Добірка наукової літератури з теми "Transcriptomic alterations"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Transcriptomic alterations".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Transcriptomic alterations"
Ekeuku, Sophia Ogechi, Nuraqila Mohd Murshid, Siti Nursyazwani Shukri, Nur Fatin Nabilah Mohd Sahardi, and Suzana Makpol. "Effect of Vitamin E on Transcriptomic Alterations in Alzheimer’s Disease." International Journal of Molecular Sciences 24, no. 15 (August 3, 2023): 12372. http://dx.doi.org/10.3390/ijms241512372.
Повний текст джерелаMarano, Domenico, Salvatore Fioriniello, Maurizio D’Esposito, and Floriana Della Ragione. "Transcriptomic and Epigenomic Landscape in Rett Syndrome." Biomolecules 11, no. 7 (June 30, 2021): 967. http://dx.doi.org/10.3390/biom11070967.
Повний текст джерелаAhn, Antonio, Euan J. Rodger, Jyoti Motwani, Gregory Gimenez, Peter A. Stockwell, Matthew Parry, Peter Hersey, Aniruddha Chatterjee, and Michael R. Eccles. "Transcriptional Reprogramming and Constitutive PD-L1 Expression in Melanoma Are Associated with Dedifferentiation and Activation of Interferon and Tumour Necrosis Factor Signalling Pathways." Cancers 13, no. 17 (August 24, 2021): 4250. http://dx.doi.org/10.3390/cancers13174250.
Повний текст джерелаMattei, Daniele, Andranik Ivanov, Marc van Oostrum, Stanislav Pantelyushin, Juliet Richetto, Flavia Mueller, Michal Beffinger, et al. "Enzymatic Dissociation Induces Transcriptional and Proteotype Bias in Brain Cell Populations." International Journal of Molecular Sciences 21, no. 21 (October 26, 2020): 7944. http://dx.doi.org/10.3390/ijms21217944.
Повний текст джерелаDufva, Olli, Petri Pölönen, Oscar Brück, Mikko A. Keränen, Juha Mehtonen, Sanna M. Siitonen, Suvi-Katri Leivonen, et al. "Immunogenomic Landscape of Hematological Malignancies." Blood 132, Supplement 1 (November 29, 2018): 2596. http://dx.doi.org/10.1182/blood-2018-99-118335.
Повний текст джерелаAbida, Wassim, Joanna Cyrta, Glenn Heller, Davide Prandi, Joshua Armenia, Ilsa Coleman, Marcin Cieslik, et al. "Genomic correlates of clinical outcome in advanced prostate cancer." Proceedings of the National Academy of Sciences 116, no. 23 (May 6, 2019): 11428–36. http://dx.doi.org/10.1073/pnas.1902651116.
Повний текст джерелаSindona, Cinzia, Michele Runci Anastasi, Luigi Chiricosta, Agnese Gugliandolo, Serena Silvestro, Placido Bramanti, Piero Cascone, and Emanuela Mazzon. "Temporomandibular Disorders Slow Down the Regeneration Process of Masticatory Muscles: Transcriptomic Analysis." Medicina 57, no. 4 (April 7, 2021): 354. http://dx.doi.org/10.3390/medicina57040354.
Повний текст джерелаAschauer, Lydia, Leonhard N. Gruber, Alice Limonciel, Martin O. Leonhard, Walter Pfaller, Anja Wilmes, and Paul Jennings. "Transcriptomic and functional alterations during renal epithelial maturation." Toxicology Letters 211 (June 2012): S161. http://dx.doi.org/10.1016/j.toxlet.2012.03.584.
Повний текст джерелаGoldenberg, Regina Coeli dos Santos, Dumitru A. Iacobas, Sanda Iacobas, Leonardo Lima Rocha, Fabio da Silva de Azevedo Fortes, Leandro Vairo, Fnu Nagajyothi, Antonio Carlos Campos de Carvalho, Herbert B. Tanowitz, and David C. Spray. "Transcriptomic alterations in Trypanosoma cruzi-infected cardiac myocytes." Microbes and Infection 11, no. 14-15 (December 2009): 1140–49. http://dx.doi.org/10.1016/j.micinf.2009.08.009.
Повний текст джерелаHan, Seong Kyu, Jungho Kong, Sanguk Kim, Jae‐Hoon Lee, and Dong‐Hoo Han. "Exomic and transcriptomic alterations of hereditary gingival fibromatosis." Oral Diseases 25, no. 5 (April 15, 2019): 1374–83. http://dx.doi.org/10.1111/odi.13093.
Повний текст джерелаДисертації з теми "Transcriptomic alterations"
Benvenuto, Giuseppe. "A bioinformatic approach to define transcriptome alterations in platinum resistance ovarian cancers." Doctoral thesis, Università degli studi di Padova, 2019. http://hdl.handle.net/11577/3424723.
Повний текст джерелаDanielson, Steven Richard. "Apoptosis and transcriptomal alterations in Leber's Hereditary Optic Neuropathy /." For electronic version search Digital dissertations database. Restricted to UC campuses. Access is free to UC campus dissertations, 2004. http://uclibs.org/PID/11984.
Повний текст джерелаSouza, Leonardo da Cunha Menezes. "Mecanismos de Cardiotoxicidade da Doxorrubicina em Ratos Wistar e Potencial Cardioprotetor da Alda-1." Botucatu, 2019. http://hdl.handle.net/11449/180952.
Повний текст джерелаResumo: A cardiotoxicidade induzida pela doxorrubicina (DOX), antraciclina isolada da actinobacteria Streptomyces peucetius e amplamente utilizada na terapia antineoplásica, corresponde a um dos mais importantes eventos patofisiológicos que limitam sua aplicação clínica. No entanto, não são completamente conhecidos todos os mecanismos envolvidos nessa toxicidade, o que diminui as possiblidades de intervenção e a redução dos efeitos colaterais para os pacientes sob tratamento. Uma das hipósteses é que os aldeídos gerados pela ação da DOX atuam sobre membranas mitocondriais, alterando o estado redox e formando adutos com proteínas, os quais prejudicam o correto funcionamento da organela. Atividades deletérias da DOX sobre outros componentes celulares, como, por exemplo, os ácidos ribonucleicos, são, também, possíveis mecanismos de toxicidade do antineoplásico. Várias estratégias têm sido utilizadas para minimizar os efeitos adversos da DOX. Uma delas, é a busca por compostos que possam proteger as células da ação citotóxica. Nesse sentido, a Alda-1, pertencente ao grupo das chaperonas e agonista da enzima aldeído desidrogenase mitocondrial (ALDH2), vem sendo testada com o objetivo de reduzir os efeitos adversos dos metabólitos e radicais gerados pelo antineoplásico. Para investigar outros possíveis mecanismos de ação da DOX e o efeito cardiprotetor da Alda-1, este estudo foi delineado utilizando duas abordagens distintas: experimentos in vivo, com ratos Wistar machos submetidos a trata... (Resumo completo, clicar acesso eletrônico abaixo)
Abstract: The cardiotoxicity induced by doxorubicin (DOX), anthracycline isolated from the actinobacteria Streptomyces peucetius, and widely used as an antineoplastic drug, is one of the most important pathophysiological events that limit its clinical application. However, all the mechanisms involved in this toxicity are not fully understood. One hypothesis is that the aldehydes generated by DOX act on mitochondrial membranes, modifying the redox state and proting adducts with proteins. DOX activities on other cellular components, such as ribonucleic acids, are also possible mechanisms of toxicity. Several strategies have been used to reduce the DOX adverse effects. One of them is the identification of compounds that can protect cells against cytotoxic. Alda-1, which belongs to a group of chaperones and is an agonist of the mitochondrial aldehyde dehydrogenase (ALDH2), has been tested to reduce the adverse effects of metabolites and radicals generated by DOX. To investigate other possible DOX mechanisms of action, and the cardioprotective activity of Alda-1, this study was designed using two different approaches: in vivo, with male Wistar rats submitted to acute and chronic treatments; and, in vitro, in mice fibroblasts and cybrids with ND5 (gene that encodes the mitochondrial Complex I subunit) mitochondrial gene heteroplasmy. The expression profiling of genes related to beta oxidation pathways, Bax, Bcl-2, C1QBP, ALDH2 and miR34a microRNA (ALDH2 expression regulator), and the lipoper... (Complete abstract click electronic access below)
Doutor
Rahmani, Alexandra. "Identification des facteurs de pathogénicité de la bactérie Vibrio tapetis, responsable de la maladie de l'anneau brun chez la palourde japonaise Ruditapes philippinarum et de mortalités chez les poissons marins Transcriptomic analysis of clam extrapallial fluids reveals immunity and cytoskeleton alterations in the first week of Brown Ring Disease development, in Fish & Shellfish Immunology 93, October 2019." Thesis, Brest, 2019. http://www.theses.fr/2019BRES0059.
Повний текст джерелаThe main objective of this thesis is to study the mechanisms related to the pathogenicity of V. tapetis. For this purpose, we developed 2 research axes. The first one aimed at studying the virulence of V. tapetis by answering the following 2 issues: What are the genes involved in the virulence of V. tapetis? and Are there host-specific markers of the virulence of V. tapetis? The second research axis concerned pathogen-host interactions and addressed the following 2 issues: What are the genes expressed during infection in the host? and What are the modulations in the animal associated with pH and temperature during infection? The main findings of this thesis are: (i) V. tapetis, in the context of BRD, induces a down expression of genes involved in the immune response anda deregulation of genes involved in the stabilization and synthesis of actin filaments (ii) This pathogen also induces a decrease in lysosomal activity on exposed hemocytes (iii) The effect of V. tapetis on the actin cytoskeleton and on the decrease in lysosomal activity is independent of the type IV secretion system (T4SS) (iv) The type IV secretion system (T4SS) is involved in the development of BRD but is not essential to induce this disease (v) In the context of BRD and of the loss of hemocyte adhesions properties in vitro, V. tapetis is able to modulate the pH of extrapallial fluids, respectively in the first days and hours of infection (vi) Finally, the "strains typing" approach based on MALDITOF makes it possible to discriminate between V. tapetis strains according to their pathogenicity with regard to Manila clam
Bezerra, Ana Rita Macedo. "Molecular genomics of a genetic code alteration." Doctoral thesis, Universidade de Aveiro, 2013. http://hdl.handle.net/10773/12499.
Повний текст джерелаThe genetic code is not universal. Alterations to its standard form have been discovered in both prokaryotes and eukaryotes and demolished the dogma of an immutable code. For instance, several Candida species translate the standard leucine CUG codon as serine. In the case of the human pathogen Candida albicans, a serine tRNA (tRNACAGSer) incorporates in vivo 97% of serine and 3% of leucine in proteins at CUG sites. Such ambiguity is flexible and the level of leucine incorporation increases significantly in response to environmental stress. To elucidate the function of such ambiguity and clarify whether the identity of the CUG codon could be reverted from serine back to leucine, we have developed a forced evolution strategy to increase leucine incorporation at CUGs and a fluorescent reporter system to monitor such incorporation in vivo. Leucine misincorporation increased from 3% up to nearly 100%, reverting CUG identity from serine back to leucine. Growth assays showed that increasing leucine incorporation produced impressive arrays of phenotypes of high adaptive potential. In particular, strains with high levels of leucine misincorporation exhibited novel phenotypes and high level of tolerance to antifungals. Whole genome re-sequencing revealed that increasing levels of leucine incorporation were associated with accumulation of single nucleotide polymorphisms (SNPs) and loss of heterozygozity (LOH) in the higher misincorporating strains. SNPs accumulated preferentially in genes involved in cell adhesion, filamentous growth and biofilm formation, indicating that C. albicans uses its natural CUG ambiguity to increase genetic diversity in pathogenesis and drug resistance related processes. The overall data provided evidence for unantecipated flexibility of the C. albicans genetic code and highlighted new roles of codon ambiguity on the evolution of genetic and phenotypic diversity.
O código genético não é universal. Alterações à identidade de vários codões descobertas em procariotas e eucariotas invalidam a hipótese dum código genético universal e imutável. Por exemplo, várias espécies do género Candida traduzem o codão CUG de leucina como serina. Em Candida albicans, um único tRNA de serina (tRNACAGSer) incorpora in vivo 97% de serina e 3% de leucina nas proteínas em resposta a codões CUG presentes nos mRNAs deste fungo patogénico. Esta ambiguidade é flexível e a incorporação de leucina aumenta em condições de stress. De forma a elucidar a função desta ambiguidade e determinar se a identidade dos codões CUG podia ser revertida de serina para leucina, desenvolvemos uma estratégia de evolução forçada e uma proteína recombinante fluorescente cuja actividade depende da incorporação de leucina num codão CUG. Construímos estirpes que incorporam leucina nas proteínas em resposta a codões CUGs em níveis que variam entre 0,64% e 98,46%. Esta reversão de uma alteração ao código genético demostrou de modo inequívoco que o código é flexível e pode evoluir. Testes de crescimento em diferentes meios de cultivo revelaram uma série impressionante de fenótipos com elevado potencial adaptativo nas estirpes mais ambíguas, nomeadamente tolerância a antifúngicos. A sequenciação dos genomas das estirpes que construímos revelou que a ambiguidade do codão CUG resulta na acumulação de polimorfismos de nucleótido únicos (SNP) no genoma. Verificámos também perda de heterozigozidade (LOH) nos cromossomas 5 e R das estirpes que incorporam 80,84% e 98,46% de leucina em locais proteicos codificados por codões CUG. Os SNPs acumularam-se preferencialmente em genes envolvidos na adesão celular, no crescimento filamentoso e na formação de biofilmes, sugerindo que C. albicans utiliza a sua ambiguidade natural para aumentar a diversidade genética dos processos relacionados com a patogénese e resistência a drogas. Estes resultados evidenciam uma notável flexibilidade do código genético de C. albicans e revelam funções inesperadas da ambiguidade do código genético na evolução da diversidade genética e fenotípica.
Birnbaum, David. "Altérations moléculaires dans l'adénocarcinome du pancréas." Thesis, Aix-Marseille, 2014. http://www.theses.fr/2014AIXM5088.
Повний текст джерелаPancreatic adenocarcinoma (PDCA) is a major public health problem in France and worldwide. The inoperability and the poor prognosis of the PDCA are due to late diagnosis, rapid tumor progression (>80% of patients displayed metastases at diagnosis), early recurrences after resection, and poor response to available therapies. Innovative approaches and a comprehensive characterization of molecular genetic alterations are dearly needed to help develop techniques of early detection, identify new molecular targets and devise novel targeted-therapies (Hidalgo, 2010). Using high-resolution array-comparative genomic hybridization (aCGH), we studied the genome alterations of 39 fine-needle aspirations from PDCA. Recurrent losses were observed and comprised several known tumor suppressor genes. We identified frequent genetic gains. With this study, we decided to go one step further by identifying genes that might also be deregulated at the transcriptomic level. We started our analysis with a population of PDCA (n=419) versus normal pancreas (n = 105). Among the 352 genes found amplified and/or gained by aCGH, 170 (48%) were up regulated at the transcriptional level in PDCA compared to normal pancreatic tissues. Major pathways involved were cell cycle, TP53 and TGFß. Among the genes located in regions of losses, 141 (41%) were down regulated in PDCA compared to normal tissues. Furthermore, some genes were found related to a patients' survival With this study, we highlighted novels genes associated to PDCA oncogenesis. Some of those candidates should be further investigated as prognosis markers or as potential targets for new therapeutic approaches
Statello, Luisa. "Specific Alterations of miRNA Transcriptome and Global Network Structure in Colorectal Cancer After Inhibition of MAPK/ERK Signaling Pathway." Doctoral thesis, Università di Catania, 2013. http://hdl.handle.net/10761/1343.
Повний текст джерелаLiu, Xinhao. "Effects of Paternal Obesity on the Metabolic Profile of Offspring: Alterations in Gastrocnemius Muscle GLUT4 Trafficking and Mesenteric Adipose Tissue Transcriptome." Ohio University / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou153453494204764.
Повний текст джерелаBarbier, Emeline. "Étude des mécanismes physiopathologiques impliqués dans la toxicité des particules ultrafines chez un modèle murin : une approche multi-organes." Electronic Thesis or Diss., Université de Lille (2022-....), 2023. http://www.theses.fr/2023ULILS063.
Повний текст джерелаAlthough there has been a significant reduction in air pollution since the 1990s, it remains a major public health problem, responsible for over 4.2 million premature deaths worldwide every year. At present, experts' attention is focused on ultrafine particles (PM0.1 or UFP) because of their ability to translocate into the systemic circulation and reach peripheral organs, where they are likely to have a harmful impact. Nevertheless, the knowledge of the cellular and molecular mechanisms involved in the toxicity of these particles is still very patchy, and most often remains focused on their main target, the lung. Thus, the main objectives of this thesis project were to provide innovative insights into the toxicokinetics (i.e., distribution/persistence) and toxicodynamics (i.e., pathophysiological mechanisms, associated cell signaling pathways) of UFP collected in urban environments, on the one hand, and the organospecific effects of UFP and the use of circulating miRNA as indicators of chronic and/or cumulative exposure to UFP in a mouse model, on the other hand. To answer these questions, Balb/cJRj mice were exposed for 3 months to various doses of UFP collected in the urban area of Lille, then analyzed in various target organs richly vascularized, and therefore directly exposed to UFP during their translocation and systemic distribution phase. The results showed that, in all target organs, the intrinsic oxidative potential of UFP undeniably induced the production of oxidative oxygen species and the activation of antioxidant defenses in sufficient quantities to restore a state of redox homeostasis, but were unable to prevent the onset of an inflammatory response in the lungs, heart and brain. Transcriptomic approaches carried out in the lungs, the target organ with the most marked deleterious effects, have suggested the deregulation of numerous signaling pathways in relation to oxidative and inflammatory responses, which constitute the central mechanisms of UFP toxicity, but also with more original toxicity mechanisms such as mitochondrial dysfunction, epithelial-mesenchymal transition and tissue remodeling, whose modulation has also been validated from a functional point of view. These promising data could ultimately contribute to better decision-making on the reduction of UFP emissions, as well as to the updating of current regulatory standards
Crispatzu, Giuliano [Verfasser], Michael [Gutachter] Nothnagel, Bernd [Gutachter] Wollnik, Joachim [Gutachter] Krug, and Holger [Gutachter] Thiele. "Integrative approaches to high-throughput data in lymphoid leukemias (on transcriptomes, the whole-genome mutational landscape, flow cytometry and gene copy-number alterations) / Giuliano Crispatzu ; Gutachter: Michael Nothnagel, Bernd Wollnik, Joachim Krug, Holger Thiele." Köln : Universitäts- und Stadtbibliothek Köln, 2017. http://d-nb.info/1141904438/34.
Повний текст джерелаКниги з теми "Transcriptomic alterations"
Talib, S. H., and Talib Yusuf Abbas Hussain. Transcriptomics: New Approach to Study Genetic Alteration in T2DM. Generis Publishing, 2021.
Знайти повний текст джерелаBittner, Edward A., and Shawn P. Fagan. The host response to trauma and burns in the critically ill. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199600830.003.0304.
Повний текст джерелаVermeulen, Roel, Douglas A. Bell, Dean P. Jones, Montserrat Garcia-Closas, Avrum Spira, Teresa W. Wang, Martyn T. Smith, Qing Lan, and Nathaniel Rothman. Application of Biomarkers in Cancer Epidemiology. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780190238667.003.0006.
Повний текст джерелаRenner, Tanya, Tianying Lan, Kimberly M. Farr, Enrique Ibarra-Laclette, Luis Herrera-Estrella, Stephan C. Schuster, Mitsuyasu Hasebe, Kenji Fukushima, and Victor A. Albert. Carnivorous plant genomes. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198779841.003.0011.
Повний текст джерелаЧастини книг з теми "Transcriptomic alterations"
Saquib, Quaiser, Maqsood A. Siddiqui, Javed Ahmad, Sabiha M. Ansari, Mohammad Faisal, Rizwan Wahab, Abdulrahman A. Alatar, Abdulaziz A. Al-Khedhairy, and Javed Musarrat. "Nickel Oxide Nanoparticles Induced Transcriptomic Alterations in HEPG2 Cells." In Advances in Experimental Medicine and Biology, 163–74. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-72041-8_10.
Повний текст джерелаWatson, Geoffrey Alan, Kirsty Taylor, and Lillian L. Siu. "Innovation and Advances in Precision Medicine in Head and Neck Cancer." In Critical Issues in Head and Neck Oncology, 355–73. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63234-2_24.
Повний текст джерелаJuarez, Paul D., Darryl B. Hood, Min-ae Song, and Aramandla Ramesh. "Applying an Exposome-wide Association Study (ExWAS) Approach to Latino Cancer Disparities." In Advancing the Science of Cancer in Latinos, 17–32. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-14436-3_2.
Повний текст джерелаBeckwith, Heather, and Douglas Yee. "Utilizing RNA-Seq to Define Phytochemical-Induced Alterations in Insulin and IGF-Regulated Transcriptomes." In Methods in Pharmacology and Toxicology, 189–204. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-9227-6_9.
Повний текст джерелаCecilia Denninghoff, Valeria. "Molecular Pathology in the New Age of Personalized Medicine." In Histopathology and Liquid Biopsy [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.94927.
Повний текст джерелаVreugdenhil, Erno, and Nicole Datson. "Studying gene expression profiles in specialized brain regions by microSAGE." In Differential Display, 159–80. Oxford University PressOxford, 2000. http://dx.doi.org/10.1093/oso/9780199637584.003.0009.
Повний текст джерелаFilatova, Elena, Maria Shadrina, Petr Slominsky, and Svetlana Limborsk. "Analysis of Transcriptome Alterations in Parkinson’s Disease." In Etiology and Pathophysiology of Parkinson's Disease. InTech, 2011. http://dx.doi.org/10.5772/21070.
Повний текст джерелаHassan, Muhammad Jawad, Muhammad Faheem, and Sabba Mehmood. "Emerging OMICS and Genetic Disease." In Omics Technologies for Clinical Diagnosis and Gene Therapy: Medical Applications in Human Genetics, 93–113. BENTHAM SCIENCE PUBLISHERS, 2022. http://dx.doi.org/10.2174/9789815079517122010010.
Повний текст джерелаEltanahy, Eladl, and Aya Torky. "Integrated Omics and Mutation in Algae." In Handbook of Research on Algae as a Sustainable Solution for Food, Energy, and the Environment, 109–39. IGI Global, 2022. http://dx.doi.org/10.4018/978-1-6684-2438-4.ch005.
Повний текст джерелаMachlowska, Julita, and Ryszard Maciejewski. "Gastric Cancer in the Next-Generation Sequencing Era: Diagnostic and Therapeutic Strategies." In Molecular Diagnostics of Cancer [Working Title]. IntechOpen, 2023. http://dx.doi.org/10.5772/intechopen.1002517.
Повний текст джерелаТези доповідей конференцій з теми "Transcriptomic alterations"
Collar, Giovanna Carello, Marco Antônio De Bastiani, and Eduardo R. Zimmer. "HUNTINGTON’S DISEASE AND EARLYONSET ALZHEIMER’S DISEASE SHARE A TRANSCRIPTOMIC SIGNATURE." In XIII Meeting of Researchers on Alzheimer's Disease and Related Disorders. Zeppelini Editorial e Comunicação, 2021. http://dx.doi.org/10.5327/1980-5764.rpda082.
Повний текст джерелаDavidson, Natalie R., Alvis Brazma, Angela N. Brooks, Claudia Calabrese, Nuno A. Fonseca, Jonathan Goke, Yao He, et al. "Abstract 389: Integrating diverse transcriptomic alterations to identify cancer-relevant genes." In Proceedings: AACR Annual Meeting 2017; April 1-5, 2017; Washington, DC. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.am2017-389.
Повний текст джерелаWei, Jun S., Andrew S. Brohl, Sivasish Sindiri, David Milewski, Young K. Song, Sushma Nagaraj, Vineela Gangalapudi, Xinyu Wen, Marc Ladanyi, and Javed Khan. "Abstract 3445: Immuno-transcriptomic profiling identifies actionable genomic alterations in pediatric solid malignancies." In Proceedings: AACR Annual Meeting 2020; April 27-28, 2020 and June 22-24, 2020; Philadelphia, PA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1538-7445.am2020-3445.
Повний текст джерелаGriffith, Obi L., Yiing Lin, Malachi Griffith, Jasreet Hundal, Allison Regier, Robert Fulton, Elizabeth M. Brunt, Richard K. Wilson, William Chapman, and Elaine R. Mardis. "Abstract 5181: Genomic and transcriptomic somatic alterations of hepatocellular carcinoma in non-cirrhotic livers." In Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.am2014-5181.
Повний текст джерелаPinatti, Lisa M., Hana Sinha, Chad Brenner, Heather M. Walline, and Thomas E. Carey. "Abstract 4896: Transcriptomic alterations by HPV-human fusion transcripts in HPV+ HNSCC cell lines." In Proceedings: AACR Annual Meeting 2020; April 27-28, 2020 and June 22-24, 2020; Philadelphia, PA. American Association for Cancer Research, 2020. http://dx.doi.org/10.1158/1538-7445.am2020-4896.
Повний текст джерелаPapadodima, Olga, Aristotelis Chatziioanou, Allan Sirsjo, and Fragiskos N. Kolisis. "Bioinformatic transcriptomic analysis of ApoE deficient mice suggests Alterations in atherosclerosis related molecular mechanisms." In 2010 10th IEEE International Conference on Information Technology and Applications in Biomedicine (ITAB 2010). IEEE, 2010. http://dx.doi.org/10.1109/itab.2010.5687785.
Повний текст джерелаCheng, Hui, Riyue Bao, Carter Van Waes, and Vassiliki Saloura. "Abstract 5178: Genomic and transcriptomic alterations of chromatin factors in head and neck cancer." In Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.sabcs18-5178.
Повний текст джерелаCheng, Hui, Riyue Bao, Carter Van Waes, and Vassiliki Saloura. "Abstract 5178: Genomic and transcriptomic alterations of chromatin factors in head and neck cancer." In Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.am2019-5178.
Повний текст джерелаLiu, Zhigang, Kaixing Le, and Nick Powell. "P78 Deciphering the transcriptomic and metabolic alterations in a microbiota-dependent model of ulcerative colitis." In BSG LIVE’23, 19–22 June, ACC Liverpool. BMJ Publishing Group Ltd and British Society of Gastroenterology, 2023. http://dx.doi.org/10.1136/gutjnl-2023-bsg.150.
Повний текст джерелаKorkut, Anil, Sobia Zaidi, Rupa Kanchi, Ashton C. Berger, Gordon Robertson, Lawrence N. Kwong, Mike Datto та ін. "Abstract 3413: A pan-cancer atlas of genomic, epigenomic and transcriptomic alterations in the TGF-β pathway". У Proceedings: AACR Annual Meeting 2018; April 14-18, 2018; Chicago, IL. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.am2018-3413.
Повний текст джерелаЗвіти організацій з теми "Transcriptomic alterations"
Li, Li, Joseph Burger, Nurit Katzir, Yaakov Tadmor, Ari Schaffer, and Zhangjun Fei. Characterization of the Or regulatory network in melon for carotenoid biofortification in food crops. United States Department of Agriculture, April 2015. http://dx.doi.org/10.32747/2015.7594408.bard.
Повний текст джерелаJander, Georg, and Daniel Chamovitz. Investigation of growth regulation by maize benzoxazinoid breakdown products. United States Department of Agriculture, January 2015. http://dx.doi.org/10.32747/2015.7600031.bard.
Повний текст джерелаCohen, Yuval, Christopher A. Cullis, and Uri Lavi. Molecular Analyses of Soma-clonal Variation in Date Palm and Banana for Early Identification and Control of Off-types Generation. United States Department of Agriculture, October 2010. http://dx.doi.org/10.32747/2010.7592124.bard.
Повний текст джерела