Статті в журналах з теми "Total Internal Reflection Raman Tribometer"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Total Internal Reflection Raman Tribometer.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Total Internal Reflection Raman Tribometer".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Praveena, Manimunda, Kaustav Guha, Abhilash Ravishankar, Sanjay K. Biswas, Colin D. Bain, and Vikram Jayaram. "Total internal reflection Raman spectroscopy of poly(alpha-olefin) oils in a lubricated contact." RSC Adv. 4, no. 42 (2014): 22205–13. http://dx.doi.org/10.1039/c4ra02261k.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Praveena, Manimunda, Colin D. Bain, Vikram Jayaram, and Sanjay K. Biswas. "Total internal reflection (TIR) Raman tribometer: a new tool for in situ study of friction-induced material transfer." RSC Advances 3, no. 16 (2013): 5401. http://dx.doi.org/10.1039/c3ra00131h.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Woods, David A., and Colin D. Bain. "Total internal reflection Raman spectroscopy." Analyst 137, no. 1 (2012): 35–48. http://dx.doi.org/10.1039/c1an15722a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Tisinger, L. G., and A. J. Sommer. "Attenuated Total Internal Reflection (ATR) Raman Microspectroscopy." Microscopy and Microanalysis 10, S02 (August 2004): 1318–19. http://dx.doi.org/10.1017/s1431927604884794.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Michaels, Chris A. "Surface-sensitive Raman microscopy with total internal reflection illumination." Journal of Raman Spectroscopy 41, no. 12 (January 27, 2010): 1670–77. http://dx.doi.org/10.1002/jrs.2610.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

McKee, Kristopher J., and Emily A. Smith. "Development of a scanning angle total internal reflection Raman spectrometer." Review of Scientific Instruments 81, no. 4 (April 2010): 043106. http://dx.doi.org/10.1063/1.3378682.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Talaga, David, Andrew Bremner, Thierry Buffeteau, Renaud A. L. Vallée, Sophie Lecomte, and Sébastien Bonhommeau. "Total Internal Reflection Tip-Enhanced Raman Spectroscopy of Cytochrome c." Journal of Physical Chemistry Letters 11, no. 10 (April 24, 2020): 3835–40. http://dx.doi.org/10.1021/acs.jpclett.0c00579.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kivioja, Antti O., Anna-Stiina Jääskeläinen, Ville Ahtee, and Tapani Vuorinen. "Thickness measurement of thin polymer films by total internal reflection Raman and attenuated total reflection infrared spectroscopy." Vibrational Spectroscopy 61 (July 2012): 1–9. http://dx.doi.org/10.1016/j.vibspec.2012.02.014.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Nickolov, Z. S., J. C. Earnshaw, and J. J. McGarvey. "Water structure at interfaces studied by total internal reflection Raman spectroscopy." Colloids and Surfaces A: Physicochemical and Engineering Aspects 76 (September 1993): 41–49. http://dx.doi.org/10.1016/0927-7757(93)80059-n.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Tran, Willie, Louis G. Tisinger, Luis E. Lavalle, and Andre J. Sommer. "Analysis of Thin-Film Polymers Using Attenuated Total Internal Reflection–Raman Microspectroscopy." Applied Spectroscopy 69, no. 2 (February 2015): 230–38. http://dx.doi.org/10.1366/13-07024.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Doughty, Benjamin, Uvinduni I. Premadasa, John F. Cahill, Amber B. Webb, Jennifer L. Morrell-Falvey, Muneeba Khalid, Scott T. Retterer, and Ying-Zhong Ma. "Total internal reflection enabled wide-field coherent anti-Stokes Raman scattering microscopy." Optics Letters 45, no. 11 (May 28, 2020): 3087. http://dx.doi.org/10.1364/ol.45.003087.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Greene, Phillip R., and Colin D. Bain. "Total internal reflection Raman spectroscopy of barley leaf epicuticular waxes in vivo." Colloids and Surfaces B: Biointerfaces 45, no. 3-4 (November 2005): 174–80. http://dx.doi.org/10.1016/j.colsurfb.2005.08.010.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Doughty, Benjamin, Uvinduni I. Premadasa, John F. Cahill, Amber B. Webb, Jennifer L. Morrell-Falvey, Muneeba Khalid, Scott T. Retterer, and Ying-Zhong Ma. "Total internal reflection enabled wide-field coherent anti-Stokes Raman scattering microscopy." Optics Letters 45, no. 11 (May 28, 2020): 3087. http://dx.doi.org/10.1364/ol.390699.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

McKee, Kristopher J., Matthew W. Meyer, and Emily A. Smith. "Near IR Scanning Angle Total Internal Reflection Raman Spectroscopy at Smooth Gold Films." Analytical Chemistry 84, no. 10 (May 3, 2012): 4300–4306. http://dx.doi.org/10.1021/ac203355a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Woods, David A., Jordan Petkov, and Colin D. Bain. "Surfactant adsorption by total internal reflection Raman spectroscopy. Part III: Adsorption onto cellulose." Colloids and Surfaces A: Physicochemical and Engineering Aspects 391, no. 1-3 (November 2011): 10–18. http://dx.doi.org/10.1016/j.colsurfa.2011.07.027.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Woods, David A., Jordan Petkov, and Colin D. Bain. "Surfactant Adsorption Kinetics by Total Internal Reflection Raman Spectroscopy. 1. Pure Surfactants on Silica." Journal of Physical Chemistry B 115, no. 22 (June 9, 2011): 7341–52. http://dx.doi.org/10.1021/jp201338s.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Beattie, D. A., M. Lidström Larsson, and Allan R. Holmgren. "In situ total internal reflection Raman spectroscopy of surfactant adsorption at a mineral surface." Vibrational Spectroscopy 41, no. 2 (August 2006): 198–204. http://dx.doi.org/10.1016/j.vibspec.2006.02.003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Ly, Thong Q., Fangyuan Yang, and Steven Baldelli. "In situ quantitative study of the phase transition in surfactant adsorption layers at the silica–water interface using total internal reflection Raman spectroscopy." Physical Chemistry Chemical Physics 23, no. 38 (2021): 21701–13. http://dx.doi.org/10.1039/d1cp02645c.

Повний текст джерела
Анотація:
Dimethyldodecylamine N-oxide (DDAO) shows high surface activity with two distinct energy states at the hydrophilic silica/aqueous solution interface studied by total internal reflection (TIR) Raman spectroscopy combined with ratiometric and kinetic analysis.
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Kinoshita, Masaharu, Tetsuro Tateishi, and Yohei Sato. "G145 On Investigation of Molecular Diffusion at Liquid-Solid Interface Using Total Internal Reflection Raman Imaging." Proceedings of the Thermal Engineering Conference 2015 (2015): _G145–1_—_G145–2_. http://dx.doi.org/10.1299/jsmeted.2015._g145-1_.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Nickolov, Z. S., J. C. Earnshaw, and J. J. McGarvey. "Total internal reflection Raman spectroscopy as a method to study water structure near Langmuir-Blodgett films." Journal of Raman Spectroscopy 24, no. 7 (July 1993): 411–16. http://dx.doi.org/10.1002/jrs.1250240705.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Jubb, Aaron M., Dominique Verreault, Ralf Posner, Louise J. Criscenti, Lynn E. Katz, and Heather C. Allen. "Sulfate adsorption at the buried hematite/solution interface investigated using total internal reflection (TIR)-Raman spectroscopy." Journal of Colloid and Interface Science 400 (June 2013): 140–46. http://dx.doi.org/10.1016/j.jcis.2013.02.031.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Nyamekye, Charles K. A., Jonathan M. Bobbitt, Qiaochu Zhu, and Emily A. Smith. "The evolution of total internal reflection Raman spectroscopy for the chemical characterization of thin films and interfaces." Analytical and Bioanalytical Chemistry 412, no. 24 (March 16, 2020): 6009–22. http://dx.doi.org/10.1007/s00216-020-02510-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Sommer, Andre’ J., and Mark Hardgrove. "Attenuated Total Internal Reflection Infrared Microspectroscopy For The Study Of Trace Contaminants In Aqueous Solutions." Microscopy and Microanalysis 5, S2 (August 1999): 66–67. http://dx.doi.org/10.1017/s1431927600013659.

Повний текст джерела
Анотація:
Over the past several years many developments have taken place in the field of molecular spectroscopy. For Raman spectroscopy many of the improvements have arisen from technological innovations that include diode-based lasers, holographic notch filters and charged coupled detectors. In contrast, a majority of the developments in infrared spectroscopy have been in the area of new sampling accessories. A major emphasis has been placed on attenuated total internal reflection (ATR) accessories. The devices are allowing infrared spectroscopy to be employed in process control environments and quality control laboratories where the method is not only robust but has the advantages of limited sample preparation and/or in situ analysis.In the realm of microspectroscopy, ATR accessories have the added advantages of providing better spatial resolution, equal to or higher S/N for equivalent sample size compared to transmission measurements and most importantly the ability to collect spectra of small samples without the adverse effect of diffraction. One accessory which was developed several years ago is known as the Split-Pea.
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Woods, David A., Jordan Petkov, and Colin D. Bain. "Surfactant Adsorption Kinetics by Total Internal Reflection Raman Spectroscopy. 2. CTAB and Triton X-100 Mixtures on Silica." Journal of Physical Chemistry B 115, no. 22 (June 9, 2011): 7353–63. http://dx.doi.org/10.1021/jp201340j.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Hattori, Tsukasa, Tetsuro Tateishi, Reiko Kuriyama, and Yohei Sato. "D144 Non-intrusive Imaging of Concentration Distributions at Liquid-solid Interface Using Raman Scattering by Total Internal Reflection." Proceedings of the Thermal Engineering Conference 2014 (2014): _D144–1_—_D144–2_. http://dx.doi.org/10.1299/jsmeted.2014._d144-1_.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Yui, Hiroharu, Hideyuki Fujiwara, and Tsuguo Sawada. "Spectroscopic analysis of total-internal-reflection stimulated Raman scattering from the air/water interface under the strong focusing condition." Chemical Physics Letters 360, no. 1-2 (July 2002): 53–58. http://dx.doi.org/10.1016/s0009-2614(02)00803-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Fujiwara, Kazuhiko, and Hitoshi Watarai. "Total Internal Reflection Resonance Raman Microspectroscopy for the Liquid/Liquid Interface. Ion-Association Adsorption of Cationic Mn(III) Porphine." Langmuir 19, no. 7 (April 2003): 2658–64. http://dx.doi.org/10.1021/la026119y.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Kivioja, Antti, Timo Hartus, Tapani Vuorinen, Patrick Gane, and Anna-Stiina Jääskeläinen. "Use of Total Internal Reflection Raman (TIR) and Attenuated Total Reflection Infrared (ATR-IR) Spectroscopy to Analyze Component Separation in Thin Offset Ink Films after Setting on Coated Paper Surfaces." Applied Spectroscopy 67, no. 6 (June 2013): 661–71. http://dx.doi.org/10.1366/12-06961.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Tateishi, Tetsuro, Takeshi Noguchi, Reiko Kuriyama, and Yohei Sato. "G124 Non-intrusive Imaging of Mixed Two Solutions at Liquid-Solid Interface Using Spontaneous Raman Scattering by Total Internal Reflection." Proceedings of the Thermal Engineering Conference 2013 (2013): 211–12. http://dx.doi.org/10.1299/jsmeted.2013.211.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Kinoshita, Haruki, Masaharu Kinoshita, Daisuke Yuhara, Ken Yamamoto, Kenji Yasuoka, Yohei Sato, and Koichi Hishida. "Evaluation of Hydrophilic/Hydrophobic Influence on Molecule Concentration in the Vicinity of Interface Obtained from Total Internal Reflection Raman Imaging." Proceedings of the Thermal Engineering Conference 2016 (2016): G214. http://dx.doi.org/10.1299/jsmeted.2016.g214.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Adachi, Kenta, Tomohiro Mita, Shohei Tanaka, Kensuke Honda, Suzuko Yamazaki, Masaharu Nakayama, Takeyoshi Goto, and Hitoshi Watarai. "Kinetic characteristics of enhanced photochromism in tungsten oxide nanocolloid adsorbed on cellulose substrates, studied by total internal reflection Raman spectroscopy." RSC Advances 2, no. 5 (2012): 2128. http://dx.doi.org/10.1039/c2ra00217e.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Luo, Rui-qiong, Fang Wei, Shu-shi Huang, Yue-ming Jiang, Shan-lei Zhang, Wen-qing Mo, Hong Liu та Xi Rong. "Real-Time, Label-Free Detection of Local Exocytosis Outside Pancreatic β Cells Using Laser Tweezers Raman Spectroscopy". Applied Spectroscopy 71, № 3 (9 грудня 2016): 422–31. http://dx.doi.org/10.1177/0003702816670911.

Повний текст джерела
Анотація:
The examination of insulin (Ins) exocytosis at the single-cell level by conventional methods, such as electrophysiological approaches, total internal reflection imaging, and two-photon imaging technology, often requires an invasive microelectrode puncture or label. In this study, high concentrations of glucose and potassium chloride were used to stimulate β cell Ins exocytosis, while low concentrations of glucose and calcium channel blockers served as the blank and negative control, respectively. Laser tweezers Raman spectroscopy (LTRS) was used to capture the possible Raman scattering signal from a local zone outside of the cell edge. The results show that the frequencies of the strong signals from the local zones outside the cellular edge in the stimulated groups are greater than those of the control. The Raman spectra from the cellular edge, Ins and cell membrane were compared. Thus, local Ins exocytosis activity outside pancreatic β cells might be observed indirectly using LTRS, a non-invasive optical method.
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Delbeck, Sven, and H. Michael Heise. "Evaluation of Opportunities and Limitations of Mid-Infrared Skin Spectroscopy for Noninvasive Blood Glucose Monitoring." Journal of Diabetes Science and Technology 15, no. 1 (June 26, 2020): 19–27. http://dx.doi.org/10.1177/1932296820936224.

Повний текст джерела
Анотація:
Background: A wide range of optical techniques has recently been presented for the development of noninvasive methods for blood glucose sensing based on multivariate skin spectrum analysis, and most recent studies are reviewed in short by us. The vibrational spectral fingerprints of glucose, as especially found in the mid-infrared or Raman spectrum, have been suggested for achieving largest selectivity for the development of noninvasive blood glucose methods. Methods: Here, the different aspects on integral skin measurements are presented, which are much dependent on the absorption characteristics of water as the main skin constituent. In particular, different mid-infrared measurement techniques as realized recently are discussed. The limitations of the use of the attenuated total reflection technique in particular are elaborated, and confounding skin or saliva spectral features are illustrated and discussed in the light of recently published works, claiming that the attenuated total reflection technique can be utilized for noninvasive measurements. Results: It will be shown that the penetration depth of the infrared radiation with wavelengths around 10 µm is the essential parameter, which can be modulated by different measurement techniques as with photothermal or diffuse reflection. However, the law of physics is limiting the option of using the attenuated total reflection technique with waveguides from diamond or similar optical materials. Conclusions: There are confounding features from mucosa, stratum corneum, or saliva, which have been misinterpreted for glucose measurements. Results of an earlier study with multivariate evaluation based on glucose fingerprint features are again referred to as a negative experimental proof.
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Plissonneau, Marie, Alexandra Madeira, David Talaga, Sébastien Bonhommeau, Laurent Servant, Renaud A. L. Vallée, Christine Labrugère, et al. "Efficient Passivation of Ag Nanowires with 11‐Mercaptoundecanoic Acid Probed Using In Situ Total‐Internal‐Reflection Surface‐Enhanced Raman Scattering Spectroscopy." ChemNanoMat 5, no. 8 (February 20, 2019): 1044–49. http://dx.doi.org/10.1002/cnma.201900068.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Jin, Li, Jun Zhou, and Puxiang Lai. "Tunable absorption characteristics in multilayered structures with graphene for biosensing." Journal of Innovative Optical Health Sciences 13, no. 04 (June 10, 2020): 2050017. http://dx.doi.org/10.1142/s1793545820500170.

Повний текст джерела
Анотація:
Graphene derivatives, possessing strong Raman scattering and near-infrared absorption intrinsically, have boosted many exciting biosensing applications. The tunability of the absorption characteristics, however, remains largely unexplored to date. Here, we proposed a multilayer configuration constructed by a graphene monolayer sandwiched between a buffer layer and one-dimensional photonic crystal (1DPC) to achieve tunable graphene absorption under total internal reflection (TIR). It is interesting that the unique optical properties of the buffer-graphene-1DPC multilayer structure, the electromagnetically induced transparency (EIT)-like and Fano-like absorptions, can be achieved with pre-determined resonance wavelengths, and furtherly be tuned by adjusting either the structure parameters or the incident angle of light. Theoretical analyses demonstrate that such EIT- and Fano-like absorptions are due to the interference of light in the multilayer structure and the complete transmission produced by the evanescent wave resonance in the configuration. The enhanced absorptions and the huge electrical field enhancement effect exhibit potentials for broad applications, such as photoacoustic imaging and Raman imaging.
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Yamamoto, Shigeki, and Hitoshi Watarai. "Counterion-Dependent Morphology of Porphyrin Aggregates Formed at the Liquid/Liquid Interface Studied by Total Internal Reflection Resonant Rayleigh and Raman Scattering Microscopy." Journal of Physical Chemistry C 112, no. 32 (July 18, 2008): 12417–24. http://dx.doi.org/10.1021/jp803328f.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Tateishi, Tetsuro, and Yohei Sato. "G222 Non-intrusive Imaging of Ion Diffusion in the vicinity of Liquid-solid Interface in Microchannel Flow using Total Internal Reflection Raman Scattering." Proceedings of the Thermal Engineering Conference 2015 (2015): _G222–1_—_G222–2_. http://dx.doi.org/10.1299/jsmeted.2015._g222-1_.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Morikawa, T., E. Shirai, J. Tanno, H. Takanashi, A. Yasuda, and K. Itoh. "Time-resolved Total Internal Reflection Raman Scattering Study on Electric-Field-Induced Reorientation Dynamics of Nematic Liquid Crystal of 4-Hexyl-4′-Cyanobiphenyl." Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals 312, no. 1 (April 1, 1998): 69–94. http://dx.doi.org/10.1080/10587259808042432.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

YAMAMOTO, Saburo, Tatsuya KUBOZONO, Ken KOJIO, and Atsushi TAKAHARA. "Development of Total Internal Reflection Raman Microscope with an Apparatus for Adhesion Test and Changes in Depolarization Ratio of Polymer Brush by Compressive Force." KOBUNSHI RONBUNSHU 72, no. 11 (2015): 673–80. http://dx.doi.org/10.1295/koron.2015-0043.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Ngo, Dien, and Steven Baldelli. "Adsorption of Dimethyldodecylamine Oxide and Its Mixtures with Triton X-100 at the Hydrophilic Silica/Water Interface Studied Using Total Internal Reflection Raman Spectroscopy." Journal of Physical Chemistry B 120, no. 48 (November 23, 2016): 12346–57. http://dx.doi.org/10.1021/acs.jpcb.6b08853.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Grenoble, Zlata, and Steven Baldelli. "Adsorption of Benzyldimethylhexadecylammonium Chloride at the Hydrophobic Silica–Water Interface Studied by Total Internal Reflection Raman Spectroscopy: Effects of Silica Surface Properties and Metal Salt Addition." Journal of Physical Chemistry B 117, no. 34 (August 16, 2013): 9882–94. http://dx.doi.org/10.1021/jp4015096.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Blanco-Formoso, Maria, and Ramon A. Alvarez-Puebla. "Cancer Diagnosis through SERS and Other Related Techniques." International Journal of Molecular Sciences 21, no. 6 (March 24, 2020): 2253. http://dx.doi.org/10.3390/ijms21062253.

Повний текст джерела
Анотація:
Cancer heterogeneity increasingly requires ultrasensitive techniques that allow early diagnosis for personalized treatment. In addition, they should preferably be non-invasive tools that do not damage surrounding tissues or contribute to body toxicity. In this context, liquid biopsy of biological samples such as urine, blood, or saliva represents an ideal approximation of what is happening in real time in the affected tissues. Plasmonic nanoparticles are emerging as an alternative or complement to current diagnostic techniques, being able to detect and quantify novel biomarkers such as specific peptides and proteins, microRNA, circulating tumor DNA and cells, and exosomes. Here, we review the latest ideas focusing on the use of plasmonic nanoparticles in coded and label-free surface-enhanced Raman scattering (SERS) spectroscopy. Moreover, surface plasmon resonance (SPR) spectroscopy, colorimetric assays, dynamic light scattering (DLS) spectroscopy, mass spectrometry or total internal reflection fluorescence (TIRF) microscopy among others are briefly examined in order to highlight the potential and versatility of plasmonics.
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Autefage, Hélène, Eileen Gentleman, Elena Littmann, Martin A. B. Hedegaard, Thomas Von Erlach, Matthew O’Donnell, Frank R. Burden, David A. Winkler, and Molly M. Stevens. "Sparse feature selection methods identify unexpected global cellular response to strontium-containing materials." Proceedings of the National Academy of Sciences 112, no. 14 (March 23, 2015): 4280–85. http://dx.doi.org/10.1073/pnas.1419799112.

Повний текст джерела
Анотація:
Despite the increasing sophistication of biomaterials design and functional characterization studies, little is known regarding cells’ global response to biomaterials. Here, we combined nontargeted holistic biological and physical science techniques to evaluate how simple strontium ion incorporation within the well-described biomaterial 45S5 bioactive glass (BG) influences the global response of human mesenchymal stem cells. Our objective analyses of whole gene-expression profiles, confirmed by standard molecular biology techniques, revealed that strontium-substituted BG up-regulated the isoprenoid pathway, suggesting an influence on both sterol metabolite synthesis and protein prenylation processes. This up-regulation was accompanied by increases in cellular and membrane cholesterol and lipid raft contents as determined by Raman spectroscopy mapping and total internal reflection fluorescence microscopy analyses and by an increase in cellular content of phosphorylated myosin II light chain. Our unexpected findings of this strong metabolic pathway regulation as a response to biomaterial composition highlight the benefits of discovery-driven nonreductionist approaches to gain a deeper understanding of global cell–material interactions and suggest alternative research routes for evaluating biomaterials to improve their design.
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Ly, Thong, and Steven Baldelli. "Cooperative Adsorption of Nonionic Triton X-100 and Dodecyldimethylamine Oxide Surfactant Mixtures at the Hydrophilic Silica–Water Interface Studied by Total Internal Reflection Raman Spectroscopy and Multivariate Curve Resolution." Journal of Physical Chemistry B 125, no. 51 (December 16, 2021): 13928–36. http://dx.doi.org/10.1021/acs.jpcb.1c08148.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Walch, Nik J., Alexei Nabok, Frank Davis, and Séamus P. J. Higson. "Characterisation of thin films of graphene–surfactant composites produced through a novel semi-automated method." Beilstein Journal of Nanotechnology 7 (February 8, 2016): 209–19. http://dx.doi.org/10.3762/bjnano.7.19.

Повний текст джерела
Анотація:
In this paper we detail a novel semi-automated method for the production of graphene by sonochemical exfoliation of graphite in the presence of ionic surfactants, e.g., sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB). The formation of individual graphene flakes was confirmed by Raman spectroscopy, while the interaction of graphene with surfactants was proven by NMR spectroscopy. The resulting graphene–surfactant composite material formed a stable suspension in water and some organic solvents, such as chloroform. Graphene thin films were then produced using Langmuir–Blodgett (LB) or electrostatic layer-by-layer (LbL) deposition techniques. The composition and morphology of the films produced was studied with SEM/EDX and AFM. The best results in terms of adhesion and surface coverage were achieved using LbL deposition of graphene(−)SDS alternated with polyethyleneimine (PEI). The optical study of graphene thin films deposited on different substrates was carried out using UV–vis absorption spectroscopy and spectroscopic ellipsometry. A particular focus was on studying graphene layers deposited on gold-coated glass using a method of total internal reflection ellipsometry (TIRE) which revealed the enhancement of the surface plasmon resonance in thin gold films by depositing graphene layers.
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Mayerhöfer, Thomas G., Susanne Pahlow, and Jürgen Popp. "Structures for surface-enhanced nonplasmonic or hybrid spectroscopy." Nanophotonics 9, no. 4 (March 18, 2020): 741–60. http://dx.doi.org/10.1515/nanoph-2020-0037.

Повний текст джерела
Анотація:
AbstractAbsorption, scattering, and fluorescence are processes that increase with electric field intensity. The most prominent way to enhance electric field intensity is to use localized or propagating surface plasmon polaritons (SPPs) based on metallic particles and nanostructures. In addition, several other, much less well-known, photonic structures that increase electric field intensity exist. Interference enhancement provided by thin dielectric coatings on reflective substrates is able to provide electric field intensity enhancement over the whole substrate and not only at certain hotspots, thereby being in particular suitable for the spectroscopy of thin surface layers. The same coatings on high refractive index substrates may be used for interference-enhanced total internal reflection-based spectroscopy in much the same way as Kretschmann or Otto configuration for exciting propagating SPPs. The latter configurations can also be used to launch Bloch surface waves on 1D photonic crystal structures for the enhancement of electric field intensity and thereby absorption, scattering, and fluorescence-based spectroscopies. High refractive index substrates alone can also, when nanostructured, enhance infrared absorption or Raman scattering via Mie-type resonances. As a further method, this review will cover recent developments to employ phonon polaritons in the reststrahlen region.
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Poole, Joshua J. A., and Leila B. Mostaço-Guidolin. "Optical Microscopy and the Extracellular Matrix Structure: A Review." Cells 10, no. 7 (July 12, 2021): 1760. http://dx.doi.org/10.3390/cells10071760.

Повний текст джерела
Анотація:
Biological tissues are not uniquely composed of cells. A substantial part of their volume is extracellular space, which is primarily filled by an intricate network of macromolecules constituting the extracellular matrix (ECM). The ECM serves as the scaffolding for tissues and organs throughout the body, playing an essential role in their structural and functional integrity. Understanding the intimate interaction between the cells and their structural microenvironment is central to our understanding of the factors driving the formation of normal versus remodelled tissue, including the processes involved in chronic fibrotic diseases. The visualization of the ECM is a key factor to track such changes successfully. This review is focused on presenting several optical imaging microscopy modalities used to characterize different ECM components. In this review, we describe and provide examples of applications of a vast gamut of microscopy techniques, such as widefield fluorescence, total internal reflection fluorescence, laser scanning confocal microscopy, multipoint/slit confocal microscopy, two-photon excited fluorescence (TPEF), second and third harmonic generation (SHG, THG), coherent anti-Stokes Raman scattering (CARS), fluorescence lifetime imaging microscopy (FLIM), structured illumination microscopy (SIM), stimulated emission depletion microscopy (STED), ground-state depletion microscopy (GSD), and photoactivated localization microscopy (PALM/fPALM), as well as their main advantages, limitations.
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Fenta, Mulugeta C., David K. Potter, and János Szanyi. "Fibre Optic Methods of Prospecting: A Comprehensive and Modern Branch of Geophysics." Surveys in Geophysics 42, no. 3 (March 9, 2021): 551–84. http://dx.doi.org/10.1007/s10712-021-09634-8.

Повний текст джерела
Анотація:
AbstractOver the past decades, the development of fibre optic cables, which pass light waves carrying data guided by total internal reflection, has led to advances in high-speed and long-distance communication, large data transmission, optical imaging, and sensing applications. Thus far, fibre optic sensors (FOSs) have primarily been employed in engineering, biomedicine, and basic sciences, with few reports of their usage in geophysics as point and distributed sensors. This work aimed at reviewing the studies on the use of FOSs in geophysical applications with their fundamental principles and technological improvements. FOSs based on Rayleigh, Brillouin, and Raman scatterings and fibre Bragg grating sensors are reviewed based on their sensing performance comprising sensing range, spatial resolution, and measurement parameters. The recent progress in applying distributed FOSs to detect acoustic, temperature, pressure, and strain changes, as either single or multiple parameters simultaneously on surface and borehole survey environments with their cable deployment techniques, has been systematically reviewed. Despite the development of fibre optic sensor technology and corresponding experimental reports of applications in geophysics, there have not been attempts to summarise and synthesise fibre optic methods for prospecting as a comprehensive and modern branch of geophysics. Therefore, this paper outlines the fibre optic prospecting methods, with an emphasis on their advantages, as a guide for the geophysical community. The potential of the new outlined fibre optic prospecting methods to revolutionise conventional geophysical approaches is discussed. Finally, the future challenges and limitations of the new prospecting methods for geophysical applications are elucidated.
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Meyer, Matthew W., and Emily A. Smith. "Scanning Angle Total Internal Reflection Raman Spectroscopy of Thin Polymer Films." MRS Proceedings 1522 (2013). http://dx.doi.org/10.1557/opl.2013.133.

Повний текст джерела
Анотація:
ABSTRACTPlasmon waveguide resonance (PWR) Raman spectroscopy provides chemical content information with interface or thin film selectivity. Near the plasmon waveguide interface, large increases in the interfacial optical energy density are generated at incident angles where plasmon waveguide resonances are excited. When a polymer of sufficient thickness is deposited on a gold film, the interface acts as a plasmon waveguide and large enhancements in the Raman signal can be achieved. This paper presents calculations to show how polymer thickness and excitation wavelength are predicted to influence PWR Raman spectroscopy measurements. The results show the optical energy density (OED) integrated over the entire polymer film using 785 nm excitation are 1.7× (400 nm film), 2.17× (500 nm film), 2.48× (600 nm film), 3.08× (700 nm film) and 3.62× (800 nm film) higher compared to a 300 nm film. Accounting for the integrated OED and frequency to the fourth power dependence of the Raman scatter, a 532 nm excitation wavelength is predicted to generate the largest PWR Raman signal at the polymer waveguide interface. This work develops a foundation for chemical measurements of numerous devices, such as solar energy capturing devices that utilize conducting metals coated with thin polymer films.
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Talaga, David, Gary S. Cooney, Vicky Ury-Thiery, Yann Fichou, Yuhan Huang, Sophie Lecomte, and Sébastien Bonhommeau. "Total Internal Reflection Tip-Enhanced Raman Spectroscopy of Tau Fibrils." Journal of Physical Chemistry B, June 29, 2022. http://dx.doi.org/10.1021/acs.jpcb.2c02786.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії