Добірка наукової літератури з теми "Topologically-ordered phases"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Topologically-ordered phases".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Topologically-ordered phases"

1

Lee, In-Hwan, Hoang-Anh Le, and S. R. Eric Yang. "Mutual Information and Correlations across Topological Phase Transitions in Topologically Ordered Graphene Zigzag Nanoribbons." Entropy 25, no. 10 (October 15, 2023): 1449. http://dx.doi.org/10.3390/e25101449.

Повний текст джерела
Анотація:
Graphene zigzag nanoribbons, initially in a topologically ordered state, undergo a topological phase transition into crossover phases distinguished by quasi-topological order. We computed mutual information for both the topologically ordered phase and its crossover phases, revealing the following results: (i) In the topologically ordered phase, A-chirality carbon lines strongly entangle with B-chirality carbon lines on the opposite side of the zigzag ribbon. This entanglement persists but weakens in crossover phases. (ii) The upper zigzag edge entangles with non-edge lines of different chirality on the opposite side of the ribbon. (iii) Entanglement increases as more carbon lines are grouped together, regardless of the lines’ chirality. No long-range entanglement was found in the symmetry-protected phase in the absence of disorder.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hussien, Musa A. M., and Aniekan Magnus Ukpong. "Electrodynamics of Topologically Ordered Quantum Phases in Dirac Materials." Nanomaterials 11, no. 11 (October 30, 2021): 2914. http://dx.doi.org/10.3390/nano11112914.

Повний текст джерела
Анотація:
First-principles calculations of the electronic ground state in tantalum arsenide are combined with tight-binding calculations of the field dependence of its transport model equivalent on the graphene monolayer to study the emergence of topologically ordered quantum states, and to obtain topological phase diagrams. Our calculations include the degrees of freedom for nuclear, electronic, and photonic interactions explicitly within the quasistatic approximation to the time-propagation-dependent density functional theory. This field-theoretic approach allows us to determine the non-linear response of the ground state density matrix to the applied electromagnetic field at distinct quantum phase transition points. Our results suggest the existence of a facile electronic switch between trivial and topologically ordered quantum states that may be realizable through the application of a perpendicular electric or magnetic field alongside a staggered-sublattice potential in the underlying lattice. Signatures of the near field electrodynamics in nanoclusters show the formation of a quantum fluid phase at the topological quantum phase transition points. The emergent carrier density wave transport phase is discussed to show that transmission through the collective excitation mode in multilayer heterostructures is a unique possibility in plasmonic, optoelectronic, and photonic applications when atomic clusters of Dirac materials are integrated within nanostructures, as patterned or continuous surfaces.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

GROVER, TARUN. "ENTANGLEMENT ENTROPY AND STRONGLY CORRELATED TOPOLOGICAL MATTER." Modern Physics Letters A 28, no. 05 (February 6, 2013): 1330001. http://dx.doi.org/10.1142/s0217732313300012.

Повний текст джерела
Анотація:
Topological ordered phases are gapped states of matter that are characterized by non-local entanglement in their ground state wave functions instead of a local order parameter. In this paper, we review some of the basic results on the entanglement structure of topologically ordered phases. In particular, we focus on the notion and uses of "topological entanglement entropy" in two and higher dimensions, and also briefly review the relation between entanglement spectrum and the spectrum of the physical edge states for chiral topological states. Furthermore, we discuss a curvature expansion for the entanglement entropy which sharpens the nonlocality of topological entanglement entropy.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Spanton, Eric M., Alexander A. Zibrov, Haoxin Zhou, Takashi Taniguchi, Kenji Watanabe, Michael P. Zaletel, and Andrea F. Young. "Observation of fractional Chern insulators in a van der Waals heterostructure." Science 360, no. 6384 (March 1, 2018): 62–66. http://dx.doi.org/10.1126/science.aan8458.

Повний текст джерела
Анотація:
Topologically ordered phases are characterized by long-range quantum entanglement and fractional statistics rather than by symmetry breaking. First observed in a fractionally filled continuum Landau level, topological order has since been proposed to arise more generally at fractional fillings of topologically nontrivial Chern bands. Here we report the observation of gapped states at fractional fillings of Harper-Hofstadter bands arising from the interplay of a magnetic field and a superlattice potential in a bilayer graphene–hexagonal boron nitride heterostructure. We observed phases at fractional filling of bands with Chern indices C=−1, ±2, and ±3. Some of these phases, in C=−1 and C=2 bands, are characterized by fractional Hall conductance—that is, they are known as fractional Chern insulators and constitute an example of topological order beyond Landau levels.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Daniel, Austin K., Rafael N. Alexander, and Akimasa Miyake. "Computational universality of symmetry-protected topologically ordered cluster phases on 2D Archimedean lattices." Quantum 4 (February 10, 2020): 228. http://dx.doi.org/10.22331/q-2020-02-10-228.

Повний текст джерела
Анотація:
What kinds of symmetry-protected topologically ordered (SPTO) ground states can be used for universal measurement-based quantum computation in a similar fashion to the 2D cluster state? 2D SPTO states are classified not only by global on-site symmetries but also by subsystem symmetries, which are fine-grained symmetries dependent on the lattice geometry. Recently, all states within so-called SPTO cluster phases on the square and hexagonal lattices have been shown to be universal, based on the presence of subsystem symmetries and associated structures of quantum cellular automata. Motivated by this observation, we analyze the computational capability of SPTO cluster phases on all vertex-translative 2D Archimedean lattices. There are four subsystem symmetries here called ribbon, cone, fractal, and 1-form symmetries, and the former three are fundamentally in one-to-one correspondence with three classes of Clifford quantum cellular automata. We conclude that nine out of the eleven Archimedean lattices support universal cluster phases protected by one of the former three symmetries, while the remaining lattices possess 1-form symmetries and have a different capability related to error correction.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Jacobsen, Brad, Karl Saunders, Leo Radzihovsky, and John Toner. "Two New Topologically Ordered Glass Phases of Smectics Confined in Anisotropic Random Media." Physical Review Letters 83, no. 7 (August 16, 1999): 1363–66. http://dx.doi.org/10.1103/physrevlett.83.1363.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Saunders, Karl, Brad Jacobsen, Leo Radzihovsky, and John Toner. "Topologically ordered phases of smectics confined in anisotropic random media: smectic Bragg glasses." Journal of Physics: Condensed Matter 12, no. 8A (February 17, 2000): A215—A220. http://dx.doi.org/10.1088/0953-8984/12/8a/326.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Oreg, Yuval, and Felix von Oppen. "Majorana Zero Modes in Networks of Cooper-Pair Boxes: Topologically Ordered States and Topological Quantum Computation." Annual Review of Condensed Matter Physics 11, no. 1 (March 10, 2020): 397–420. http://dx.doi.org/10.1146/annurev-conmatphys-031218-013618.

Повний текст джерела
Анотація:
Recent experimental progress introduced devices that can combine topological superconductivity with Coulomb-blockade effects. Experiments with these devices have already provided additional evidence for Majorana zero modes in proximity-coupled semiconductor wires. They also stimulated numerous ideas for how to exploit interactions between Majorana zero modes generated by Coulomb charging effects in networks of Majorana wires. Coulomb effects promise to become a powerful tool in the quest for a topological quantum computer as well as for driving topological superconductors into topologically ordered insulating states. Here, we present a focused review of these recent developments, including discussions of recent experiments, designs of topological qubits, Majorana-based implementations of universal quantum computation, and topological quantum error correction. Motivated by the analogy between a qubit and a spin-1/2 degree of freedom, we also review how coupling between Cooper-pair boxes leads to emergent topologically ordered insulating phases.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Wen, Xiao-Gang. "A theory of 2+1D bosonic topological orders." National Science Review 3, no. 1 (November 24, 2015): 68–106. http://dx.doi.org/10.1093/nsr/nwv077.

Повний текст джерела
Анотація:
Abstract In primary school, we were told that there are four phases of matter: solid, liquid, gas, and plasma. In college, we learned that there are much more than four phases of matter, such as hundreds of crystal phases, liquid crystal phases, ferromagnet, anti-ferromagnet, superfluid, etc. Those phases of matter are so rich, it is amazing that they can be understood systematically by the symmetry breaking theory of Landau. However, there are even more interesting phases of matter that are beyond Landau symmetry breaking theory. In this paper, we review new ‘topological’ phenomena, such as topological degeneracy, that reveal the existence of those new zero-temperature phase—topologically ordered phases. Microscopically, topologically orders are originated from the patterns of long-range entanglement in the ground states. As a truly new type of order and a truly new kind of phenomena, topological order and long-range entanglement require a new language and a new mathematical framework, such as unitary fusion category and modular tensor category to describe them. In this paper, we will describe a simple mathematical framework based on measurable quantities of topological orders (S, T, c) proposed around 1989. The framework allows us to systematically describe all 2+1D bosonic topological orders (i.e. topological orders in local bosonic/spin/qubit systems).
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Wen, Xiao-Gang. "Topological Order: From Long-Range Entangled Quantum Matter to a Unified Origin of Light and Electrons." ISRN Condensed Matter Physics 2013 (March 27, 2013): 1–20. http://dx.doi.org/10.1155/2013/198710.

Повний текст джерела
Анотація:
We review the progress in the last 20–30 years, during which we discovered that there are many new phases of matter that are beyond the traditional Landau symmetry breaking theory. We discuss new “topological” phenomena, such as topological degeneracy that reveals the existence of those new phases—topologically ordered phases. Just like zero viscosity defines the superfluid order, the new “topological” phenomena define the topological order at macroscopic level. More recently, we found that at the microscopical level, topological order is due to long-range quantum entanglements. Long-range quantum entanglements lead to many amazing emergent phenomena, such as fractional charges and fractional statistics. Long-range quantum entanglements can even provide a unified origin of light and electrons; light is a fluctuation of long-range entanglements, and electrons are defects in long-range entanglements.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Topologically-ordered phases"

1

Karlsson, Eilind. "Kitaev models for topologically ordered phases of matter." Thesis, Karlstads universitet, Institutionen för ingenjörsvetenskap och fysik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-62814.

Повний текст джерела
Анотація:
Condensed matter physics is the study of the macroscopic and microscopic properties of condensed phases of matter. For quite some time, Landau’s symmetry breaking theory was believed to describe and explain the nature of any phase transition. However, since the late 1980s, it has become apparent that it is necessary to introduce some new kind of order, named topological order, that transcends the traditional symmetry description. In this thesis we will study the Kitaev model, which is a Hamiltonian lattice model that allows one to incorporate the concept of topological order, as well as the corresponding operators and algebras. First, we consider the model on an infinite lattice, and show how to relate local and global degrees of freedom of the anyons/quasi-particles living on sites to the ribbon operators. Afterwards, we introduce holes and an external boundary to the lattice, and examine the ramifications of this generalization in terms of the ground state degeneracy. Lastly, we verify that the algebra formed by boundary site operators has the structure of a quasi-Hopf algebra.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ritz-Zwilling, Anna. "Topological order at finite temperature in string-net and quantum double models." Electronic Thesis or Diss., Sorbonne université, 2024. http://www.theses.fr/2024SORUS268.

Повний текст джерела
Анотація:
L'ordre topologique est un ordre quantique particulier qui apparaît dans les systèmes quantiques gappés et fortement interactifs, et qui ne peut pas être décrit par un paramètre d'ordre local et une brisure spontanée de symétrie. En deux dimensions et à température nulle, cet ordre est caractérisé par une dégénérescence de l'état fondamental dépendant de la topologie de la variété, de l'intrication à longue portée et la présence de quasi-particules avec des nombres quantiques et des statistiques d'échange fractionnaires (également appelées anyons). Cette thèse étudie l'ordre topologique à température finie au moyen de deux modèles jouets exactement solubles : le modèle de string-net (réseau de cordes) de Levin et Wen et le modèle du double quantique de Kitaev. L'accent principal est mis sur le modèle de string-net, qui réalise tous les ordres topologiques doublés achiraux, c'est-à-dire tous les ordres topologiques décrits par un centre de Drinfeld. Ce modèle prend comme entrée une catégorie de fusion unitaire et produit le centre de Drinfeld correspondant en sortie. Dans un premier temps, nous dérivons une formule pour les dégénérescences spectrales du modèle, qui dépendent à la fois de la topologie et de l'ordre topologique considéré. En particulier, les dégénérescences dépendent non seulement du centre de Drinfeld mais aussi de la catégorie d'entrée. Ensuite, nous calculons la fonction de partition, à partir de laquelle nous obtenons l'entropie, la chaleur spécifique, et montrons qu'il n'y a pas de transition de phase à température finie. Nous identifions un ensemble particulier d'objets du centre de Drinfeld, appelés fluxons purs, qui dominent le comportement de la fonction de partition dans la limite thermodynamique, et étudions leurs propriétés. Nous obtenons également les moyennes thermiques des opérateurs de cordes fermées et étudions l'information mutuelle. Enfin, nous appliquons notre approche aux modèles du double quantique, où nous dérivons également une formule générale pour les dégénérescences spectrales, la fonction de partition et l'entropie d'intrication, permettant une étude plus générale et détaillée des propriétés à température finie par rapport aux études précédentes
Topological order is a special kind of quantum order which appears in strongly interacting gappedquantum systems and does not admit a description by a local order parameter and spontaneous symmetry breaking. In two dimensions and at zero temperature, it is instead characterized by a ground-state degeneracy dependent on the manifold topology, long-range entanglement, and the presence of quasiparticles with fractional quantum numbers and exchange statistics (also called anyons). This thesis investigates topological order at finite temperature by means of two exactly-solvable toy models: the string-net model of Levin and Wen and the Kitaev quantum double model. The main focus is on the string-net model, which realizes all achiral doubled topological orders, i.e., all topological orders described by Drinfeld centers. This model takes a unitary fusion category as aninput, and produces the corresponding Drinfeld center as an output. First, we derive a formula forthe spectral degeneracies that depend on both the topology, and the topological order considered. In particular, the degeneracies depend not only on the Drinfeld center but also on theinput category. Next, we compute the partition function, from which we obtain the entropy, specific heat, and show that there is no finite-temperature phase transition. We identify a particular set of objects of the Drinfeld center, called pure fluxons, which drive the partition function in the thermodynamic limit, and study their properties. We also obtain the thermal averages of closed string operators, and study the mutual information. Finally, we carry over our approach to the quantum double models, where we also derive a general formula for the spectral degeneracies, partition function and entanglement entropy, allowing for a more general and detailed study of finite-temperature properties compared to previous studies
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Topologically-ordered phases"

1

"Geometric Berry Phase and Chern Number." In Topologically Ordered Zigzag Nanoribbon, 21–50. WORLD SCIENTIFIC, 2023. http://dx.doi.org/10.1142/9789811261909_0002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

"Matrix Product States and Disordered Anyon Phase." In Topologically Ordered Zigzag Nanoribbon, 487–511. WORLD SCIENTIFIC, 2023. http://dx.doi.org/10.1142/9789811261909_0021.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

"Anomalous Velocity, Polarization, Zak Phase, and Chern Number." In Topologically Ordered Zigzag Nanoribbon, 109–31. WORLD SCIENTIFIC, 2023. http://dx.doi.org/10.1142/9789811261909_0005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Simon, Steven H. "Robustness of Topologically Ordered Matter." In Topological Quantum, 407–18. Oxford University PressOxford, 2023. http://dx.doi.org/10.1093/oso/9780198886723.003.0029.

Повний текст джерела
Анотація:
Abstract Topologically ordered matter is famously robust to small perturbations. If a Hamiltonian has a topologically ordered (TQFT) ground state with a gap, then adding a small pertrubation (on the scale of the gap) to the Hamiltonian cannot change its TQFT properties. We explore this robustness with the example of the toric code. We show that the robustness is guaranteed by the fact that the toric code has a protected code space. We further discuss how the properties of the quasiparticles are also unchanged under perturbations of the Hamiltonian. These properties might be unsurprising, given the rigidity of the properties of TQFTs. We define the notion of topological order and give a definition of a topological phase of matter.
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Topologically-ordered phases"

1

Seepersad, Carolyn Conner, Janet K. Allen, David L. McDowell, and Farrokh Mistree. "Robust Design of Cellular Materials With Topological and Dimensional Imperfections." In ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/detc2005-85061.

Повний текст джерела
Анотація:
A paradigm shift is underway in which the classical materials selection approach in engineering design is being replaced by the design of material structure and processing paths on a hierarchy of length scales for multifunctional performance requirements. In this paper, the focus is on designing mesoscopic material topology—the spatial arrangement of solid phases and voids on length scales larger than microstructures but smaller than the characteristic dimensions of an overall product. A robust topology design method is presented for designing materials on mesoscopic scales by topologically and parametrically tailoring them to achieve properties that are superior to those of standard or heuristic designs, customized for large-scale applications, and less sensitive to imperfections in the material. Imperfections are observed regularly in cellular material mesostructure and other classes of materials because of the stochastic nature of process-structure-property relationships. The robust topology design method allows us to consider imperfections explicitly in a materials design process. As part of the method, guidelines are established for modeling dimensional and topological imperfections, such as tolerances and cracked cell walls, as deviations from intended material structure. Also, as part of the method, robust topology design problems are formulated as compromise Decision Support Problems, and local Taylor-series approximations and strategic experimentation techniques are established for evaluating the impact of dimensional and topological imperfections, respectively, on material properties. Key aspects of the approach are demonstrated by designing ordered, prismatic cellular materials with customized elastic properties that are robust to dimensional tolerances and topological imperfections.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії