Статті в журналах з теми "Topology"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Topology.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Topology".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Widodo, Charles, Marchellius Yana, and Halim Agung. "IMPLEMENTASI TOPOLOGI HYBRID UNTUK PENGOPTIMALAN APLIKASI EDMS PADA PROJECT OFFICE PT PHE ONWJ." JURNAL TEKNIK INFORMATIKA 11, no. 1 (May 4, 2018): 19–30. http://dx.doi.org/10.15408/jti.v11i1.6472.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
ABSTRAK Penggunaan aplikasi EDMS di project office PT PHE ONWJ dinilai masih belum optimal karena masih lambat dalam pengunaan aplikasi EDMS. Oleh karena itu dilakukanlah penelitian ini dengan tujuan untuk mengoptimalkan jaringan yang digunakan untuk mengakses aplikasi EDMS pada project office PT PHE ONWJ. Pengoptimalan jaringan yang dimaksud adalah dengan membangun topologi di project office PT PHE ONWJ dan menerapkan metro sebagai perantara topologi star di project office dan topologi star dikantor pusat sehingga menciptakan topologi hybrid. Topologi hybrid yang dimaksud adalah penggabungan antara topologi star yang ada di jaringan pusat, metro sebagai perantara kantor pusat dengan project office PT PHE ONWJ dan topologi star yang akan dibangun di project office PT ONWJ. Diharapkan setelah menerapkan topologi yang telah dirancang dapat mengoptimalkan penggunaan aplikasi EDMS. Topologi star di project office PT ONWJ dan metro sebagai perantara 2 topologi kantor pusat dan project office menghasilkan topologi hybrid. Kesimpulan dari penelitian ini adalah penerapan topologi dalam jaringan dapat memberikan optimalisasi dibandingkan dengan tanpa menerapkan topologi. Hasil rata-rata ping saat pengaksesan aplikasi EDMS sebelum menerapkan topologi hybrid mendapatkan hasil sebesar 392,98 ms dan setelah menerapkan topologi hybrid mendapatkan hasil sebesar 143,50 ms, sehingga disimpulkan bahwa penerapan topologi hybrid lebih baik dalam menjalankan aplikasi EDMS. ABSTRACT The use of EDMS application in PT PHE ONWJ project office is considered not optimal because it is still slow in the use of EDMS applications. Therefore this study was conducted with the aim to optimize the network used to access the EDMS application on the PT PHE ONWJ project office. Network optimization in question is to build a topology in the project office of PT PHE ONWJ and apply the metro as an intermediate star topology in the project office and star topology at the headquarters so as to create a hybrid topology. Hybrid topology in question is a merger between the star topology in the central network, metro as an intermediary head office with PT PHE ONWJ project office and star topology to be built at PT ONWJ project office. It is expected that after applying the topology that has been designed to optimize the use of EDMS applications. Star topology in PT ONWJ project office and metro as intermediary 2 topology headquarters and project office produce hybrid topology. The conclusion of this research is application of topology in network can give optimization compared with without applying topology. The average result of ping when accessing EDMS application before applying hybrid topology got 392.98 ms result and after applying hybrid topology get result of 143,50 ms, so it is concluded that application of hybrid topology is better in running EDMS application. How To Cite : Widodo, C. Yana, M. Agung, H. (2018). IMPLEMENTASI TOPOLOGI HYBRID UNTUK PENGOPTIMALAN APLIKASI EDMS PADA PROJECT OFFICE PT PHE ONWJ. Jurnal Teknik Informatika, 11(1), 19-30. doi 10.15408/jti.v11i1.6472 Permalink/DOI: http://dx.doi.org/10.15408/jti.v11i1.6472
2

Sukriyah, Dewi. "MATRIKS KETERHUBUNGAN LANGSUNG TOPOLOGI HINGGA." JEDMA Jurnal Edukasi Matematika 1, no. 1 (July 30, 2020): 37–43. http://dx.doi.org/10.51836/jedma.v1i1.125.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abtrak: Topologi merupakan cabang ilmu matematika yang mempelajari suatu struktur yang terdapat pada himpunan. Seperti halnya himpunan hingga yang memiliki kardinalitas, maka topologi hingga juga memiliki kardinalitas. Jika himpunan memiliki kardinalitas dan topologi pada S, maka kardinalitas dari yang dinotasikan dengan menyetakan banyaknya elemen dari . Jika topologi pada S, maka matriks keterhubungan langsung topologi adalah matriks berukuran yang dinotasikan dengan . Matriks merupakan matriks yang elemennya 0 atau 1. Kata Kunci: Himpunan, Kardinalitas, Matriks Keterhubungan Langsung, Topologi. Abstract: Topology is a branch of mathematics which study structures on a set. As a finite set, a finite topology have a cardinality. Let be a finite set with cardinality and let be a topology on S, then the cardinality of which denotes is the number of elements . If topology on S, then the corresponding matrix to a topology is a matrix which denoted by . is the matrix have element 0 or 1. Keywords: Cardinality, Set, The Corresponding Matrix, Topology,
3

Parinyataramas, Jamreonta, Sakuntam Sanorpim, Chanchana Thanachayanont, Hiroyaki Yaguchi, and Misao Orihara. "TEM Analysis of Structural Phase Transition in MBE Grown Cubic InN on MgO (001) by MBE: Effect of Hexagonal Phase Inclusion in an C-Gan Nucleation Layer." Applied Mechanics and Materials 229-231 (November 2012): 219–22. http://dx.doi.org/10.4028/www.scientific.net/amm.229-231.219.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this paper, we introduced dbcube topology for Network-on Chips(NoC). We predicted the dbcube topology has high power and low latency comparing to other topologies, and in particular mesh topology. By using xmulator simulator,we compared power and latency of this topologyto mesh topology. Finally, it is demonstrated that the network has higher power and lower latency than the mesh topology.
4

Mosafaie, Razieh, and Reza Sabbaghi-Nadooshan. "Using Dbcupe Topology for NoCs." Applied Mechanics and Materials 229-231 (November 2012): 2741–44. http://dx.doi.org/10.4028/www.scientific.net/amm.229-231.2741.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this paper, we introduced dbcube topology for Network-on Chips(NoC). We predicted the dbcube topology has high power and low latency comparing to other topologies, and in particular mesh topology. By using xmulator simulator,we compared power and latency of this topologyto mesh topology. Finally, it is demonstrated that the network has higher power and lower latency than the mesh topology.
5

Ali, Iman Abbas, and Asmhan Flieh Hassan. "The Independent Incompatible Edges Topology on Di-graphs." Journal of Physics: Conference Series 2322, no. 1 (August 1, 2022): 012010. http://dx.doi.org/10.1088/1742-6596/2322/1/012010.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract This sheet offers a novel topology for di-graphs termed independent incompatible edges topology, which creates the topology from the edges set 𝕶 for whatever di-graph. On edges 𝕶, a family of sub-basis is used for build the independent incompatible edges topology. After that, we look at assorted properties; explore the Independent Incompatible Edge Topology on some types of di-graphs. In addition, this topology’s some initial results were studied. Our objective is to understand several aspects of any di-graph using it is corresponding independent incompatible edges topology, the topology that is discussed in this paper.
6

EL-MONSEF, M. E. ABD, A. M. KOZAE, and A. A. ABO KHADRA. "CO-RS-COMPACT TOPOLOGIES." Tamkang Journal of Mathematics 24, no. 3 (September 1, 1993): 323–32. http://dx.doi.org/10.5556/j.tkjm.24.1993.4504.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A topology $R(\tau)$ is contructed from a given topolgy $\tau$ on a set $X$ . $R(\tau)$ is coarser than $\tau$, and the following are some results based on this topology: 1. Continuity and RS-continuity are equivalent if the codomain is re­ topologized by $R(\tau)$. 2. The class of semi-open sets with respect to $R(\tau)$ is a topology. 3. $T_2$ and semi-$T_2$ properties are equivalent on a space whose topology is $R(\tau)$. 4. Minimal $R_0$-spaces are RS-compact:
7

Bendsoe, Martin P. "Multidisciplinary Topology Optimization." Proceedings of The Computational Mechanics Conference 2006.19 (2006): 1. http://dx.doi.org/10.1299/jsmecmd.2006.19.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

SUSANA, RATNA, FEBRIAN HADIATNA, and APRIANTI GUSMANTINI. "Sistem Multihop Jaringan Sensor Nirkabel pada Media Transmisi Wi-Fi." ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika 9, no. 1 (January 22, 2021): 232. http://dx.doi.org/10.26760/elkomika.v9i1.232.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
ABSTRAKDengan menerapkan sistem multihop pada jaringan sensor nirkabel, pembacaan kondisi lingkungan dapat dilakukan pada lingkungan yang lebih luas. Pada penelitian ini, sistem multihop jaringan sensor nirkabel menggunakan platform IoT NodeMCU V3 yang memiliki modul Wi-Fi ESP8266. Jumlah sensor node yang digunakan merupakan batas maksimal client yang dapat terhubung kepada Wi-Fi ESP8266, yaitu 1 sink node dan 4 sensor node. Sensor node akan mengirimkan datanya kepada sink node, kemudian data tersebut akan dikirimkan kepada website untuk ditampilkan pada dashboard Adafruit.io. Pengiriman data diuji menggunakan 2 topologi yaitu bus dan tree. Berdasarkan hasil pengujian, jarak maksimal pengiriman data pada topologi bus tanpa penghalang adalah 72 meter dengan delay pengiriman 64 detik dan topologi tree adalah 108 meter dengan delay pengiriman 14 detik. Sistem multihop pada topologi bus dan tree dapat mengirim data dengan 2 penghalang yang memiliki ketebalan 15 cm dengan delay pengiriman 29 detik pada topologi bus dan 14 detik pada topologi tree.Kata kunci: jaringan sensor nirkabel, multihop, Wi-Fi, NodeMCU V3 ABSTRACTBy applying a multihop system on wireless sensor network, reading environment condition can be done in wider environment. In this study, multihop system in wireless sensor network uses IoT NodeMCU V3 platform which has a Wi-Fi ESP8266 module. The amount of node sensor is the maximum limit of client which can be linked to Wi-Fi access point in Wi-Fi ESP8266 module, i.e 1 sink node and 4 sink node. The node sensor will transfer the data to the sink node, then the data will be transfered to the website to be shown on Adafruit.io dashboard. The transmission data is tested using 2 topologies, i.e bus and tree. Based on the test, the maximum distance of data transmission in bus topology without barrier is 72 meters with delivery delay which takes 64 seconds and in tree topology is 108 seconds with delivery delay which takes 14 seconds. The multihop system in the bus topology and the tree topology can send the data with 2 barriers which has 15 cm width and delivery delay among the nodes which takes 29 seconds in bus topology and 14 seconds in tree topology.Keywords: wireless sensor network, multihop, Wi-Fi, NodeMCU V3
9

ARYANTA, DWI, ARSYAD RAMADHAN DARLIS, and DIMAS PRIYAMBODHO. "Analisis Kinerja EIGRP dan OSPF pada Topologi Ring dan Mesh." ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika 2, no. 1 (January 1, 2014): 53. http://dx.doi.org/10.26760/elkomika.v2i1.53.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
ABSTRAKEIGRP (Enhanced Interior Gateway Routing Protocol) dan OSPF (Open Shortest Path Fisrt) adalah routing protokol yang banyak digunakan pada suatu jaringan komputer. EIGRP hanya dapat digunakan pada perangkat Merk CISCO, sedangkan OSPF dapat digunakan pada semua merk jaringan. Pada penelitian ini dibandingkan delay dan rute dari kedua routing protokol yang diimplementasikan pada topologi Ring dan Mesh. Cisco Packet Tracer 5.3 digunakan untuk mensimulasikan kedua routing protokol ini. Skenario pertama adalah perancangan jaringan kemudian dilakukan pengujian waktu delay 100 kali dalam 5 kasus. Skenario kedua dilakukan pengujian trace route untuk mengetahui jalur yang dilewati paket data lalu memutus link utama. Pada skenario kedua juga dilakukan perbandingan nilai metric dan cost hasil simulasi dengan perhitungan rumus. Skenario ketiga dilakukan pengujian waktu konvergensi untuk setiap routing protokol pada setiap topologi. Hasilnya EIGRP lebih cepat 386 µs daripada OSPF untuk topologi Ring sedangkan OSPF lebih cepat 453 µs daripada EIGRP untuk topologi Mesh. Hasil trace route menunjukan rute yang dipilih oleh routing protokol yaitu nilai metric dan cost yang terkecil. Waktu konvergensi rata-rata topologi Ring pada EIGRP sebesar 12,75 detik dan 34,5 detik pada OSPF sedangkan topologi Mesh di EIGRP sebesar 13 detik dan 35,25 detik di OSPF.Kata Kunci: EIGRP, OSPF, Packet Tracer 5.3, Ring, Mesh, KonvergensiABSTRACTEIGRP (Enhanced Interior Gateway Routing Protocol) and OSPF (Open Shortest Path Fisrt) is the routing protocol that is widely used in a computer network. EIGRP can only be used on devices Brand CISCO, while OSPF can be used on all brands of network. In this study comparison of both the delay and the routing protocol implemented on Ring and Mesh topology. Cisco Packet Tracer 5.3 is used to simulate both the routing protocol. The first scenario is the design of the network and then do the test of time delay 100 times in 5 cases. The second scenario tested trace route to determine the path of the data packet and then disconnect the main link. In the second scenario also conducted a cost comparison of metrics and the simulation results with the calculation formula. The third scenario testing time for each routing protocol convergence on any topology. The result EIGRP faster than 386 microseconds for a ring topology while OSPF OSPF 453 microseconds faster than EIGRP for Mesh topology. The results showed trace route chosen by the routing protocol metric value and cost is the smallest. Average convergence time in the EIGRP topology Ring of 12.75 seconds and 34.5 seconds, while the Mesh topology in an OSPF EIGRP for 13 seconds and 35.25 seconds in OSPF.Keywords: EIGRP,OSPF, Packet Tracer 5.3, Ring, Mesh, Convergence
10

ROY, MARIO, HIROKI SUMI, and MARIUSZ URBAŃSKI. "Lambda-topology versus pointwise topology." Ergodic Theory and Dynamical Systems 29, no. 2 (April 2009): 685–713. http://dx.doi.org/10.1017/s0143385708080292.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractThis paper deals with families of conformal iterated function systems (CIFSs). The space CIFS(X,I) of all CIFSs, with common seed space X and alphabet I, is successively endowed with the topology of pointwise convergence and the so-calledλ-topology. We show just how bad the topology of pointwise convergence is: although the Hausdorff dimension function is continuous on a dense Gδ-set, it is also discontinuous on a dense subset of CIFS(X,I). Moreover, all of the different types of systems (irregular, critically regular, etc.), have empty interior, have the whole space as boundary, and thus are dense in CIFS(X,I), which goes against intuition and conception of a natural topology on CIFS(X,I). We then prove how good the λ-topology is: Roy and Urbański [Regularity properties of Hausdorff dimension in infinite conformal IFSs. Ergod. Th. & Dynam. Sys.25(6) (2005), 1961–1983] have previously pointed out that the Hausdorff dimension function is then continuous everywhere on CIFS(X,I). We go further in this paper. We show that (almost) all of the different types of systems have natural topological properties. We also show that, despite not being metrizable (as it does not satisfy the first axiom of countability), the λ-topology makes the space CIFS(X,I) normal. Moreover, this space has no isolated points. We further prove that the conformal Gibbs measures and invariant Gibbs measures depend continuously on Φ∈CIFS(X,I) and on the parameter t of the potential and pressure functions. However, we demonstrate that the coding map and the closure of the limit set are discontinuous on an important subset of CIFS(X,I).
11

MAGHSOUDI, SAEID, and RASOUL NASR-ISFAHANI. "STRICT TOPOLOGY AS A MIXED TOPOLOGY ON LEBESGUE SPACES." Bulletin of the Australian Mathematical Society 84, no. 3 (September 6, 2011): 504–15. http://dx.doi.org/10.1017/s0004972711002589.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractLetXbe a locally compact space, and 𝔏∞0(X,ι) be the space of all essentially boundedι-measurable functionsfonXvanishing at infinity. We introduce and study a locally convex topologyβ1(X,ι) on the Lebesgue space 𝔏1(X,ι) such that the strong dual of (𝔏1(X,ι),β1(X,ι)) can be identified with$({\frak L}_0^\infty (X,\iota ),\|\cdot \|_\infty )$. Next, by showing thatβ1(X,ι) can be considered as a natural mixed topology, we deduce some of its basic properties. Finally, as an application, we prove thatL1(G) , the group algebra of a locally compact Hausdorff topological groupG, equipped with the convolution multiplication is a complete semitopological algebra under theβ1(G) topology.
12

Arhippainen, Jorma. "On functional representation of locallym-pseudoconvex algebras." International Journal of Mathematics and Mathematical Sciences 22, no. 2 (1999): 223–37. http://dx.doi.org/10.1155/s0161171299222235.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Functional representation of a topological algebra(A,T)has been studied in many papers under various assumptions for the topologyTonA. Usually the imageAˆof the Gelfand map has been equipped with the compact-open topology. This leads, in several cases, to such kind of difficulties as, for instance, that the Gelfand map is not necessarily continuous or that the compact-open topology is not of the same type as the topologyT. In this paper, we study locallym-pseudoconvex algebras and provideAˆwith such kind of topology that the above two claims are fulfilled. By using this representation the description of the closed ideals of(A,T)is studied.
13

Asif, Mohd, Mohd Tariq, Adil Sarwar, Md Reyaz Hussan, Shafiq Ahmad, Lucian Mihet-Popa, and Adamali Shah Noor Mohamed. "A Robust Multilevel Inverter Topology for Operation under Fault Conditions." Electronics 10, no. 24 (December 13, 2021): 3099. http://dx.doi.org/10.3390/electronics10243099.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Multilevel inverters (MLIs) are used on a large scale because they have low total harmonic distortion (THD) and low voltage stress across the switches, making them ideal for medium- and high-power applications. The authenticity of semiconductor devices is one of the main concerns for these MLIs to operate properly. Due to the large number of switches in multilevel inverters, the possibility of a fault also arises. Hence, a reliable five-level inverter topology with fault-tolerant ability has been proposed. The proposed topology can withstand an open-circuit (OC) fault caused when any single switch fails. In comparison to typical multilevel inverters, the proposed topology is fault-tolerant and reliable. The simulation of the proposed topology is conducted in MATLAB-Simulink and PLECS software packages, and the results obtained for normal pre-fault, during-fault, and after-fault conditions are discussed. Experimental results also prove the proposed cell topology’s robustness and effectiveness in tolerating OC faults across the switches. Furthermore, a thorough comparison is provided to demonstrate the proposed topology’s superiority compared to recently published topologies with fault-tolerant features.
14

Baylis, John, and Klaus Janich. "Topology." Mathematical Gazette 69, no. 448 (June 1985): 149. http://dx.doi.org/10.2307/3616955.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

ana, S. Arch, and P. Elav arasi. "Topology." International Journal of Mathematics Trends and Technology 62, no. 3 (October 25, 2018): 178–83. http://dx.doi.org/10.14445/22315373/ijmtt-v62p525.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Dubisch, R. J. "Topology in Quantum Theory: Infrared Topology." Physics Essays 4, no. 4 (December 1991): 555–60. http://dx.doi.org/10.4006/1.3028934.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Solovyov, Sergey A. "Categorically algebraic topology versus universal topology." Fuzzy Sets and Systems 227 (September 2013): 25–45. http://dx.doi.org/10.1016/j.fss.2012.10.005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Martin, Keye. "Topology in information theory in topology." Theoretical Computer Science 405, no. 1-2 (October 2008): 75–87. http://dx.doi.org/10.1016/j.tcs.2008.06.027.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Jena, Kasinath, Dhananjay Kumar, Kavali Janardhan, B. Hemanth Kumar, Arvind R. Singh, Srete Nikolovski, and Mohit Bajaj. "A Novel Three-Phase Switched-Capacitor Five-Level Multilevel Inverter with Reduced Components and Self-Balancing Ability." Applied Sciences 13, no. 3 (January 29, 2023): 1713. http://dx.doi.org/10.3390/app13031713.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This paper proposes a step-up 3-Ф switched-capacitor multilevel inverter topology with minimal switch count and voltage stresses. The proposed topology is designed to provide five distinct output voltage levels from a single isolated dc source, making it suitable for medium and low-voltage applications. Each leg of the proposed topology contains four switches, one power diode, and a capacitor. The switching signals are also generated using a staircase universal modulation method. As a result, the proposed topology will operate at both low and high switching frequencies. To highlight the proposed topology’s advantages, a comparison of three-phase topologies wasperformed in terms of the switching components, voltage stress, component count per level factor, and cost function withthe recent literature. The topology achieved an efficiency of about 96.7% with dynamic loading, and 75% of the switches experienced half of the peak output voltage (VDC), whereas the remaining switches experienced peak output voltage (2VDC) as voltage stress. The MATLAB/Simulink environment was used to simulate the proposed topology, and a laboratory prototype was also built to verify the inverter’s theoretical justifications and real-time performance.
20

Khurana, Surjit Singh, and Jorge E. Vielma. "Strict topology and perfect measures." Czechoslovak Mathematical Journal 40, no. 1 (1990): 1–7. http://dx.doi.org/10.21136/cmj.1990.102354.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Netuka, Ivan. "Measure and topology: Mařík spaces." Mathematica Bohemica 121, no. 4 (1996): 357–67. http://dx.doi.org/10.21136/mb.1996.126040.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Roslan, Muhammad Amirul Asyraf, Nadia Nazieha Nanda, and Siti Hajar Yusoff. "SERIES-SERIES AND SERIES-PARALLEL COMPENSATION TOPOLOGIES FOR DYNAMIC WIRELESS CHARGING." IIUM Engineering Journal 22, no. 2 (July 4, 2021): 199–209. http://dx.doi.org/10.31436/iiumej.v22i2.1660.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Electric vehicles (EV) have gained worldwide attention since the implementation of a wireless power transfer (WPT) to charge their batteries. With WPT, it can be very convenient for EV to be charged dynamically. Nevertheless, there are some issues in dynamic WPT, such as maintaining the power transfer efficiency. Several factors that lead to these problems include disruption of the alignment and the optimum distance between the transmitter and receiver coils. It is thus contributing to the loss of power efficiency when charging the EV. Not to mention, manufacturers build different specifications of EV charging station for different types of EV models in order to meet customer demands. An incompatible charging device will not utilize EV wireless charging to its maximum potential. Hence, to improve the power output capability as well as stabilizing the maximum power transfer during the charging process, a compensation circuit is added to the system. This article focuses on comparing two available compensation circuits (series-series (SS) topology and series-parallel (SP) topology) under the application of dynamic wireless charging. The simulations are conducted using NI Multisim based on the relationship of power transfer efficiency with resonance frequency, coefficient of coupling, and the load resistance. The WPT efficiency for SP-topology shows that it is sensitive to the change of resonance frequency and coupling coefficient, whereas SS-topology maintains good efficiency during the WPT process. Nonetheless, SS-topology performance suffers efficiency loss when paired with a higher load, while SP-topology acts differently. This article will observe the best conditions on the selected compensation designs for better application in EV charging systems in a moving state. ABSTRAK: Kenderaan elektrik (EV) telah menarik perhatian dunia sejak pelaksanaan alih kuasa wayarles (WPT) bagi mengecas bateri. Melalui WPT, EV lebih mudah kerana ia boleh dicas secara dinamik. Namun, pengecasan dinamik WPT turut mengalami masalah, seperti mengimbang kecekapan pemindahan kuasa. Beberapa faktor yang membawa kepada masalah ini adalah kerana terdapat gangguan penjajaran dan jarak optimum antara gegelung pemancar dan penerima. Kerana ini, ia menyumbang kepada kehilangan kecekapan kuasa semasa mengecas EV. Pengeluar juga membina spesifikasi stesen pengisian EV berlainan mengikut jenis model EV demi memenuhi permintaan pelanggan. Namun, platform pengecas EV yang berbeza, tidak dapat mengecas EV secara wayarles dengan maksimum. Oleh itu, bagi membaiki keupayaan jana kuasa serta menstabilkan pengeluaran kuasa maksimum semasa proses pengecasan, litar gantian ditambah ke dalam sistem. Artikel ini memberi keutamaan pada dua litar gantian berbeza (topologi bersiri (SS) dan siri-selari (SP)) di bawah aplikasi pengecasan wayarles dinamik. Simulasi dibuat menggunakan NI Multisim mengikut kecekapan pemindahan kuasa dengan frekuensi resonan, pekali gandingan dan rintangan beban. Kecekapan WPT bagi topologi-SP menunjukkan ianya sensitif pada perubahan frekuensi resonan dan pekali gandingan. Manakala topologi-SS kekal cekap semasa proses WPT. Walau bagaimanapun, prestasi topologi-SS berkurangan ketika diganding dengan beban besar, begitu juga berbeza bagi topologi-SP. Artikel ini akan mengkaji keadaan terbaik pada reka bentuk gantian terpilih bagi aplikasi EV dalam sistem pengecasan bergerak.
23

Tierney, Christopher M., Liang Sun, Trevor T. Robinson, and Cecil G. Armstrong. "Generating Analysis Topology using Virtual Topology Operators." Procedia Engineering 124 (2015): 226–38. http://dx.doi.org/10.1016/j.proeng.2015.10.135.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Solovyov, Sergey A. "Generalized fuzzy topology versus non-commutative topology." Fuzzy Sets and Systems 173, no. 1 (June 2011): 100–115. http://dx.doi.org/10.1016/j.fss.2011.03.005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

de Ruiter, M. J., and F. van Keulen. "Topology optimization using a topology description function." Structural and Multidisciplinary Optimization 26, no. 6 (April 1, 2004): 406–16. http://dx.doi.org/10.1007/s00158-003-0375-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Dikranjan, Dikran, and Daniele Toller. "Zariski topology and Markov topology on groups." Topology and its Applications 241 (June 2018): 115–44. http://dx.doi.org/10.1016/j.topol.2018.03.025.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Gibbons, G. W. "Topology and topology change in general relativity." Classical and Quantum Gravity 10, S (December 1, 1993): S75—S78. http://dx.doi.org/10.1088/0264-9381/10/s/007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

JUNKER, MARKUS, and DANIEL LASCAR. "THE INDISCERNIBLE TOPOLOGY: A MOCK ZARISKI TOPOLOGY." Journal of Mathematical Logic 01, no. 01 (May 2001): 99–124. http://dx.doi.org/10.1142/s0219061301000041.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We associate with every first order structure [Formula: see text] a family of invariant, locally Noetherian topologies (one topology on each Mn). The structure is almost determined by the topologies, and properties of the structure are reflected by topological properties. We study these topologies in particular for stable structures. In nice cases, we get a behaviour similar to the Zariski topology in algebraically closed fields.
29

Almyaly, Amer Himza. "Interior topology: A new approach in topology." International Journal of Advances in Applied Sciences 11, no. 4 (December 1, 2022): 367. http://dx.doi.org/10.11591/ijaas.v11.i4.pp367-372.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
<span>This paper defined a new type of topology known as Interior topology. This work falls among the types of topology (such as general topology, supra topology, generalized topology, and filter) that are motivated by real-world concepts such as the orbits of planets around the sun, electron orbits around the nucleus, and so on. This form of topology is self-contained. The primary objective of this study is to respond to the question “Is general topology capable of producing Interior topology?”. Finally, we define the base for Interior topology which is called i-base.</span>
30

Murthy, G. V. K., K. Sowjan Kumar, B. Nagaraju, and K. Venkateswarlu. "Buck Boost Transformer Less in PV System with Grid Connected." International Journal of Innovative Research in Engineering and Management 9, no. 4 (August 25, 2022): 154–57. http://dx.doi.org/10.55524/ijirem.2022.9.4.29.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
For single-phase grid-connected solar PV applications, a novel single-stage buck boost trans formerless inverter (BBTI) topology is presented in this paper. Leakage currents are eliminated since the input PV source and grid neutral share a common ground in this topology. In addition, the buck-boost capability of the proposed topology ensures that the maximum power point is maintained throughout a wide range of input PV voltage variations. The fact that only one energy storage inductor is used in the proposed topology makes it symmetrical during both grid half cycles. Additionally, the proposed topology's two out of five switches operate at a line frequency, resulting in low switching losses, while the remaining three switches operate in any mode with low losses. To control the proposed inverter topology, a straightforward sine-triangle pulse width modulation strategy is outlined and analyzed across all operating modes. The 300W laboratory prototype is the subject of experiments, and all of the major findings are presented in the paper. These findings demonstrate that the proposed system offers higher efficiency with lower THD in output current.
31

K., Robin. "Investigation of Computational Topology for Data Analysis and Visualization Applications." Mathematical Statistician and Engineering Applications 70, no. 1 (January 31, 2021): 628–36. http://dx.doi.org/10.17762/msea.v70i1.2517.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In a variety of disciplines, from biology and physics to computer science and the social sciences, computational topology has become a potent tool for data analysis and visualisation. This study explores computational topology's uses in data analysis and visualisation, showing its potential for revealing hidden structures and patterns in large, complicated datasets.The paper starts out by giving a general introduction of computational topology and outlining its core ideas and methods. The use of it for extracting important information from big, high-dimensional datasets is then explored in relation to data analysis. Computational topology allows for the discovery of topological properties such as holes, voids, and connection patterns by modelling data as topological structures, such as simplicial complexes or persistent homology diagrams.The study also explores the function of computational topology in data visualisation, highlighting its capacity to offer clear and insightful visual representations of challenging datasets. Computational topology enables the construction of simpler and aesthetically pleasing representations while preserving the fundamental topological properties of the data through methods like topological simplification and dimensionality reduction.The usefulness of computational topology in several application domains, such as genomics, image analysis, and network analysis, is demonstrated through a number of case studies. These instances show how computational topology can improve activities like data exploration, clustering, classification, and anomaly detection, resulting in fresh perceptions and learnings.This study emphasises the enormous potential of computational topology for applications in data processing and visualisation. Computational topology provides a new perspective that complements current approaches by utilising the inherent geometric and topological properties of data. This allows researchers and practitioners to better understand complex datasets and make decisions based on the knowledge gleaned from them.
32

G., Sugumaran, and Amutha Prabha N. "An Improved Bi-Switch Flyback Converter with Loss Analysis for Active Cell Balancing of the Lithium-Ion Battery String." Journal of Electrical and Computer Engineering 2024 (April 27, 2024): 1–17. http://dx.doi.org/10.1155/2024/5556491.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This paper focuses on the active cell balancing of lithium-ion battery packs. An improved single-input, multioutput, bi-switch flyback converter was proposed to achieve effective balancing. The proposed topology simplifies the control logic by utilising a single MOSFET switch for energy transfer and two complementary pulses to control the cell-selecting switches. The proposed topology can decrease the number of switching devices as well as the size and cost of the system. The bi-switch flyback converter eliminates the need for a separate buffer circuit to minimise leakage and electromagnetic inductance. Losses and energy efficiency were analysed at each end of the proposed topology. The appropriate MATLAB simulations investigated the balancing characteristics of various state of charge (SOC) imbalances. A comparison is made between the balancing speed and energy transfer efficiency of the proposed topology and a conventional topology that employs a multi-input and multi-output flyback converter in a static mode. The results of the MATLAB simulation were validated by the OPAL-RT (OP5700) real-time simulator. The balancing data of the proposed topology were compared using MATLAB simulation and real-time simulation. This work may reduce the time required to assemble and commission the hardware for the proposed topology’s real-time implementation.
33

Wang, Shuai, Jinkun Geng, and Dan Li. "Impact of Synchronization Topology on DML Performance: Both Logical Topology and Physical Topology." IEEE/ACM Transactions on Networking 30, no. 2 (April 2022): 572–85. http://dx.doi.org/10.1109/tnet.2021.3117042.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Brown, Robert F., Jacques Dixmier, I. M. James, and Klaus Janich. "General Topology." American Mathematical Monthly 94, no. 5 (May 1987): 475. http://dx.doi.org/10.2307/2322749.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Lord, N. J., and J. Dixmier. "General Topology." Mathematical Gazette 69, no. 449 (October 1985): 245. http://dx.doi.org/10.2307/3617561.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Griffiths, H. B., and M. A. Armstrong. "Basic Topology." Mathematical Gazette 69, no. 449 (October 1985): 246. http://dx.doi.org/10.2307/3617562.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Watase, Yasushige. "Zariski Topology." Formalized Mathematics 26, no. 4 (December 1, 2018): 277–83. http://dx.doi.org/10.2478/forma-2018-0024.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Summary We formalize in the Mizar system [3], [4] basic definitions of commutative ring theory such as prime spectrum, nilradical, Jacobson radical, local ring, and semi-local ring [5], [6], then formalize proofs of some related theorems along with the first chapter of [1]. The article introduces the so-called Zariski topology. The set of all prime ideals of a commutative ring A is called the prime spectrum of A denoted by Spectrum A. A new functor Spec generates Zariski topology to make Spectrum A a topological space. A different role is given to Spec as a map from a ring morphism of commutative rings to that of topological spaces by the following manner: for a ring homomorphism h : A → B, we defined (Spec h) : Spec B → Spec A by (Spec h)(𝔭) = h−1(𝔭) where 𝔭 2 Spec B.
38

Bridson, Martin, Clara Löh, and Thomas Schick. "Geometric Topology." Oberwolfach Reports 12, no. 1 (2015): 187–233. http://dx.doi.org/10.4171/owr/2015/3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Schettler, Jordan. "Dalibraic topology." Journal of Mathematics and the Arts 15, no. 2 (April 3, 2021): 137–49. http://dx.doi.org/10.1080/17513472.2021.1940468.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Vitiello, Vincenzo. "Hermeneutical Topology." Philosophy Today 49, no. 4 (2005): 391–96. http://dx.doi.org/10.5840/philtoday200549436.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Jacobson, Kirsten. "Heidegger’s Topology." Environmental Philosophy 4, no. 1 (2007): 195–98. http://dx.doi.org/10.5840/envirophil200741/215.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Cinchetti, Mirko. "Topology communicates." Nature Nanotechnology 9, no. 12 (December 2014): 965–66. http://dx.doi.org/10.1038/nnano.2014.284.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Yeomans, Julia M. "Playful topology." Nature Materials 13, no. 11 (October 24, 2014): 1004–5. http://dx.doi.org/10.1038/nmat4123.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

POLANI, NINA. "DERMATOGLYPHIC TOPOLOGY." Developmental Medicine & Child Neurology 13, no. 2 (November 12, 2008): 235–38. http://dx.doi.org/10.1111/j.1469-8749.1971.tb03250.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Heinrich, Benjamin. "Twofold topology." Nature Nanotechnology 13, no. 3 (March 2018): 178. http://dx.doi.org/10.1038/s41565-018-0099-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Fluri, Jennifer L. "Liberation Topology." Urban Geography 34, no. 4 (June 2013): 448–51. http://dx.doi.org/10.1080/02723638.2013.778701.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Jones, David. "Textile topology." Nature 362, no. 6422 (April 1993): 702. http://dx.doi.org/10.1038/362702a0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Daw, Rosamund. "Topology matters." Nature 493, no. 7431 (January 2013): 168. http://dx.doi.org/10.1038/493168a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Pervez, Khurram, Syed Hussain Shah, and Muhammad Nawaz. "General Topology." International Journal of Mathematics Trends and Technology 37, no. 3 (September 25, 2016): 184–85. http://dx.doi.org/10.14445/22315373/ijmtt-v37p524.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Enrique Moliner, Pau, Chris Heunen, and Sean Tull. "Tensor topology." Journal of Pure and Applied Algebra 224, no. 10 (October 2020): 106378. http://dx.doi.org/10.1016/j.jpaa.2020.106378.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії