Дисертації з теми "Transferts advectifs"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-25 дисертацій для дослідження на тему "Transferts advectifs".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Touze-Foltz, Nathalie. "Modélisation des transferts advectifs dans les étanchéités composites de centres de stockage de déchets." Paris, ENMP, 2001. http://www.theses.fr/2001ENMPA001.
Повний текст джерелаTouze-Foltz, Nathalie. "Modélisation des transferts advectifs dans les étanchéités composites de centres de stockage de déchets." Paris, ENMP, 2001. http://www.theses.fr/2001ENMP1038.
Повний текст джерелаGeomembranes of composite liners often exhibit holes representing preferential advective flow paths for leachate. Various authors have developed mathematical models and empirical equations in order to interpret flow rates due to advective transfers obtained in the laboratory and extrapolate them to field conditions, for steady-state flow, unifrom interface transmissivity, and saturated soils and interfaces. Limits of validity of these mathematical models and empirical equations were determined for a uniform interface transmissivity. But the transmissivity proves to be non-uniform. The work performed thus consisted in studying the influence of this non-uniformity on flow rates thanks to analytical equations and experimental devices. The influence of the respective location of the hole in the geomembrane as well as the spatial repartition of transmissivity. For this latestt point two methods were used during the PhD in order to describe geomembrane and compacted soil surfaces topography
Bannour, Hajer. "Evalution des transferts advectifs à travers les étanchéités composites géomenbranes-géosynthétiques bentonitiques des barrières de fonds d'installations de stockage de déchets." Thesis, Grenoble, 2014. http://www.theses.fr/2014GRENU048/document.
Повний текст джерелаGeomembrane (GM)-geosynthetic clay liner placed in bottom landfill barriers could be faced to advective transfers caused by the appearance of GM defects. Leachate could percolate naturally through the GCL; penetrate the soil and the ground water which could result in environmental damage. It's therefore important to understand leakage transfer mechanism though GM-GCL composite liners and quantify them in order to be aware, to master and to minimize advective transfer impact through the barrier to the environment. However, the GM is not accessible in bottom land fill liner which makes it harder to correctly estimate leakage through the composite liner. The present work used to evaluate advective transfer through GM-GCL composite liner via an experimental and numerical approach. This work used also to ameliorate the comprehension of leakage transfer mechanisms as a function of external solicitations compared to the literature. The purpose of this study was thus to properly identify advective transfer problem through composite liner by highlighting the main parameters affecting advective transfers through composite liners (confining stress, heterogeneity of the GCL composition, contact quality at the GM-GCL interface, chemical and physical alteration during its service life). Those parameters influence the whole barrier performances and material characteristics evolution were studied. Experimental program was dealing with acquiring water retention data of GCL by introducing state surface concept under the confining stress generated by the waste. It has been found that confining stress used to reduce GCL swelling facilities while hydrated and consequently lead to the decrease of the saturated hydraulic conductivity. This result emphasizes on landfill conception recommendations based on rapidly covering the GCL in in order to acquiring its watertightness capabilities. This experimental study was reinforced by a numerical computation study dealing with water transfer through composite liner due to a GM defect and a hydraulic head with considering the heterogeneity of the GCL. This numerical study highlighted new phenomena regulating flow rate through composite liners consisting of geotextile deaturation due to high suction performed by the bentonite as part of the GCL. Indeed, in addition to containing the bentonite and providing tensile shear stresses, the geotextile contribute to reduce the flow rate through composite liner thanks to its high hydraulic conductivity while desaturated. Interface transmissivity tests were also carried for different composite liners combinations. Measurements concluded that neither external solicitations resulting from chemical and physical alteration conducting to the increase of the hydraulic conductivity of the GCL nor the quality of the GM (in relation with its roughness, rigidity and thickness) significantly affect advective transfer through composite liners at the steady state. However an effect was highlighted during transient state. A synthetic approach was thus given to summarize composite liners transfers mechanism and anticipate environmental impact of its leakage. It was later confirmed that the bentonite swelling contributes also to flow rate reduction through composite liner regardless of the bentonite nature and granulometry. In addition, it has been concluded that the transient state within which flow rate reduction though has been observed must be taken into consideration to realistically predict flow rate leakage through composite liners
Chabi, Fatiha. "Etude numérique et expérimentale du transfert de masse, par advection et diffusion en écoulement pulsé, sur des stents actifs." Thesis, Paris, ENSAM, 2016. http://www.theses.fr/2016ENAM0051/document.
Повний текст джерелаThe disturbance of the flow in the vicinity of the arterial wall equipped with a stent plays a key role in the onset and development of complications related to cardiovascular diseases (stenosis, restenosis, thrombosis...). The topology of the flow field in the intra-stent zone is very complex. Indeed, in the vicinity of the stent, recirculation zones form upstream and downstream of the stent strut where wall shear stress is very low. In vivo and in vitro studies have demonstrated the role of the in-stent flow features on cardiovascular diseases.The correct estimation of the wall shear stress, the understanding of the behavior of the in-stent flow and its role in the transfer of the drug are expected to help optimize treatments (stent geometry, drug composition...). The numerical approach (CFD) is a useful and versatile way to study these phenomena. However, the accuracy and the relevance of the results depend on the choice of the flow model, the boundary conditions and the stent and artery geometry.Firstly we study in this work the impact of the hemodynamic model on the in-stent flow characteristics. Three numerical models describing the coronary flow are used. These models are: the steady model "MP", the simplified pulsatile model "MPS" and the complete pulsatile model "MPC" based on Womersley's analysis. We show the importance of the pulsatility of the flow but at the expense of a high increase in the computing time. Secondly we study experimentally the in-stent flow using measurement technique "PIV". This experimental study confirms the previous numerical results. Finally we examine numerically the effects of the flow pulsatility on the mass fluxes released by the faces of a drug eluting stent. This numerical study highlights the importance of the coupling between the recirculation zones and the mass transfer into the arterial wall
Ortega, Ramirez Miriam Patricia. "Analysis of soil structural and transfer properties using pore scale images and numerical modelling." Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAU017/document.
Повний текст джерелаIn this thesis it was studied the structure of the porous media, particularly on a sandy soils and a virtual pack of spheres; based on bibliographic references here were generated our own tools to compute the porosity, specific surface and pore size distribution. We built an algorithm to solve advection diffusion equation directly on the porous media structure (using a 3D image result of the $mu $ CT scan of the porous media). We used the splitting operator to compute the advective part with a Finite Volume (FV) method, implementing a Total Variation Diminishing (TVD) scheme. The diffusion part was computed using with a FV method with the assistance of the MUMPS software to solve the resulting linear system. From the concentration field obtained with the algorithm and following a volume averaging method, we computed the macroscopic properties of: dispersivity and dispersion coefficient at Pe=223,23,2.3,0.23 for a sample of Fontainbleau NE34 sand. We observing that these results depend on the quality of the 3D image, structural and transport properties were studied using 3D images at different resolutions. The images at different resolutions were called rescaled images, and they were generated numerically and taken directly from the micro CT scan. As a first result we proposed a criterion based on the pore size distribution to assess if a 3D image resolution is suitable or not for permeability computation of a granular material with a finite volume (FV) method. As a second result we showed how the solute transport macro properties are less affected by a deterioration of the resolution than the flow property of permeability (both cases computed through a FV method). And as a third result we showed that a numerical rescaled image preserve the behavior of the macroscopic properties more than a real rescaled image
Zambaux, Julie-Anne. "Influence des déformations successives alternées de la paroi sur l'accroissement des performances d'échange d'un tube : application aux échangeurs multifonctionnels." Thesis, Valenciennes, 2014. http://www.theses.fr/2014VALE0036/document.
Повний текст джерелаThe work presented here is focused on the numerical study of specific successive wall deformations in alternate directions, applied to a tubular geometry. Those deformations help modifying the flow structure and thus its heat transfer and mixing properties. One of the main aims of the study is to apply those deformations to multifunctional exchangers which are heat exchangers and chemical reactors at the same time. The study is mainly focused on laminar flows and all the numerical calculations were performed using the CFD code ANSYS Fluent. The first step of the study is to assess the secondary flow created by the wall deformations. The influence of several deformation geometrical parameters has also been studied. In order to enhance the mixing in the deformed tube, the wall deformations have been applied to coaxial configurations (often used in the industry). Two kinds of annular configurations have been evaluated. At first, the wall deformations are applied to the external and internal walls of the coaxial tube. The effect on the heat transfer enhancement of the longitudinal and angular phase-shifting between the two deformations has been specifically assessed. The second configuration considered combines the alternate deformations on its external walls and a swirled internal wall. This particular annular configuration creates chaotic advection in laminar flows, therefore helping increasing the mixing. This geometry is used as a solar captor and helps increasing the global performances when compared with a smooth tube usually used. The last part of the presented work is focused on the experimental validation of the numerical results. Techniques such as PIV and LDA are used to measure local velocity fields in a plane duct with alternate deformations applied to its lower wall
Roque, António José Pereira Mendes. "Transfert advectif et diffusif de polluants inorganiques dans les barrières d'étanchéité minérales présentes dans les centres de stockage de déchets." Lyon, INSA, 2001. http://www.theses.fr/2001ISAL0034.
Повний текст джерелаThis work is intended to contribute to understand better the hydro-geochemical performance of fine-grained soils with geotechnical properties similar to those of soils that are currently used in the construction of compacted clay liners existing in the landfills. Therefore, the work is expected to contribute to improve the design and dimensioning of confinement systems based on the determination of the hydraulic conductivity, the effective diffusion coefficient and the capacity of retention of fine-grained soils. We begin by studying of the phenomenology of soil-water-electrolyte interactions, with a view to contribute to understand better the operation of the soil-leachate system. Subsequently, we describe the main physical, chemical and biological processes of retention of inorganic pollutants in the soils, and we present for some inorganic pollutants the mechanisms of retention that are responsible for their retardation in the soils. In addition, we indicate the main processes of pollutant transport through compacted clay liners, as well as the corresponding mathematical formulation. W e also refer to the fundamental principles of permeability and diffusion in the soils as well as the methods used in laboratory for measuring the hydraulic conductivity and the effective diffusion coefficient. W e present the characteristics of leachates produced in municipal solid landfills, as well as a data base concerning the chemical composition of these leachates. These data were used as supporting basis to the selection of inorganic chemical species and of chemical concentrations representative of the chemical composition of real leachates, with a view to prepare both acid and neutral to moderately alkaline leachates. We present the methodology that has led to collecting thirty samples from the main Portuguese clayey formations and we characterise the soils. The results obtained in the tests are analysed and we perform their statistical processing using linear regression and multivariate analysis methods, in order to select representative samples of the overall sampling. W e carry out permeability tests in laboratory with equipment and apparatuses that were specifically designed for: i) determining the hydraulic conductivity of specimens; ii) determining the time of advective transport of inorganic chemical species through the sampling soils; iii) studying the effects of both ac id and neutral to moderately alkaline leachates on the long-term integrity of soils. We carry out, other than the study on the advective transport of chemical species, a study on the diffusive transport of inorganic chemical species through the sampling soils. For the purpose, we designed equipment and apparatuses that were specifically intended to study the transport of pollutants by pure diffusion
Davies, Kevin L. "Declarative modeling of coupled advection and diffusion as applied to fuel cells." Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/51814.
Повний текст джерелаHadad, Waseem Al. "Thermique des mini-canaux : comportement instationnaire et approche convolutive." Thesis, Université de Lorraine, 2016. http://www.theses.fr/2016LORR0121/document.
Повний текст джерелаA semi-analytical model allowing to simulate the transient conjugate heat transfer in mini/macro plane channel subject to a heat source(s) localized on the external face(s), was presented and verified. The developed model takes into account advection-diffusion in the fluid and conduction in the solid. As the hydraulic diameter of the channel becomes small, the internal experimental characterization (measurement of temperature and heat flux) using internal sensors become tricky because internal sensors located may compromise the structural integrity of the whole system. A non-intrusive method for estimating the internal conditions from infrared temperature measurements on the external faces using the semi-analytical model was performed. Since the classic convective heat transfer coefficient loses its meaning in transient state, an alternative approach based on a transfer function, valid for Linear Time-Invariant (LTI) systems, was highlighted. This function can be calculated analytically only for a simple geometry. For complex geometries it can be estimated experimentally. Thanks to intrinsic character of this function, two characterization methods were designed. The first to estimate the temperature at a point from a measurement at another point in the system (virtual temperature sensor). The second method concerns the detection of fouling layers that may appear in the heat exchanger from temperature measurements on the external faces
Ghanem, Akram. "Intensification des transferts : typologies par régime d'écoulement et critères de performance d'échangeurs/réacteurs multifonctionnels." Ecole centrale de Nantes, 2013. http://www.theses.fr/2013ECDN0034.
Повний текст джерелаThe concept of multifunctional heat exchanger/reactor (MHE/R) includes all systems efficient for the realization of one or several unitary operations on industrial fluids with high productivity and reduced energy expenditures. The aim of the present work is to characterize the performance of different MHE/R configurations in terms of mixing and heat transfer using numerical and experimental techniques. An energy efficiency approach is adopted to evaluate the feasibility of each configuration based on common performance criteria. In the laminar regime, chaotic advection produced in the Split-And-Recombine (SAR) reactors promotes mixing by diffusion. Flow characteristics, heat transfer capacities, and mixing qualities are investigated in two SAR configurations. Superior mixing qualities are observed in these devices and convective heat transfer is enhanced up to 20 folds compared to classical geometries. In the transitional or inertial regime, modified surface geometries and tube inserts are most efficient in process intensification. Mixing enhancement in two corrugated channel reactors with different radii of curvature and a tube fitted with helical inserts is assessed by chemical probe. Mixing intensification relative to an empty tube reaches as high as 100 folds in the laminar regime. In the turbulent regime, convective heat transfer intensification produced by the trapezoidal vortex generator is quantified in the High-Efficiency Vortex (HEV) static mixer and heat exchanger by experimental thermal measurements. Convective heat transfer in this geometry attains values around 12 times higher than those recorded in a classical plain tube configuration
Boutron, Olivier. "Étude de l'influence de l'hydrodynamique sur le transfert de produits phytosanitaires en fossés agricoles : approche expérimentale et numérique." Lyon 1, 2009. http://n2t.net/ark:/47881/m6xg9p3z.
Повний текст джерелаThe aim of this work was to better understand the influence of hydrodynamics on the transfer of pesticides in water flows in agricultural ditches. Special attention was given to four parameters: i) the speed of the surface water flow, ii) the submergence, defined as the mean ratio between the height of the bedforms and the water depth, iii) the shape of the bedforms and iv) the water content of the bed substrate before contamination by pesticides. The influence of these various parameters was investigated with an experimental flume, using a standard of substrate made of hemp fibres. Hemp fibres were chosen as a simplified model of natural substrates such as grass, dead leaves, decaying vegetation, straw and sediments, which are rather complex and heterogeneous. Hemp fibres were selected from preliminary laboratory studies which allowed to compare the adsorption and desorption characteristics of various pesticides for different fibres often used in the geotextile industry (jute, linen, hemp, polyamide, polypropylene and polyester). The flume experiments were designed in order to assess the influence of the four parameters mentioned above. The comparison between the different experiments shows that an increase in surface water speed results in an increase in the amount of pesticides transferred from the water to the bed substrate and the transfer kinetics. A similar result is observed when increasing the submergence, or when going from small sinusoidal bedforms to larger rectangular bedforms. In addition, the data show that the transfer of pesticides from surface water to the bed substrate is strongly decreased when the substrate was saturated with water at the beginning of the experiments. Also, it appears that there is a link between the influence of the differents parameters. When considering the long time duration and the cost of the experiments, it was decided to use a model from the literature which was adapted and used to confirm and extend the interpretation of the experimental data
Maalej, Talal. "Caractérisation d'une source de polluant en aéraulique à partir d'inversion de mesures de concentration." Thesis, Vandoeuvre-les-Nancy, INPL, 2010. http://www.theses.fr/2010INPL077N/document.
Повний текст джерелаThis numerical study deals with the inverse problem of estimating the intensity and the positionof a pollutant source. The estimation of time-varying emission rates of pollutant sources of H2S in asewer chamber is first implemented through inversion of concentration measurements using the modal identification method. A specific method based on transmittance functions between sensors output isused to estimate the source position. Regularization tools are applied to estimate each transmittance,whose convolution product with the concentration of a reference sensor models the response of any sensor.Transmittances estimated from simulated concentration signals in a tunnel flow with a point source arethen compared to the output of 1D analytical model for the transport equation. A nonlinear minimizationalgorithm is used to estimate the velocity and the diffusion coefficient first and the source position next,under some assumption
Koufi, Lounes. "Simulation thermo-aéraulique de la ventilation et du transport de polluants dans des cavités : application à la qualité de l'air intérieur et au confort thermique." Thesis, Artois, 2015. http://www.theses.fr/2015ARTO0210/document.
Повний текст джерелаThis thesis deals with the numerical prediction of heat and mass transfer impact on the air quality and thermal comfort within either ventilated or not cavities filled with pollutants. Indeed, ventilated areas are first modeled to be as ventilated cavities in a first approximation.To carry out this study, we adopt a numerical model based on solving equations governing momentum, heat and mass transfer. The first part of this thesis is dedicated to some generalities on ventilation, air quality and thermal comfort and the bibliographic review of previous works. The adopted approach is described in Chapter 2. It is based on the Boussinesq approximation. The RNG k-ε model is used to handle turbulence. The finite-volume method (FVM) is used to discretize of the set of equations, and the pressure-velocity coupling is achieved via the SIMPLEC algorithm. In the second part, we consider the thermal convection and thermosolutal convection in closed cavities. The main aim is a) to validate the considered model by comparing our results with those of literature, and b) to investigate influence of the thermal Rayleigh number and the buoyancy ratio. Our findings indicate that the model accurately predicts heat and mass transfer.Then, we apply this approach to the case of two-dimensional ventilated cavities subjected to temperature and concentration gradients. The indices of air quality and ventilation efficiency are calculated and discussed. We end this work by analyzing the influence of ventilation on the quality of indoor air in a three-dimensional room in transient regime. This investigation covers different scenarios from the simple flow mechanical ventilation which aims to find the best configuration in terms of efficiency and quality of indoor air
Ibarrart, Loris. "Description en espaces de chemins et méthode de Monte Carlo pour les transferts thermiques couplés dans les structures fluides et solides, une approche compatible avec l'informatique graphique." Thesis, Ecole nationale des Mines d'Albi-Carmaux, 2020. http://www.theses.fr/2020EMAC0009.
Повний текст джерелаThe present manuscript deals with the coupling of thermal heat transfers. More precisely, it adresses this coupling by making use of the Monte Carlo method and the sampling of random paths. This choice was made in the perspective of building algorithms that do not present constraints regarding the complexity of the studied geometry. Indeed, the combined use of this kind of statistical approaches, and acceleration tools coming from the image synthesis community, already allowed for an exact resolution of radiative transfer in arbitrary geometries. Regarding diffusive heat transfers, exact results using random paths are only achievable in academic configurations. Thus, approximate random paths are commonly used to account for this kind of thermal transport. Among the possible choices, we will use random paths built on ray tracing, therefore allowing to benefit once again from all the advantages of the tools developed in computer graphics. A proof of concept of the insensitivity of the computation time of the resolution of thermal transfers in porous exchangers to the number of pores by making use of conducto-convecto-radiative random paths will be presented. Beyond this result, an analysis of the behaviour of this method in ducts heat exchangers will allow to clarify when this kind of insensitivity can indeed be observed. This analysis will induce the concept of thermal thickness, by analogy with optical thickness for radiative transfer
MOKRANI, ASEN. "Analyse experimentale et numerique de deux procedes complementaires de melange et de transfert en ecoulement tridimensionnel ouvert : advection chaotique laminaire et ecoulement turbulent eulerien." Nantes, 1997. http://www.theses.fr/1997NANT2074.
Повний текст джерелаPeuble, Steve. "Caractérisation expérimentale des processus d’hydratation et de carbonatation des roches basiques et ultra-basiques." Thesis, Montpellier 2, 2014. http://www.theses.fr/2014MON20017/document.
Повний текст джерелаSince the mid-90s, in situ mineralization of CO2 has been considered as a safe and efficient solution to mitigate its anthropogenic emissions to the atmosphere. It is to recover the CO2 emitted by some industries and trap it in the mineral form (carbonates) in mafic and ultramafic aquifers (e.g. basalts and peridotites). The carbonation of CO2 has been widely described in natural systems where it occurs through a series of complex chemical reactions coupled to the transport of reactive species in the fluid. Numerous experiments have been conducted in batch reactors over the past fifteen years to better understand the physico-chemical parameters controlling the carbonation of (ultra-)mafic rocks. But few studies have further characterized the coupling reactive-transport processes during the injection and in situ mineralization of CO2 in these rocks.This work aims to meet 3 main objectives: (i) characterize changes in reaction paths during the injection of CO2 in (ultra-)mafic systems, (ii) measure the feedbacks effects of chemical reactions on the hydrodynamic rock properties and (iii) quantify the efficiency and sustainability of such processes over long time periods. It is based on the development of experimental protocols to (i) reproduce the injection of CO2 into (ultra-)mafic rocks and (ii) characterize the reactions using a series of geochemical and analytical tools from the atomic to the centimetric scale. Three series of reactive percolation experiments have been performed on (ultra-)mafic aggregates from relatively simple (olivines from San Carlos and Hawaii) to more complex samples (basalts from Stapafell) under in situ P-T-containment conditions (Ptot=10-25 MPa; T=180-185°C; Pcont=15-28 MPa).The results allowed us to differentiate several reactions paths in these systems depending on the fluid transport, rock porosity, local hydrodynamic properties, mineralogy and/or local changes in the fluid composition. Mass balance calculations have revealed an efficient mineralization of CO2 in the samples. It is controlled by the chemical and the hydrodynamic properties of the rock at the pore scale. But some reactions associated with the alteration of (ultra-)mafic rocks (e.g. hydration) have negative feedbacks effects on the reservoir rock properties (porosity and permeability) that may compromise the sustainability of CO2 storage in natural aquifers in the long term.These new supporting data will allow numerical models to better simulate the carbonation of (ultra-)mafic rocks knowing the hydrodynamic properties and the structural heterogeneities of the reservoir. They also suggest that a better control of some injection parameters, such as the flow injection rate and the injected fluid composition (e.g. pCO2), would improve the rate and yield of CO2 mineralization in these systems
Cailteau, Christelle. "Métrologie des pressions partielles de gaz (CO2 et CH4) à l'équilibre avec les eaux de formation des marnes de Bure (Meuse - Hte Marne, France) et Mont Terri (St Ursanne, Suisse) : interprétation des mécanismes de transfert de gaz après forage." Thesis, Vandoeuvre-les-Nancy, INPL, 2008. http://www.theses.fr/2008INPL030N/document.
Повний текст джерелаAn infrared sensor (IRTF) and an innovative Raman optical bench were implemented and developed in underground laboratories to improve our knowledge about migration mechanisms of dissolved gases (CO2 and CH4). This study is focussed on the characterisation of the initial state of the porewater of Callovo-Oxfordian marl (Bure) and Opalinus Clay (Mt Terri Middle Jurassic). These sensors are integrated into experimental devices of gas-equilibration test developed by Andra (PAC) to follow the gaseous phase behaviour in contact with the rock formation through a borehole drilled and maintained in anaerobic conditions, and initially filled with pure argon. These in situ sensors allow, on line quantitative analysis of gases released by the rock formation at low bulk pressure (<1.3 bar). Quantitative models were developed to transform peak intensities in partial pressures of gas. They give mean absolute relative errors about 1.66 % for pCO2 (mbar.m) and 1.37 % for pCH4 (mbar.m). Three years of IR monitoring of one borehole on the site of Mt Terri and two boreholes on the site of Bure (facies C2b1 and C2d) have been led. CH4 transfer curves were modelled by diffusion-advection. CH4 concentration in porewater from non-perturbed rock formation is estimated from all the experiments: concentrations between 3.06 and 14.23 mg.L-1 was obtained for Opalinus Clay, between 0.36 and 1.28 mg.L-1 for C2d facies and between 0.56 and 1.55 mg.L-1 for C2b1 facies in Callovo-Oxfordian marls of Bure. Gas/rock/water balance governs pCO2 after drilling, whereas diffusion/advection laws explain CO2 long-term profiles. An intra-formational origin of the organic gases can be proposed
Ye, Jing. "Utilisation de mesures de champs thermique et cinématique pour la reconstruction de sources de chaleur thermomécaniques par inversion de l’équation d’advection-diffusion 1D." Thesis, Université de Lorraine, 2015. http://www.theses.fr/2015LORR0027/document.
Повний текст джерелаThis work concerns the way intrinsic observables can be produced, which are related to the thermomechanical behavior of materials and necessary for better formulation of state laws. These observables are Thermomechanical Heat Sources (THS) which are activated through mechanical excitation. These sources can be reconstructed both in space and time by the inversion of measured temperature fields obtained through IR thermography. We develop two main methods in this work which rely on spectral reduced approaches (one of them being the decomposition on Branch Modes) and both on a sequential inversion (Beck’s method) and an iterative one (Conjugated Gradient). Regarding the latter, we suggest to combine the standard approach with an efficient regularization method which comes from the filtering techniques based on TSVD. As we are concerned with materials which can be subjected to plastic instabilities (High Density PolyEthylene) for which local velocities of matter displacement can be non negligible, the inversion of the measurements must be performed with the advection-diffusion operator of heat transfer. It is then necessary to obtained additional knowledge: the velocity field. This one is measured by 3D Digital Image Correlation and we detail the experimental work we have carried out, which are based on tensile tests monitored with video-extensometry. We show that for quasi-static tests at relatively high strain rates, the advective effects are generally negligible. We also show the richness of the information brought by this dual thermomechanical (heat sources) and kinematical (strain-rates, velocities) information. It allows for a better understanding of the plastic instability (necking) dynamics. Lastly, we criticize the obtained results on THS reconstruction by the confrontation between the two algorithms and by a physical analysis of the observed phenomena
Louison, Loïc. "Analyse mathématique et contrôle optimal pour les équations d’advection-diffusion : Application au problème de transfert de nutriments pour les plantes en agroécologie." Thesis, Guyane, 2015. http://www.theses.fr/2015YANE0001/document.
Повний текст джерелаAgriculture soils were highly contaminated for a long time by pesticides which were widely used by producers to fight against weevils. Soils where also contaminated by the use of fertilizers to increase the plant development. An ecological alternative using service plants is encouraged following recent research. The aim of this work is to give a mathematical and a modelling point of view as we study the mecha- nisms of nutrient transfer to plants using the mathematical analysis and optimal control theories. The two cases of polluted and non-polluted soils are considered. The nutrient transfer and uptake processes are modeled by an advection-diffusion system derived from the Nye-Tinker-Barber (NTB) model. The absorbed nutrient concentration represented by the Michaelis-Mention function at the root surface of the principal plant, depends on time and space. We study the existence of a solution for the linear and nonlinear NTB systems, then we characterize the opti- mal control which corresponds to the added nutrients from the service plant. For the pollution case, we use the concept of low-regret and no-regret control of J.-L. Lions
Nguyen, Thai Quang. "Modélisations physico-chimiques de la pénétration des ions chlorures dans les matériaux cimentaires." Phd thesis, Ecole des Ponts ParisTech, 2007. http://pastel.archives-ouvertes.fr/pastel-00003829.
Повний текст джерелаLlerar, Meza Gerónimo. "Upscaling nonreactive solute transport." Doctoral thesis, Universitat Politècnica de València, 2009. http://hdl.handle.net/10251/5848.
Повний текст джерелаLlerar Meza, G. (2009). Upscaling nonreactive solute transport [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/5848
Palancia
Hantsch, Andreas. "A lattice Boltzmann equation model for thermal liquid film flow." Doctoral thesis, Technische Universitaet Bergakademie Freiberg Universitaetsbibliothek "Georgius Agricola", 2013. http://nbn-resolving.de/urn:nbn:de:bsz:105-qucosa-130098.
Повний текст джерелаFlüssigkeitsfilmströmungen kommen in vielen verfahrenstechnischen Prozessen zum Einsatz. Zur Unterstützung von Experimenten sind theoretische und numerische Untersuchungen nötig. Stand der Technik ist es, Navier--Stokes-basierte Modelle zu verwenden, wohingegen hier die Lattice-Boltzmann-Methode verwendet wird. Das finale Modell wurde unter Verwendung eines Zweiphasen- und eines Wärmeübertragungsmodell entwickelt und geeignete Rand- und Anfangsbedingungen formuliert. Alle Untermodelle wurden anhand einfacher Testfälle überprüft. Es konnte herausgefunden werden, dass das Zweiphasenmodell Strömungen großer Dichteunterschiede rechnen kann, was eindrucksvoll im Zusammenhang mit Wandrandbedingungen gezeigt wurde. Das Wärmeübertragungsmodell wurde gegen eine Spektrallösung anhand eines transienten und nichtuniformen Strömungsproblemes getestet. Stationäre Filmströmungen zeigten sehr gute Übereinstimmungen mit OpenFOAM-Lösungen und instationäre Berechungen bewiesen, dass das Model auch solche Strömungen abbilden kann
Boutron, Olivier. "Étude de l’influence de l’hydrodynamique sur le transfert de produits phytosanitaires en fossés agricoles : approche expérimentale et numérique." Thesis, 2009. http://www.theses.fr/2009LYO10045.
Повний текст джерелаThe aim of this work was to better understand the influence of hydrodynamics on the transfer of pesticides in water flows in agricultural ditches. Special attention was given to four parameters: i) the speed of the surface water flow, ii) the submergence, defined as the mean ratio between the height of the bedforms and the water depth, iii) the shape of the bedforms and iv) the water content of the bed substrate before contamination by pesticides. The influence of these various parameters was investigated with an experimental flume, using a standard of substrate made of hemp fibres. Hemp fibres were chosen as a simplified model of natural substrates such as grass, dead leaves, decaying vegetation, straw and sediments, which are rather complex and heterogeneous. Hemp fibres were selected from preliminary laboratory studies which allowed to compare the adsorption and desorption characteristics of various pesticides for different fibres often used in the geotextile industry (jute, linen, hemp, polyamide, polypropylene and polyester). The flume experiments were designed in order to assess the influence of the four parameters mentioned above. The comparison between the different experiments shows that an increase in surface water speed results in an increase in the amount of pesticides transferred from the water to the bed substrate and the transfer kinetics. A similar result is observed when increasing the submergence, or when going from small sinusoidal bedforms to larger rectangular bedforms. In addition, the data show that the transfer of pesticides from surface water to the bed substrate is strongly decreased when the substrate was saturated with water at the beginning of the experiments. Also, it appears that there is a link between the influence of the differents parameters. When considering the long time duration and the cost of the experiments, it was decided to use a model from the literature which was adapted and used to confirm and extend the interpretation of the experimental data
"Heat transfer and intermittency in Advection =: 平流中熱傳送及間歇性問題". 1999. http://library.cuhk.edu.hk/record=b5890001.
Повний текст джерелаThesis (M.Phil.)--Chinese University of Hong Kong, 1999.
Includes bibliographical references (leaves [67]-68).
Text in English; abstracts in English and Chinese.
Lo Ka Fai
Abstract --- p.ii
Acknowledgements --- p.iii
List of Figures --- p.v
List of Tables --- p.ix
Chapter 1 --- Introduction --- p.1
Chapter 2 --- The First Problem: Heat Transfer and Large-scale Flow --- p.7
Chapter 2.1 --- Circulating flow --- p.8
Chapter 2.2 --- Shear flow --- p.10
Chapter 3 --- Results and Discussions --- p.13
Chapter 3.1 --- Circulating flow --- p.13
Chapter 3.2 --- Shear flow --- p.17
Chapter 4 --- The second problem: Intermittency --- p.22
Chapter 5 --- Method of Analysis --- p.25
Chapter 6 --- Results and discussions --- p.29
Chapter 6.1 --- C=0.01 --- p.29
Chapter 6.2 --- "C=0.05, 0.1 and 0.5" --- p.41
Chapter 7 --- Conclusions --- p.60
Chapter A --- Linear Scaling Exponents --- p.62
Chapter B --- The Formula of and the Hierarchy --- p.64
Bibliography --- p.66
Schirén, Whokko. "Finite Element Method for 1D Transient Convective Heat Transfer Problems." Thesis, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-76369.
Повний текст джерела