Добірка наукової літератури з теми "Total Internal Reflection Raman Tribometer"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Total Internal Reflection Raman Tribometer".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Total Internal Reflection Raman Tribometer"

1

Praveena, Manimunda, Kaustav Guha, Abhilash Ravishankar, Sanjay K. Biswas, Colin D. Bain, and Vikram Jayaram. "Total internal reflection Raman spectroscopy of poly(alpha-olefin) oils in a lubricated contact." RSC Adv. 4, no. 42 (2014): 22205–13. http://dx.doi.org/10.1039/c4ra02261k.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Praveena, Manimunda, Colin D. Bain, Vikram Jayaram, and Sanjay K. Biswas. "Total internal reflection (TIR) Raman tribometer: a new tool for in situ study of friction-induced material transfer." RSC Advances 3, no. 16 (2013): 5401. http://dx.doi.org/10.1039/c3ra00131h.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Woods, David A., and Colin D. Bain. "Total internal reflection Raman spectroscopy." Analyst 137, no. 1 (2012): 35–48. http://dx.doi.org/10.1039/c1an15722a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Tisinger, L. G., and A. J. Sommer. "Attenuated Total Internal Reflection (ATR) Raman Microspectroscopy." Microscopy and Microanalysis 10, S02 (August 2004): 1318–19. http://dx.doi.org/10.1017/s1431927604884794.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Michaels, Chris A. "Surface-sensitive Raman microscopy with total internal reflection illumination." Journal of Raman Spectroscopy 41, no. 12 (January 27, 2010): 1670–77. http://dx.doi.org/10.1002/jrs.2610.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

McKee, Kristopher J., and Emily A. Smith. "Development of a scanning angle total internal reflection Raman spectrometer." Review of Scientific Instruments 81, no. 4 (April 2010): 043106. http://dx.doi.org/10.1063/1.3378682.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Talaga, David, Andrew Bremner, Thierry Buffeteau, Renaud A. L. Vallée, Sophie Lecomte, and Sébastien Bonhommeau. "Total Internal Reflection Tip-Enhanced Raman Spectroscopy of Cytochrome c." Journal of Physical Chemistry Letters 11, no. 10 (April 24, 2020): 3835–40. http://dx.doi.org/10.1021/acs.jpclett.0c00579.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kivioja, Antti O., Anna-Stiina Jääskeläinen, Ville Ahtee, and Tapani Vuorinen. "Thickness measurement of thin polymer films by total internal reflection Raman and attenuated total reflection infrared spectroscopy." Vibrational Spectroscopy 61 (July 2012): 1–9. http://dx.doi.org/10.1016/j.vibspec.2012.02.014.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Nickolov, Z. S., J. C. Earnshaw, and J. J. McGarvey. "Water structure at interfaces studied by total internal reflection Raman spectroscopy." Colloids and Surfaces A: Physicochemical and Engineering Aspects 76 (September 1993): 41–49. http://dx.doi.org/10.1016/0927-7757(93)80059-n.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Tran, Willie, Louis G. Tisinger, Luis E. Lavalle, and Andre J. Sommer. "Analysis of Thin-Film Polymers Using Attenuated Total Internal Reflection–Raman Microspectroscopy." Applied Spectroscopy 69, no. 2 (February 2015): 230–38. http://dx.doi.org/10.1366/13-07024.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Total Internal Reflection Raman Tribometer"

1

Finzer, Brant M. "Detection of Oxyanion Adsorption at the Silica-Aqueous Interface using Total Internal Reflection (TIR)-Raman Spectroscopy." The Ohio State University, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=osu1417521135.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Bingham, Laura Maria. "Development of nanoparticle catalysts and total internal reflection (TIR) Raman spectroscopy for improved understanding of heterogeneous catalysis." Thesis, Durham University, 2017. http://etheses.dur.ac.uk/12445/.

Повний текст джерела
Анотація:
Laser Raman spectroscopy has been used very effectively for some time to probe heterogeneous catalytic reactions in situ. TIR Raman is a variant of non-resonant Raman spectroscopy which uses a totally internally reflected light, i.e. an evanescent electric field acts as the excitation source. TIR Raman reduces or avoids some key limitations of bulk Raman spectroscopy, including reduction of laser induced sample damage. This thesis has therefore been investigating the possible application of TIR Raman spectroscopy to studying heterogeneous catalysts, in particular films of size controlled metal nanoparticle catalysts. Potential catalytic materials (such as platinum, supported either on optical elements or in mesoporous silica) were synthesised, characterised by techniques such as TEM, UV-VIS, deposited on substrates both at monolayer and thicker coverages, and subjected to both conventional and TIR Raman spectroscopy. This included a significant amount of synthetic development, in particular of copper nanoparticles. Results indicated that TIR Raman enables acquisition of spectra with improved sensitivity, compared to bulk Raman, below the damage threshold of the materials, even at low levels of surface coverage. Specifically, Raman bands indicating the presence and removal (by plasma cleaning) of organic capping agents on nanoparticles have been detected for a number of systems. This was not achieved using confocal Raman spectroscopy. This was extended to develop a system for studying gas/solid catalytic reactions in situ using a specially constructed gas cell to enable application of the technique under reaction conditions. Finally, the nanoparticles synthesised primarily for the TIR Raman study have also been demonstrated as catalysts in improving the understanding of several catalysed reactions, in particular direct amide bond formation from amines and alcohols, cascade oxidations, and selective furfural hydrogenation.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Shou, Xiao. "Low Frequency and Total Internal Reflection Raman Spectroscopic Study of Ions in Bulk and at the Silica/Aqueous Interface." The Ohio State University, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=osu1398878470.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Total Internal Reflection Raman Tribometer"

1

Michaels, Chris A., P. M. Champion, and L. D. Ziegler. "Surface Selective Raman Microscopy With Total Internal Reflection Illumination." In XXII INTERNATIONAL CONFERENCE ON RAMAN SPECTROSCOPY. AIP, 2010. http://dx.doi.org/10.1063/1.3482796.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Taniguchi, Hiroshi, Shinji Tanosaki, Kazuhiro Tsujita, and Humio Inaba. "Highly Scattering Effect of Substituted Intralipid on Dye Doped Microdroplets for Lasing Enforcement." In The European Conference on Lasers and Electro-Optics. Washington, D.C.: Optica Publishing Group, 1996. http://dx.doi.org/10.1364/cleo_europe.1996.cthi64.

Повний текст джерела
Анотація:
Microdroplets are known to act as high-Q optical cavities with optical feedback provided by total internal reflection at the sphere-surrounding media interface. Using the spherical cavities, lasing and stimulated Raman scattering (SRS)1 have been observed when liquid microdroplets are irradiated by intense laser beams. These lasing and SRS emissions occur at discrete wavelengths corresponding to morphology-dependent resonances of the sphere.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Walls, D. J., D. M. Cropek, K. D. Hughes, J. M. Olinger, and P. W. Bohn. "Waveguide Dichroism and Depolarization Measurements for Molecular Orientation." In Laser Applications to Chemical Analysis. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/laca.1990.ma4.

Повний текст джерела
Анотація:
Modern surface science is now emerging into a regime in which understanding the relationship betweeen structure and function will occupy an ever more prominent role. To this end one important piece of information concerns the three dimensional orientation of complex adsorbates at an interface. We have been using total internal reflection excited surface Raman scattering and waveguide mediated linear dichroism to measure the tilt angles of molecules adsorbed under realistic conditions (i.e. at the solid-liquid interface). These efforts will be described and compared.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Hetherington, W. M., Z. Z. Ho, W. M. K. P. Wijekoon, and E. W. Koenig. "Surface CARS Spectroscopy with Optical Waveguides." In Microphysics of Surfaces, Beams, and Adsorbates. Washington, D.C.: Optica Publishing Group, 1987. http://dx.doi.org/10.1364/msba.1987.wa4.

Повний текст джерела
Анотація:
Using the planar optical waveguide geometry, coherent anti-Stokes Raman scattering becomes a very sensitive type of vibrational spectroscopy for the study of surface structure and chemistry. The waveguide structure consists of a film (about one micron thick) of a material such as ZnO on a fused silica substrate. Laser fields can be constrained by total internal reflection such that they propagate through the film as guided waves. The concept is to perform CARS using the evanescent fields extending above the waveguide surface. The key to making this a very attractive form of surface spectroscopy is the establishment of an interference condition within the film, thereby eliminating the contribution from the vibrationally resonant or nonresonant third order susceptibility of the film itself. The remaining signal consists mainly of the signal from the surface and any surface adsorbates. With this technique, the Raman spectrum of interfacial species can be observed over the 0 to 4000 cm-1 range under environments ranging from UHV to condensed phases.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Hetherington, W. M., Z. Z. Ho, W. M. K. P. Wijekoon, and E. W. Koenig. "Surface CARS Spectroscopy with Optical Waveguides." In Lasers in Material Diagnostics. Washington, D.C.: Optica Publishing Group, 1987. http://dx.doi.org/10.1364/lmd.1987.wc2.

Повний текст джерела
Анотація:
Using the planar optical waveguide geometry, coherent anti-Stokes Raman scattering becomes a very sensitive type of vibrational spectroscopy for the study of surface structure and chemistry. The waveguide structure consists of a film (about one micron thick) of a material such as ZnO on a fused silica substrate. Laser fields can be constrained by total internal reflection such that they propagate through the film as guided waves. The concept is to perform CARS using the evanescent fields extending above the waveguide surface. The key to making this a very attractive form of surface spectroscopy is the establishment of an interference condition within the film, thereby eliminating the contribution from the vibrationally resonant or nonresonant third order susceptibility of the film itself. The remaining signal consists mainly of the signal from the surface and any surface adsorbates. With this technique, the Raman spectrum of interfacial species can be observed over the 0 to 4000 cm-1 range under environments ranging from UHV to condensed phases.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Chang, Richard K. "Nonlinear Optical Interaction of Laser Radiation with Water Droplets." In Laser and Optical Remote Sensing: Instrumentation and Techniques. Washington, D.C.: Optica Publishing Group, 1987. http://dx.doi.org/10.1364/lors.1987.tha1.

Повний текст джерела
Анотація:
In considering high-intensity laser propagation through the atmosphere, nonlinear optical effects such as stimulated Raman scattering (SRS), stimulated Brillouin scattering (SBS), superbroadening, self-focusing, and dielectric breakdown of the optically transparent air become even more important when the air contains water droplets. For transparent water droplets with large size parameter (defined as droplet circumference 2πa divided by wavelength of interest λ), the droplet can be envisioned as a lens to concentrate the incident intensity (10) at three main locations:1 (1) outside the shadow face with ≅ 103 × 10; (2) inside the shadow face with ≅ 102 × 10; and (3) inside the illuminated face with less than 102 × 10. The nonuniform internal-field distribution and internal intensity enhancement significantly affect the nonlinear optical effects. Furthermore, a large transparent droplet can be envisioned as an optical cavity for specific internal wavelengths which satisfy the droplet cavity resonance condition [commonly referred to as morphology-dependent resonances (MDR’s)] associated with a sphere or spheroid.2-4 An analogy to a Fabry-Perot interferometer can be made by associating the liquid-air interface with the reflector (via total internal reflection) and the droplet circumference with the round-trip distance. For spheres5,6 and spheroids,7 the Q-factor of the droplet and the precise wavelengths which satisfy the MDR’s can be predicted by Lorenz-Mie and T-matrix formalism.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії