-ion batteries. Electrochim. Acta 176, 1296–1301 (2015). Wei, Y. et al. Wrapping Sb2Te3 with a Graphite Layer toward High Volumetric Energy and Long Cycle Li-Ion Batteries. ACS Appl. Mater. Interfaces 12, 16264–16275 (2020). Alvi, S. et al. To be submitted. (2023). Figure 1
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Kucinskis, Gints, Julija Hodakovska, Liga Britala, Artis Deze, and Gunars Bajars. "Understanding the Interplay between Temperature, State of Health, Rate of Ageing, and Overvoltage in Li-Ion Battery Cells." ECS Meeting Abstracts MA2023-02, no. 2 (December 22, 2023): 412. http://dx.doi.org/10.1149/ma2023-022412mtgabs.

Повний текст джерела
Анотація:
Li-ion batteries are currently the most popular battery technology. However, their service life remains limited and is typically in a range of 2-10 years of active use. The ageing is influenced by the materials used, temperature, charge/discharge rate and architecture of the battery cells. The governing ageing mechanisms are generally related to material stability, with the formation of solid-electrode interphase (SEI), decomposition of active materials or electrolyte and loss of contact being the main contributors. Externally, this can be observed as loss of capacity, increase in internal resistance (overvoltage or polarization) and heating of the cell while in use. In this work, we demonstrate how Arrhenius plots are a valuable tool to understand the rate of battery cell ageing over its operational temperature range [1,2]. The V-shaped Arrhenius plots correspond to two ageing mechanisms, lithium plating and growth of SEI, with the intersection (crossover) denoting the optimum temperature for the highest service life. The crossover temperature shifts towards higher values with increasing C-rate and anode thickness and depends on the state of health of the battery. The study shows that using Arrhenius-type dependences of the ageing rate can provide valuable insights for quality control and battery management systems, extending the service life of battery cells. Overvoltage of the battery cell typically grows as the battery cell ages. This increased internal resistance leads to a decrease in the battery's ability to deliver current, and thus reduces its power or what is in some cases called ‘rate capability’. We have studied this phenomenon for lab-assembled half-cells with LiFePO4 and NCM 811 cathode as well as for commercial cells, showing the overvoltage as a function of battery cell’s state of health, C-rate and temperature. While ultimately the overvoltage is undesirable, we show how it correlates with battery’s state of health and can be used as an effective predictor of the remaining service life of the battery cell from the operational data without performing a full charge and discharge measurement in a controlled environment. This reduces the failure risk and improves the safety and reliability of the battery. Acknowledgements Authors acknowledge Latvian Council of Science project “Cycle life prediction of lithium-ion battery electrodes and cells, utilizing current-voltage response measurements”, project No. LZP-2020/1-0425. Institute of Solid-State Physics, University of Latvia as the Centre of Excellence has received funding from the European Union's Horizon 2020 Framework Program H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART2. References Bozorgchenani, M., Kucinskis, G., Wohlfahrt-Mehrens, M. & Waldmann, T. Experimental Confirmation of C-Rate Dependent Minima Shifts in Arrhenius Plots of Li-Ion Battery Aging. J. Electrochem. Soc. 169, 030509 (2022). Kucinskis, G. et al. Arrhenius plots for Li-ion battery ageing as a function of temperature, C-rate, and ageing state – An experimental study. J. Power Sources 549, 232129 (2022).
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії