Добірка наукової літератури з теми "Traitement d’images optiques"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Traitement d’images optiques".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Traitement d’images optiques"
Houma, F., R. Belkessa, A. Khouider, N. Bachari, and Z. Derriche. "Étude corrélative des paramètres physico-chimiques et des données satellites IRS1C pour caractériser la pollution aquatique. Application à la baie d’Oran, Algérie." Revue des sciences de l'eau 17, no. 4 (April 12, 2005): 429–46. http://dx.doi.org/10.7202/705541ar.
Повний текст джерелаPissondes, Jean-Claude. "Du traitement du signal avec des ondes et des lentilles : Le traitement d’images et la transformée de Fourier à la lumière de la diffraction en Optique." J3eA 12 (2013): 0016. http://dx.doi.org/10.1051/j3ea/2013016.
Повний текст джерелаДисертації з теми "Traitement d’images optiques"
Hennequin, Christophe. "Etude et réalisation d’un calculateur temps réel embarqué pour la détection de petits objets dans des séquences d’images multi-échelles." Dijon, 2008. http://www.theses.fr/2008DIJOS015.
Повний текст джерелаThis doctoral thesis is part of a research project of the French-German Research Institute of Saint-Louis (ISL) which has been set up to equip artillery projectiles with an on-board image acquisition and processing system. The study focused on real-time target detection in aerial image sequences, considering the imposed restrictions of low quality images, reduced target size and variable acquisition altitude. In view of the unsatisfactory efficiency of the reference algorithms to rapidly detect small objects in our image sequences, an advanced detection algorithm combining statistical methods with morphological filtering has been developed. After analysing in detail the detector’s behaviour and validating its performance, an algorithm/architecture adequacy approach is used for implementing a compatible real-time processing for embedded systems. Finally, the design of a specific and highly parallel architecture allowed to realize a prototype calculator with a programmable component
Coquand, Mathieu. "Méthode de rétrovisée pour la caractérisation de surfaces optiques dans une installation solaire à concentration." Thesis, Perpignan, 2018. http://www.theses.fr/2018PERP0001/document.
Повний текст джерелаConcentrated solar power is a promising way for renewable energy production. Optical efficiency of the mirrors is one of the key factors influencing a power plant performance. Methods which allow the operator to adjust all the heliostat of a plant quickly, in addition of calibration and tracking, are essential for the rise of the technology. The work presented in this thesis is the study of a “backward-gazing” method consisting in placing four cameras near the receiver simultaneously recording brightness images of the sun reflected by the heliostat. The optical errors of the mirrors are retrieved from these four images and the knowledge of the one dimension sun radiance profile.The first step of the study consists in the theoretical description of the method. Then numerical simulations are performed to estimate the general accuracy and the limits of the backward-gazing method. In a third phase, experimental tests have been fulfilled at Themis solar power plant. Finally, ideas of improvement are proposed based on the experiments performed
Madec, Morgan. "Conception, simulation et réalisation d’un processeur optoélectronique pour la reconstruction d’images médicales." Université Louis Pasteur (Strasbourg) (1971-2008), 2006. https://publication-theses.unistra.fr/public/theses_doctorat/2006/MADEC_Morgan_2006.pdf.
Повний текст джерелаOptical processing can be used to speed up some algorithms of image reconstruction from tomodensitometric data provided by volume exploration systems. This may be of high interest in order to meet the needs of future assisted therapy systems. Two systems are described in this document, corresponding to the two main steps of the above mentioned algorithms: a filtering processor and a backprojection processor. They are first considered under a material point of view. Whatever function it may compute, an optical processor is made up of light sources, displays and cameras. Present state-of-the-art devices highlight a weakness in display performances. Special attention has been focused on ferroelectric liquid crystal spatial light modulators (modelling, simulations, and characterizations of commercial solutions). The potential of optical architectures is compared with electronic solutions, considering computation power and processed image quality. This study has been carried out for both systems first in simulation, with a reliable model of the architecture, and then with an experimental prototype. The optical filtering processor does not give accurate results: the signal to noise ratio on the reconstructed image is about 20 dB in simulation (the model used does not take into account the majority of geometrical distortions) and experimental measurements show strong limitation, especially when considering the problem of image formation with coherent lighting (speckle). On the other hand, results obtained with the optical backprojection processor are most encouraging. The model, more complete and accurate than the filtering processor, as well as the simulations, shows that processed image quality can be virtually equivalent to the one obtained by digital means (signal to noise ratio is over 50 dB) with two order of magnitude speed-up. Results obtained with the experimental prototype are in accordance with simulations and confirm the potential held by the architecture. As an extension, a hybrid processor involving the backprojection processor for the computation of more complex reconstruction algorithms, e. G. ASSR for helical CT-scan, is proposed in the last part of the document
Desrues, Mathilde. "Surveillance opérationnelle de mouvements gravitaires par séries temporelles d'images." Thesis, Strasbourg, 2021. http://www.theses.fr/2021STRAH002.
Повний текст джерелаUnderstanding the dynamics and the behavior of gravitational slope movements is essential to anticipate catastrophic failures and thus to protect lives and infrastructures. Several geodetic techniques already bring some information on the displacement / deformation fields of the unstable slopes. These techniques allow the analysis of the geometrical properties of the moving masses and of the mechanical behavior of the slopes. By combining time series of passive terrestrial imagery and these classical techniques, the amount of collected information is densified and spatially distributed. Digital passive sensors are increasingly used for the detection and the monitoring of gravitational motion. They provide both qualitative information, such as the detection of surface changes, and a quantitative characterization, such as the quantification of the soil displacement by correlation techniques. Our approach consists in analyzing time series of terrestrial images from either a single fixed camera or pair-wise cameras, the latter to obtain redundant and additional information. The time series are processed to detect the areas in which the Kinematic behavior is homogeneous. The slope properties, such as the sliding volume and the thickness of the moving mass, are part of the analysis results to obtain an overview which is as complete as possible. This work is presented around the analysis of four landslides located in the French Alps. It is part of a CIFRE/ANRT agreement between the SAGE Society - Société Alpine de Géotechnique (Gières, France) and the IPGS - Institut de Physique du Globe de Strasbourg / CNRS UMR 7516 (Strasbourg, France)
Maaloul, Boutheina. "Des algorithmes de détection d'accidents routiers par vidéo surveillance." Thesis, Valenciennes, 2018. http://www.theses.fr/2018VALE0028.
Повний текст джерелаAutomatic video surveillance systems have been developed to detect and analyze abnormal behavior or situation of risk in many fields reducing human monitoring of activities captured by cameras (security surveillance, abnormal behavior detection, etc.). One of the applications of video surveillance is the traffic monitoring. Analyzing the motion in roads aims to detect abnormal traffic behavior and sudden events, especially in case of Emergency and Disaster Management (EDM). Road accidents can cause serious injuries affecting mostly the head and the brain, leading to lifelong disabilities and even death; each additional rescue minute can mean the difference between life and death as revealed by the golden Hour[Lerner et al., 2001]. Therefore, providing a rapid assistance for injuries is mandatory. Moreover, if not addressed promptly, accidents may cause traffic jams, eventually leading to more accidents, and even greater loss of lives and properties. Many cities in France are equipped with video surveillance cameras installed on different roads and highways. Traffic monitoring is done by human operators to visualize the congestion of a road or to measure the flow of the traffic. The video stream of this existing network of cameras is delivered unprocessed to the traffic management center. Thus, there are no video storage of accident scenes. In addition, there is no associated technology for a rapid emergency management. Therefore, it is important to design a system able toorganizean effective emergency response. This response should be based, firstly on an automatic detection by video analysis, then, on a rapid notification allowing the optimization of the emergency intervention itinerary without affecting the traffic state. Our work resolves the first part of the emergency response.The objectives of this thesis are firstly the identification of accident scenarios and the collection of data related to road accident; next, the design and the development of video processing algorithms for the automatic detection of accidents in highways. The developed solutions will use the existing fixed cameras, so as not to require significant investments in infrastructure. The core of the proposed approaches will focus on the use of the dense Optical Flow (OF) algorithm [Farnebäck, 2003] and heuristic computations for features extraction and accident recognition. The purpose of the dense OF is to estimate the motion of each pixel in a region of interest (ROI) between two given frames. At the output of the dense OF, a dense features could be extracted which is more performant than features extracted at some points. Defining thresholds for accident detection in various environment is very challenging. Therefore, studying the motion at a global scale in the image, allows defining a dynamic thresholds for accident detection using statistic computations. The proposed solution is sufficient and robust to noise and light changing
Yildizoglu, Romain. "Etude de relaxations en traitement d'images. Application à la segmentation et autres problèmes multi-étiquettes." Thesis, Bordeaux, 2014. http://www.theses.fr/2014BORD0129/document.
Повний текст джерелаIn this thesis we study different relaxations of non-convex functionals that can be found in image processing. Some problems, such as image segmentation, can indeed be written as the minimization of a functional. The minimizer of the functional represents the segmentation. Different methods have been proposed in order to find local or global minima of the non-convex functional of the two-phase piecewise constant Mumford-Shah model. With a convex relaxation of this model we can find a global minimum of the nonconvex functional. We present and compare some of these methods and we propose a new model with a narrow band. This model finds local minima while using robust convex optimization algorithms. Then a convex relaxation of a two-phase segmentation model is built that compares two given histograms with those of the two segmented regions. We also study some relaxations of high-dimension multi-label problems such as optical flow computation. A convex relaxation with a new algorithm is proposed. The algorithm is iterative with exact projections. A new algorithm is given for a relaxationthat is convex in each variable but that is not convex globally. We study the problem of constructing a solution of the original non-convex problem with a solution of the relaxed problem. We compare existing methods with new ones
Ferraris, Vinicius. "Détection de changement par fusion d'images de télédétection de résolutions et modalités différentes." Thesis, Toulouse, INPT, 2018. http://oatao.univ-toulouse.fr/24107/1/Ferraris_Vinicius.pdf.
Повний текст джерелаAlston, Laure. "Spectroscopie de fluorescence et imagerie optique pour l'assistance à la résection de gliomes : conception et caractérisation de systèmes de mesure et modèles de traitement des données associées, sur fantômes et au bloc opératoire." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSE1295/document.
Повний текст джерелаGliomas are infiltrative tumors of the brain which are yet hardly curable, notably because of the difficulty to precisely delimitate their margins during surgery. Intraoperative 5-ALA induced protoporphyrin IX (PpIX) fluorescence microscopy has shown its relevance to assist neurosurgeons but lacks sensitivity. In this thesis, we perform a spectroscopic clinical trial on 10 patients with the assumption that collected fluorescence is a linear combination of the contribution of two states of PpIX which proportions vary with the density of tumor cells. This work starts with the development of the intraoperative, portable and real time fluorescence spectroscopic device that provides multi-wavelength excitation. Then, we show its use on PpIX phantoms with tissues mimicking properties. This first enables to obtain a reference emitted spectrum for each state apart and then permits the development of a fitting model to adjust any emitted spectrum as a linear combination of the references in the spectral band 608-637 nm. Next, we present the steps led to get approvals for the clinical trial, especially the risk analysis. In vivo data analysis is then presented, showing that we detect fluorescence where current microscopes cannot, which could exhibit a change in PpIX state from glioma center to its margins. Besides, the relevance of multi-wavelength excitation is highlighted as the correlation between the three measured spectra of a same sample decreases with the density of tumor cells. Finally, the complementary need to intraoperatively identify cerebral functional areas is tackled with optical measurements as a perspective and other properties of PpIX on phantoms are also raised
Chen, Xu. "New formulation of optical flow for turbulence estimation." Thesis, Ecully, Ecole centrale de Lyon, 2015. http://www.theses.fr/2015ECDL0025/document.
Повний текст джерелаThe method of optical flow is a powerful tool for motion estimation. It is able to extract the dense velocity field from image sequence. In this study, we employ this method to retrieve precisely the incompressible turbulent motions. For 2D turbulence estimation, it consists in minimizing an objective function constituted by an observation term and a regularization one. The observation term is based on the transport equation of a passive scalar field. For non-fully resolved scalar images, we propose to use the mixed model in large eddy simulation (LES) to determine the interaction between large-scale motions and the unresolved ones. The regularization term is based on the continuity equation of 2D incompressible flows. Evaluation of the proposed formulation is done over synthetic and experimental images. In addition, we extend optical flow to three dimensional and multiple scalar databases are generated with direct numerical simulation (DNS) in order to evaluate the performance of optical flow in the 3D context. We propose two formulations differing by the order of the regularizer. Numerical results show that the formulation with second-order regularizer outperforms its first-order counterpart. We also draw special attention to the effect of Schmidt number, which characterizes the ratio between the molecular diffusion of the scalar and the dissipation of the turbulence. Results show that the precision of the estimation increases as the Schmidt number increases. Overall, optical flow has showcased its capability of reconstructing the turbulent flow with excellent accuracy. This method has all the potential and attributes to become an effective flow measurement approach in fluid mechanics community
Mansouri, Abdelkhalek. "Generic heuristics on GPU to superpixel segmentation and application to optical flow estimation." Thesis, Bourgogne Franche-Comté, 2020. http://www.theses.fr/2020UBFCA012.
Повний текст джерелаFinding clusters in point clouds and matching graphs to graphs are recurrent tasks in computer science domain, data analysis, image processing, that are most often modeled as NP-hard optimization problems. With the development and accessibility of cheap multiprocessors, acceleration of the heuristic procedures for these tasks becomes possible and necessary. We propose parallel implantation on GPU (graphics processing unit) system for some generic algorithms applied here to image superpixel segmentation and image optical flow problem. The aim is to provide generic algorithms based on standard decentralized data structures to be easy to improve and customized on many optimization problems and parallel platforms.The proposed parallel algorithm implementations include classical k-means algorithm and application of minimum spanning forest computation for super-pixel segmentation. They include also a parallel local search procedure, and a population-based memetic algorithm applied to optical flow estimation based on superpixel matching. While data operations fully exploit GPU, the memetic algorithm operates like a coalition of processes executed in parallel on the multi-core CPU and requesting GPU resources. Images are point clouds in 3D Euclidean space (space-gray value domain), and are also graphs to which are assigned processor grids. GPU kernels execute parallel transformations under CPU control whose limited role only consists in stopping criteria evaluation or sequencing transformations.The presented contribution contains two main parts. Firstly, we present tools for superpixel segmentation. A parallel implementation of the k-means algorithm is presented with application to 3D data. It is based on a cellular grid subdivision of 3D space that allows closest point findings in constant optimal time for bounded distributions. We present an application of the parallel Boruvka minimum spanning tree algorithm to compute watershed minimum spanning forest. Secondly, based on the generated superpixels and segmentation, we derive parallel optimization procedures for optical flow estimation with edge aware filtering. The method includes construction and improvement heuristics, as winner-take-all and parallel local search, and their embedding into a population-based metaheuristic framework. The algorithms are presented and evaluated in comparison to state-of-the-art algorithms
Частини книг з теми "Traitement d’images optiques"
Coqueugniot, Hélène. "Paléo-imagerie par rayons X : une méthode d’exploration transdisciplinaire, de l’archéologie à la chirurgie Hélène." In Regards croisés: quand les sciences archéologiques rencontrent l'innovation, 139–56. Editions des archives contemporaines, 2017. http://dx.doi.org/10.17184/eac.3794.
Повний текст джерела