Дисертації з теми "Topological state of matter"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Topological state of matter.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 дисертацій для дослідження на тему "Topological state of matter".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Lau, Alexander. "Symmetry-enriched topological states of matter in insulators and semimetals." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2018. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-233930.

Повний текст джерела
Анотація:
Topological states of matter are a novel family of phases that elude the conventional Landau paradigm of phase transitions. Topological phases are characterized by global topological invariants which are typically reflected in the quantization of physical observables. Moreover, their characteristic bulk-boundary correspondence often gives rise to robust surface modes with exceptional features, such as dissipationless charge transport or non-Abelian statistics. In this way, the study of topological states of matter not only broadens our knowledge of matter but could potentially lead to a whole new range of technologies and applications. In this light, it is of great interest to find novel topological phases and to study their unique properties. In this work, novel manifestations of topological states of matter are studied as they arise when materials are subject to additional symmetries. It is demonstrated how symmetries can profoundly enrich the topology of a system. More specifically, it is shown how symmetries lead to additional nontrivial states in systems which are already topological, drive trivial systems into a topological phase, lead to the quantization of formerly non-quantized observables, and give rise to novel manifestations of topological surface states. In doing so, this work concentrates on weakly interacting systems that can theoretically be described in a single-particle picture. In particular, insulating and semi-metallic topological phases in one, two, and three dimensions are investigated theoretically using single-particle techniques.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Vazifeh, Mohammad Mahmoudzadeh. "Exotic phenomena in topological states of matter." Thesis, University of British Columbia, 2014. http://hdl.handle.net/2429/50750.

Повний текст джерела
Анотація:
Electronic states in band insulators and semimetals can form nontrivial topological structures which can be classified by introducing a set of well defined topological invariants. There are interesting experimentally observable phenomena tied to these topological invariants which are robust as long as the invariants remain well-defined. One important class manifesting these topological phenomena in the bulk and at the edges is the time reversal invariant topological band insulators first discovered in HgTe in 2007. Since then, there have been enormous efforts from both the experimental and the theoretical sides to discover new topological materials and explore their robust physical signatures. In this thesis, we study one important aspect, i.e., the electromagnetic response in the bulk and at the spatial boundaries. First we show how the topological action, which arises in a time reversal invariant three dimensional band insulator with nontrivial topology, is quantized for open and periodic boundary conditions. This confirms the Z2 nature of the strong topological invariant required to classify time-reversal invariant insulators. Next, we introduce an experimentally observable signature in the response of electronic spins on the surface of these materials to the perpendicular magnetic field. We proceed by considering electromagnetic response in the bulk of topological Weyl semimetals in a systematic way by considering a lattice model and we address important questions on the existence or absence of the Chiral anomaly. In the end, we show how a topological phase in a one dimensional system can be an energetically favourable state of matter and introduce the notion of self-organized topological state by proposing an experimentally feasible setup.
Science, Faculty of
Physics and Astronomy, Department of
Graduate
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Bärenz, Manuel. "Topological state sum models in four dimensions, half-twists and their applications." Thesis, University of Nottingham, 2017. http://eprints.nottingham.ac.uk/41720/.

Повний текст джерела
Анотація:
Various mathematical tools are developed with the aim of application in mathematical physics. In the first part, a new state sum model for four-manifolds is introduced which generalises the Crane-Yetter model. It is parametrised by a pivotal functor from a spherical fusion category into a ribbon fusion category. The special case of the Crane-Yetter model for an arbitrary ribbon fusion category C arises when we consider the canonical inclusion C↪Z(C) into the Drinfeld centre as the pivotal functor. The model is defined in terms of handle decompositions of manifolds and thus enjoys a succinct and intuitive graphical calculus, through which concrete calculations become very easy. It gives a chain-mail procedure for the Crane-Yetter model even in the case of a nonmodular category. The nonmodular Crane-Yetter model is then shown to be nontrivial: It depends at least on the fundamental group of the manifold. Relations to the Walker-Wang model and recent calculations of ground state degeneracies are established. The second part develops the theory of involutive monoidal categories and half-twists (which are related to braided and balanced structures) further. Several gaps in the literature are closed and some missing infrastructure is developed. The main novel contribution are ``half-ribbon'' categories, which combine duals - represented by rotations in the plane by π - with half-twists, which are represented by turns of ribbons by π around the vertical axis. Many examples are given, and a general construction of a half-ribbon category is presented, resulting in so-called half-twisted categories.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Lang, Nicolai [Verfasser]. "One-Dimensional Topological States of Synthetic Quantum Matter / Nicolai Lang." München : Verlag Dr. Hut, 2019. http://d-nb.info/1196415862/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Andrews, Bartholomew. "Stability of topological states and crystalline solids." Thesis, University of Cambridge, 2019. https://www.repository.cam.ac.uk/handle/1810/288876.

Повний текст джерела
Анотація:
From the alignment of magnets to the melting of ice, the transition between different phases of matter underpins our exploitation of materials. Both a quantum and a classical phase can undergo an instability into another state. In this thesis, we study the stability of matter in both contexts: topological states and crystalline solids. We start with the stability of fractional quantum Hall states on a lattice, known as fractional Chern insulators. We investigate, using exact diagonalization, fractional Chern insulators in higher Chern bands of the Harper-Hofstadter model, and examine the robustness of their many-body energy gap in the effective continuum limit. We report evidence of stable states in this regime; comment on two cases associated with a bosonic integer quantum Hall effect; and find a modulation of the correlation function in higher Chern bands. We next examine the stability of molecules using variational and diffusion Monte Carlo. By incorporating the matrix of force constants directly into the algorithms, we find that we are able to improve the efficiency and accuracy of atomic relaxation and eigenfrequency calculation. We test the performance on a diverse selection of case studies, with varying symmetries and mass distributions, and show that the proposed formalism outperforms existing restricted Hartree-Fock and density functional theory methods. Finally, we analyze the stability of three-dimensional crystals. We note that for repulsive Coulomb crystals of point nuclei, cubic systems have a zero matrix of force constants at second order. We investigate this by constructing an analytical model in the tight-binding approximation, and present a phase diagram of the most stable crystal structures, as we tune core and valence orbital radii. We reconcile our results with calculations in the nearly free electron regime, as well as current research in condensed matter and plasma physics.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kaladzhyan, Vardan. "Spin polarisation and topological properties of Yu-Shiba-Rusinov states." Thesis, Sorbonne Paris Cité, 2017. http://www.theses.fr/2017USPCC215/document.

Повний текст джерела
Анотація:
Dans ce manuscrit de thèse, nous revisitons d'abord la physique des états de Yu-Shiba-Rusinov, en nous concentrant sur leur polarisation en spin. Nous commençons par montrer théoriquement que nous pouvons extraire beaucoup d'informations sur le supraconducteur hôte, en analysant la densité locale d'états électroniques liée à la présence d'impuretés magnétiques. Tout d'abord, nous démontrons que le couplage spin-orbite peut être lu directement et sans ambiguïté par la spectroscopie par effet tunnel résolu en spin dans les systèmes bidimensionnels et unidimensionnels, qu’ils soient supraconducteurs ou métalliques. Nous analysons les oscillations induites par les impuretés dans la densité d'états électroniques. En particulier, nous nous concentrons sur la transformation de Fourier (TF) des oscillations de Friedel et nous notons que les caractéristiques à haute intensité apparaissent pour un vecteur d'onde donné par deux fois la longueur inverse du spin-orbite. Ensuite, nous montrons qu'il est possible de déterminer le mécanisme d’appariement dominant, qu’il soit en ondes s ou en ondes p, dans les supraconducteurs non conventionnels en analysant la structure spectrale résolue en spin des états liés de Yu-Shiba-Rusinov. De manière frappante, nous démontrons qu'une analyse minutieuse de la densité d'états électroniques polarisée en spin ne permet pas seulement de caractériser sans équivoque le degré d’appariement de type triplet, mais également son orientation, a.k.a. le vecteur d. Enfin, nous proposons et discutons deux approches différentes d'ingénierie et de contrôle des phases topologiques à l’aide d’impuretés scalaires et magnétiques. Nous commençons par fournir une théorie microscopique des réseaux d'impuretés scalaires sur les supraconducteurs chiraux. Nous montrons que pour un supraconducteur topologique de type chiral, les impuretés scalaires donnent lieu à une hiérarchie complexe de phases non triviales distinctes avec des nombres de Chern élevés. Deuxièmement, nous proposons et étudions théoriquement une nouvelle plate-forme prometteuse que nous appelons «la chaîne dynamique de Shiba», c'est-à-dire une chaîne d'impuretés magnétiques classiques dans un supraconducteur en ondes s avec des spins qui précessent. Nous montrons que cette approche peut être utilisée non seulement pour créer une phase supraconductrice topologique, mais surtout pour contrôler les transitions de phase topologiques au moyen de la dynamique de la texture de la magnétisation. Ce manuscrit est organisé comme suit. Dans la première partie, les informations d'introduction essentielles sur la supraconductivité, les oscillations de Friedel et les états de Yu-Shiba-Rusinov sont fournies. La deuxième partie est consacrée à la polarisation en spin des états Yu-Shiba-Rusinov et aux propriétés qui pourraient être extraites au moyen de la microscopie par effet tunnel résolu en spin. Dans la dernière partie, deux configurations proposées pour l'ingénierie de phases topologiques, basées sur les états induits par les impuretés, sont présentées, suivies de conclusions, d’un bref résumé des réalisations de cette thèse et enfin d’une discussion de possibles directions futures
In this manuscript we first revisit the physics of Yu-Shiba-Rusinov subgap states, focusing on their spin polarisation. We start by showing theoretically that we can extract a considerable amount of information about the host superconductor, by analysing spin-polarised local density of states related to the presence of magnetic impurities. First, we demonstrate that the spin-orbit coupling in two-dimensional and one-dimensional systems, both superconducting and metallic, can be read-off directly and unambiguously via spin-resolved STM. We analyse the impurity-induced oscillations in the local density of states. In particular, we focus on the Fourier transform (FT) of the Friedel oscillations and we note that high-intensity FT features appear at a wave vector given by twice the inverse spin-orbit length. Second, in unconventional superconductors with both s-wave and p-wave pairing, by analysing the spin-resolved spectral structure of the Yu-Shiba-Rusinov states it is possible to determine the dominating pairing mechanism. Most strikingly, we demonstrate that a careful analysis of spin-polarised density of states allows not only to unambiguously characterise the degree of triplet pairing, but also to define the orientation of the triplet pairing vector, also known as the d-vector.Finally, we discuss two different ways of engineering and controlling topological phases with both scalar and magnetic impurities. We start with providing a microscopic theory of scalar impurity structures on chiral superconductors. We show that given a non-trivial chiral superconductor, the scalar impurities give rise to a complex hierarchy of distinct non-trivial phases with high Chern numbers. Second, we propose and study theoretically a new promising platform that we call 'dynamical Shiba chain', i.e. a chain of classical magnetic impurities in an s-wave superconductor with precessing spins. We have shown that it can be employed not only for engineering a topological superconducting phase, but most remarkably for controlling topological phase transitions by means of magnetisation texture dynamics.This manuscript is organised as follows. In the first part, the essential introductory information on superconductivity, Friedel oscillations and Yu-Shiba-Rusinov states is provided. The second part is dedicated to spin polarisation of Yu-Shiba-Rusinov states and the properties that could be extracted by means of spin-resolved STM measurements. In the last part, two setups proposed for topological phase engineering based on impurity-induced states are presented, followed by conclusions with a brief summary of the thesis achievements and further directions to pursue
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Mazza, Leonardo Verfasser], J. I. [Akademischer Betreuer] [Cirac, and Wilhelm [Akademischer Betreuer] Zwerger. "Quantum Simulation of Topological States of Matter / Leonardo Mazza. Gutachter: Wilhelm Zwerger. Betreuer: Juan Ignacio Cirac." München : Universitätsbibliothek der TU München, 2012. http://d-nb.info/1030100055/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Soni, Medha. "Investigation of exotic correlated states of matter in low dimension." Thesis, Toulouse 3, 2016. http://www.theses.fr/2016TOU30381/document.

Повний текст джерела
Анотація:
La physique statistique quantique formule les règles permettant de classifier les différentes particules. Dans cette thèse nous avons étudié deux projets, l'un portant sur les anyons dits de "Fibonacci" et l'autre sur les fermions sur réseau optique. Ici, nous avons naturellement étendu cette étude aux cas pertinent d'anyons itinérants en interaction sur des échelles. Notre but a été de construire le modèle 2D le simple possible d'anyons itinérants en interaction, analogue direct des systèmes fermioniques et inspiré par les études précédentes. En particulier, nous nous sommes demandé si la séparation spin-charge, bien connu à 1D, pouvait subsister dans le cas d'anyons sur une échelle. De plus, dans l'étude de ce modèle, nous avons découvert une nouvelle phase incompressible pouvant présenter un caractère topologique. Dans le cas des fermions confinés sur un réseau optique unidimensionnel, nous avons étudié les effets d'un chargement non-adiabatique et proposé des protocoles visant à minimiser le réchauffement du gaz quantique. Les atomes ultra-froids sur réseau optique constituent une réalisation idéale pour étudier les systèmes fortement corrélés soumis à un potentiel périodique. Le refroidissement évaporatif d'un nuage d'atomes confiné, c.a.d. sans le potentiel du réseau, s'est avéré être un processus très efficace. Les protocoles courants permettent d'obtenir(pour des fermions) des températures aussi basses que T/TF ≈ 0.08, impossible à réaliser en présence du réseau optique. Notre étude concerne les effets de redistribution de densité pour un système 1D de fermions. Notre but était de voir si des défauts causés par la mauvaise répartition des particules lors du chargement du réseau optique pouvaient empêcher les atomes de se refroidir jusqu'à la température voulue. Nous avons conçu des scenario améliorés où certains paramètres sont modifiés de façon dynamique afin de réduire la densité de défauts créés
Quantum statistics is an important aspect of quantum mechanics and it lays down the rules for identifying dfferent classes of particles. In this thesis, we study two projects, one that surveys models of Fibonacci anyons and another that delves into fermions in optical lattices. We analyse the physics of mobile non-Abelian anyons beyond one-dimension by constructing the simplest possible model of 2D itinerant interacting anyons in close analogy to fermionic systems and inspired by the previous anyonic studies. In particular, we ask the question if spin-charge separation survives in the ladder model for non-Abelian anyons. Furthermore, in the study of this model, we have found a novel physical effective model that possibly hosts a topological gapped state. For fermions in one dimensional optical lattices, we survey the effects of non-adiabatic lattice loading on four different target states, and propose protocols to minimise heating of quantum gases. The evaporative cooling of a trapped atomic cloud, i.e. without the optical lattice potential, has been proven to be a very effective process. Current protocols are able to achieve temperatures as low as T/TF ≈ 0.08, which are lost in the presence of the optical lattice. We aim to understand if defects caused by poor distribution of particles during lattice loading are important for the fermionic case, forbidding the atoms to cool down to the desired level. We device improved ramp up schemes where we dynamically change one or more parameters of the system in order to reduce density defects
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kunst, Flore Kiki. "Topology Meets Frustration : Exact Solutions for Topological Surface States on Geometrically Frustrated Lattices." Licentiate thesis, Stockholms universitet, Fysikum, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-150281.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Szewczyk, Adam. "Supercurrents in a Topological Josephson Junction with a Magnetic Quantum Dot." Thesis, Linnéuniversitetet, Institutionen för fysik och elektroteknik (IFE), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-79327.

Повний текст джерела
Анотація:
The purpose of this master thesis is to investigate theoretically the influence of a nanomagnet on the Josephson effect displayed by phase biased point contacts consisting of topological superconductors. The device is modeled using the nonequilibrium Keldysh Green’s function technique. First, the Gor’kov Green’s functions are calculated. From these Green’s functions, the quasi-classical ones, relevant for energies around the Fermi energy, are obtained. Transport properties such as charge currents are calculated and analyzed in terms of the junction’s density of states displaying Andreev and Majorana states. The combination of the nanomagnet coupling and the spin-momentum locking of the topological superconductors generates a magneto-electric effect causing the supercurrent to depend strongly on the nanomagnet’s direction.
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Plekhanov, Kirill. "Topological Floquet states, artificial gauge fields in strongly correlated quantum fluids." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS264/document.

Повний текст джерела
Анотація:
Dans cette thèse nous abordons des aspects topologiques de la matière condensée. Les états topologiques sont insensibles à un large spectre des perturbations externes et au désordre – une propriété indispensable dans le domaine d'information quantique. L’effet des interactions dans des systèmes topologiques est pourtant loin d’être bien maîtrisé à ce jour. Dans ce travail, nous étudions la corrélation entre la description topologique et l'effet des interactions. Afin d'accomplir notre but, nous utilisons des méthodes analytiques et numériques. Nous nous intéressons aussi à des sondes expérimentales qui peuvent être utilisées pour vérifier nos prédictions théoriques. Tout d’abord, nous étudions la version bosonique en interactions du modèle de Haldane – le modèle célèbre qui décrit l’effet Hall anomal. Nous proposons son implémentation expérimentale dans des circuits quantiques, basée sur l’application de perturbation périodique dépendantes du temps – méthodologie qui s’appelle l’ingénierie de Floquet. En poursuivant ces idées, nous étudions la version bosonique du modèle de Kane-Mele d’un isolant topologique. Ce modèle possède un diagramme de phase très riche. En particulier, lorsque les interactions sont fortes, nous observons l’apparition d’un modèle de magnétisme frustrée présentant une variété d'états exotiques. La mise en œuvre de ces modèles dans des réseaux d'atomes ultra-froids ou des circuits quantiques permettra de sonder expérimentalement les propriétés exotiques que nous avons observées. Ensuite, nous abordons d’une manière plus détaillée la réalisation expérimentale des modèles topologiques dans des circuits quantiques, en considérant le cas particulier du modèle de Su-Schrieffer-Heeger en couplage fort. Nous testons aussi des nouvelles sondes qui peuvent être utilisées afin de mesurer la phase de Zak et en déduire la topologie du système. Finalement, nous nous intéressons aux sondes hors d’équilibre et des méthodes pour tester les propriétés spectrales de systèmes quantiques, en utilisant l’approche de purification, pertinent pour le numérique et les expériences
In this thesis we study the topological aspects of condensed matter physics, that received a revolutionary development in the last decades. Topological states of matter are protected against perturbations and disorder, making them very promising in the context of quantum information. The interplay between topology and interactions in such systems is however far from being well understood, while the experimental realization is challenging. Thus, in this work we investigate analytically such strongly correlated states of matter and explore new protocols to probe experimentally their properties. In order to do this, we use various analytical and numerical techniques. First, we analyze the properties of an interacting bosonic version of the celebrated Haldane model – the model for the quantum anomalous Hall effect. We propose its quantum circuit implementation based on the application of periodic time-dependent perturbations – Floquet engineering. Continuing these ideas, we study the interacting bosonic version of the Kane-Mele model – the first model of a topological insulator. This model has a very rich phase diagram with an emergence of an effective frustrated magnetic model and a variety of symmetry broken spin states in the strongly interacting regime. Ultra-cold atoms or quantum circuits implementation of both Haldane and Kane-Mele bosonic models would allow for experimental probes of the exotic states we observed. Second, in order to deepen the perspectives of quantum circuit simulations of topological phases we analyze the strong coupling limit of the Su-Schrieffer-Heeger model and we test new experimental probes of its topology associated with the Zak phase. We also work on the out-of-equilibrium protocols to study bulk spectral properties of quantum systems and quantum phase transitions using a purification scheme which could be implemented both numerically and experimentally
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Baldo, Mesa Casa Lucas. "Majorana bound states in Rashba nanowire junctions." Thesis, Uppsala universitet, Materialteori, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-416237.

Повний текст джерела
Анотація:
Nanowires with Rashba spin-orbit coupling represent a promising platform for the realization of one-dimensional topological superconductivity and Majorana bound states. In this work we investigate Majorana bound states in hybrid normal-superconductor and short superconductor-normal-superconductor junctions based on nanowires with Rashba spin-orbit coupling. In particular, we explore consequences of the topological phase transition as well as the non-locality and self conjugation properties of the Majorana states on the low-energy spectrum and the Josephson effect in the case of superconductor-normal-superconductor junctions. Our work shows the great potential of hybrid junctions as a platform for the study of topological superconductivity and Majorana bound states.
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Mandal, Partha Sarathi [Verfasser], Oliver [Akademischer Betreuer] Rader, Hans-Joachim [Gutachter] Elmers, and Martin [Gutachter] Weinelt. "Controlling the surface band gap in topological states of matter / Partha Sarathi Mandal ; Gutachter: Hans-Joachim Elmers, Martin Weinelt ; Betreuer: Oliver Rader." Potsdam : Universität Potsdam, 2020. http://d-nb.info/1221183621/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Lau, Alexander [Verfasser], Jeroen van den [Akademischer Betreuer] Brink, Jeroen van den [Gutachter] Brink, and Carmine [Gutachter] Ortix. "Symmetry-enriched topological states of matter in insulators and semimetals / Alexander Lau ; Gutachter: Jeroen van den Brink, Carmine Ortix ; Betreuer: Jeroen van den Brink." Dresden : Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2018. http://d-nb.info/1154680487/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Böttcher, Jan Frederic [Verfasser], Ewelina M. [Gutachter] Hankiewicz, Giorgio [Gutachter] Sangiovanni, and Hartmut [Gutachter] Buhmann. "Fate of Topological States of Matter in the Presence of External Magnetic Fields / Jan Frederic Böttcher ; Gutachter: Ewelina M. Hankiewicz, Giorgio Sangiovanni, Hartmut Buhmann." Würzburg : Universität Würzburg, 2021. http://d-nb.info/1225684943/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Charbonneau, Arthur James. "Topological currents in dense matter." Thesis, University of British Columbia, 2011. http://hdl.handle.net/2429/35918.

Повний текст джерела
Анотація:
This thesis introduces the idea of a topological current that flows in regions with large magnetic fields, dense matter, and parity violation. We propose that such a current exists in the cores of neutron stars and may be responsible for the large proper motion (kicks) observed in some pulsars. This current is similar to the charge separation effect and chiral magnetic effect that may be responsible for parity (℘) and charge conjugation-parity (C℘) violation observed at the Relativistic Heavy Ion Collider (RHIC). We start by deriving the topological current two ways. The first is a macroscopic derivation where we appeal to an anomaly induced by the presence of a fictitious axial field. The second method is microscopic, in which we consider how the modes of the Dirac equation in a magnetic field and chemical potential contribute to the current. We then discuss in great detail the elements necessary for a topological current to exist in a dense star. Our concern then rests with calculating the magnitude of topological currents in the many phases of matter thought to exist in dense stars. We choose four representative processes to investigate: nuclear matter, hyperons, kaon condensates, and strange quark matter. We then suppose that this current may somehow transfer its momentum out of the star, either by being physically ejected or by emitting radiation, causing a kick. We also discuss how the current may induce magnetic helicity and a toroidal magnetic field in the core of the star. We end by discussing the topological current in terms of the AdS/CFT correspondence, a powerful tool that allows one to obtain results from strongly coupled field theories by transferring the problem to the language of a weakly coupled gravitational theory. We introduce a toy model to how one might introduce topological currents into the AdS/CFT framework.
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Tibaldi, Simone. "Deep learning topological phases of matter." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/20521/.

Повний текст джерела
Анотація:
This thesis is aimed at showing how to set up a typical problem of Condensed Matter physics in a Deep Learning framework. In order to do this we will introduce the Kitaev model (a superconducting quantum wire with topological properties) with nearest neighbor coupling, next to nearest neighbor coupling and an interacting term. Then we will present the Machine Learning techniques we are going to use. Finally we will apply them to train a Neural Network and a Convolutional Neural Network on recognizing the topological phases of matter of the non-interacting model to test it on the classification of interacting data.
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Meichanetzidis, Konstantinos. "Diagnosing topological quantum matter via entanglement patterns." Thesis, University of Leeds, 2017. http://etheses.whiterose.ac.uk/18806/.

Повний текст джерела
Анотація:
Quantum matter involves the study of entanglement patterns in the ground states of many-body systems. Of significant interest have recently been topological states of matter, which exhibit characteristics only described globally. As such they are robust to local deformations. In this thesis, we study inter-correlations of many-body states through the entanglement spectrum, obtained by a bipartition of both topological and non-topological systems. In particular, we introduce two novel diagnostics which operate on entanglement spectra. For topological phases supporting edge states on open boundaries we take a quantum-information inspired approach by invoking the monogamy relations obeyed by multi-partite systems. Within a strictly single-particle framework, we establish a correspondence between highly entangled mode and the existence of edge states. In the many-body context, we introduce the interaction distance of a mixed state. Exclusively via the entanglement spectrum it determines how close a free-fermion state lies and what the emergent free quasiparticles are. We apply these two measures to diagnose the properties of a variety of free and interacting fermionic topological systems and reinterpret their properties from a fresh point of view. Our case studies revolve around Kitaev's honeycomb model, which supports both short-range and long-range topological order, constituting it thus relevant to both the monogamy qualifier and the interaction distance. The possibility to diagnose whether a model has zero interacting distance or if it supports maximally entangled states provides central and compact information about the behaviour of complex quantum systems.
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Shan, Wenyu, and 单文语. "Effective continuous model on topological insulators." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2012. http://hub.hku.hk/bib/B49617679.

Повний текст джерела
Анотація:
Topological insulators are electronic materials that have a conventional energy gap as an insulator or semiconductor in the bulk, but possess gapless conducting states around their boundary. They are novel topological states of quantum matters and exhibit a series of exotic physics, such as quantum spin Hall effect, single valley Dirac fermions, Majorana fermions, topological magnetoelectric effect, etc. The conducting edge and surface states have topological origin of the electron band structure, and are protected by time-reversal symmetry such that they are robust or immune against local perturbation. In this dissertation, an effective continuous model for surface states is established from the three-dimensional modified Dirac model, and a theory of ultrathin film for topological insulators is developed. The established electronic model helps us explore spin physics of massive Dirac fermions. The theory has been successfully applied to explain an energy gap opening of the surface states in Bi2Se3 thin film in the measurement of angle-resolved photoemission spectroscopy (ARPES). In-gap bound states are also considered due to vacancy and impurity in topological insulators. It is found that a vacancy can always induce in-gap bound states in both two- and threedimensional topological insulators, and a half quantum magnetic flux inside the vacancy can result in helical Dirac zero modes. Finally the effect of random impurities on the surface transport in topological insulators is investigated, particularly the weak anti-localization of surface electrons in the quantum diffusion regime. It is found that the spin-orbit scattering may suppress the weak localization behaviors of massive Dirac fermions, which suggests an experiment to detect the weak localization in the topological insulator thin film.
published_or_final_version
Physics
Doctoral
Doctor of Philosophy
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Zhao, An, and 赵安. "Theoretical study of magnetic topological insulators." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2013. http://hdl.handle.net/10722/197556.

Повний текст джерела
Анотація:
In recent years, the discovery of topological insulators brought a topological classification of materials and opened a new field in condensed matter physics. Due to the nontrivial topological properties, the topological insulators have insulating bulk and metallic edge/surface relating to some exotic physics such as quantum anomalous Hall effect, quantum spin Hall effect, and magneto-electric effect. Followed realizations of the Z2 topological insulators in two and three dimensions, the quantum anomalous Hall effect was realized in the magnetic-doped topological insulators very recently, which attracts intensive interest. In this thesis, the magnetic topological insulators as a consequence of time-reversal symmetry breaking in the Z2 topological insulators in two or three dimensions are studied. As an introduction, a review of the topological insulators including some relevant theories is given. The approaches involved in this study are also presented. The results can be summarized in two parts. First, the quantum anomalous Hall effect can be found on the two-dimensional decorated lattice with spin-orbit coupling and electron-electron interaction. Without interaction, this model exhibits the quantum spin Hall effect and has at bands in the middle of the spectra. A at-band ferrimagnetism which breaks the time-reversal symmetry and a charge-density wave can be induced by the electron-electron interaction. Altogether they can modulate the Chern number of the system and give rise to the quantum anomalous Hall effect. In the second part, the realization of the quantum anomalous Hall effect in magnetic-doped topological insulator thin films is investigated. With an effective Hamiltonian of the surface states of a topological insulator thin _lm, the condition of the quantum anomalous Hall effect and the behavior of the longitudinal and Hall conductivity is given, which agrees with the experimental results. The effects of the structural inversion asymmetry potential and the particle-hole symmetry breaking term are studied. With a thin _lm model of the three-dimensional topological insulator, it is shown that the lateral surface states account for the non-quantized value of the Hall conductance and the nonzero longitudinal conductance. The quantized Hall conductance restores when the lateral surface state electrons are thoroughly localized by disorder. The quantum anomalous Hall phase in magnetic topological insulator thin film in the present of disorder is also studied. The disorder will shrink the regime of the quantum anomalous Hall effect in a thick film and becomes an obstacle to the realization of the quantum anomalous Hall effect.
published_or_final_version
Physics
Doctoral
Doctor of Philosophy
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Contamin, Lauriane. "Mise en évidence de textures de spin synthétiques par des mesures de transport et de champ microonde." Thesis, Paris Sciences et Lettres (ComUE), 2019. http://www.theses.fr/2019PSLEE020.

Повний текст джерела
Анотація:
Dans cette thèse, nous avons étudié des nanocircuits à base de nanotubes de carbone intégrées dans une cavité micro-onde. Notre dispositif permet de réaliser simultanément des mesures de transport et des mesures micro-ondes, qui donnent des informations complémentaires sur le nanocircuit. Dans les deux expériences réalisées durant cette thèse, un nanotube de carbone est placé au-dessus d’un matériau magnétique qui présente plusieurs domaines d’aimantation. L’axe du champ magnétique de fuite résultant oscille le long du nanotube. Pour les électrons confinés, il est équivalent à un couplage spin-orbite synthétique et à un effet Zeeman. Cet effet synthétique est mis en évidence de deux manières. Dans une première expérience, nous avons mesuré l’évolution des niveaux d’énergie de la boîte quantique quand le matériau magnétique est progressivement aimanté par un champ extérieur, ce qui détruit le champ oscillant. Dans cette expérience, le nanotube a un très bon contact avec un métal supraconducteur en supplément des effets spin-orbite et Zeeman synthétique, qui sont les prérequis pour obtenir des quasiparticules de Majorana dans un nanoconducteur 1D. De telles quasiparticules sont activement recherchées pour leur utilisation pour le calcul quantique. Dans un second temps, nous avons réalisé une double boîte quantique, dans laquelle chaque boîte est constituée d’un segment de nanotube, situé au-dessus du même champ magnétique oscillant que dans la première expérience. Les transitions internes de ce système sont mesurées à l’aide de la cavité micro-onde. Nous avons mis en évidence une très forte dispersion de l’énergie de la transition interne avec un faible champ magnétique extérieur, qui peut être expliqué par un effet Zeeman pour lequel le facteur de Landé, g, a été fortement renormalisé par l’interaction spin-orbite synthétique
In this thesis, we have studied carbon nanotube-based nanocircuits integrated in a microwave cavity architecture. Our device is compatible with the simultaneous measurement of both the current through the nanocircuit and the frequency shift of the cavity. These two signals give complementary information about the device. In the two experiments presented in this thesis, the carbon nanotube was positioned above a magnetic material containing several magnetization domains. The resulting magnetic stray field’s axis oscillates along the carbon nanotube length. For the confined electrons, this is equivalent to both a synthetic spin-orbit interaction and a Zeeman effect. This synthetic effect is evidenced in two ways. In a first experiment, we have measured the evolution of the nanotube’s energy levels when the magnetic material is progressively magnetized by an external magnetic field, thus destroying the oscillations of the stray field. In this experiment, the carbon nanotube had a very transparent contact to a superconducting metal, in addition to the synthetic spin-orbit interaction and Zeeman effect. These ingredients are a pre-requisite to observe Majorana quasiparticles in a one-dimensional nanoconductor. Those quasiparticles are under intense study for their potential use in quantum computing. In the second experiment, we have realized a double quantum dot in which each dot similarly lays above an oscillating magnetic field. The internal transitions of this DQD are measured with the microwave cavity signal. We evidenced a strong dispersion of the energy of the double quantum dots’ internal transitions with a small external magnetic field. This dispersion can be explained by a Zeeman effect in which the Landé factor, g, has been strongly renormalized by the synthetic spin-orbit interaction
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Thiang, Guo Chuan. "Topological phases of matter, symmetries, and K-theory." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:53b10289-8b59-46c2-a0e9-5a5fb77aa2a2.

Повний текст джерела
Анотація:
This thesis contains a study of topological phases of matter, with a strong emphasis on symmetry as a unifying theme. We take the point of view that the "topology" in many examples of what is loosely termed "topological matter", has its origin in the symmetry data of the system in question. From the fundamental work of Wigner, we know that topology resides not only in the group of symmetries, but also in the cohomological data of projective unitary-antiunitary representations. Furthermore, recent ideas from condensed matter physics highlight the fundamental role of charge-conjugation symmetry. With these as physical motivation, we propose to study the topological features of gapped phases of free fermions through a Z2-graded C*-algebra encoding the symmetry data of their dynamics. In particular, each combination of time reversal and charge conjugation symmetries can be associated with a Clifford algebra. K-theory is intimately related to topology, representation theory, Clifford algebras, and Z2-gradings, so it presents itself as a powerful tool for studying gapped topological phases. Our basic strategy is to use various K
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Acero, González Sergio [Verfasser]. "Topological State Engineering / Sergio Acero González." Berlin : Freie Universität Berlin, 2020. http://d-nb.info/1222029456/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Chess, Jordan J. "Mapping Topological Magnetization and Magnetic Skyrmions." Thesis, University of Oregon, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10684160.

Повний текст джерела
Анотація:

A 2014 study by the US Department of Energy conducted at Lawrence Berkeley National Laboratory estimated that U.S. data centers consumed 70 billion kWh of electricity. This represents about 1.8% of the total U.S. electricity consumption. Putting this in perspective 70 billion kWh of electricity is the equivalent of roughly 8 big nuclear reactors, or around double the nation's solar panel output. Developing new memory technologies capable of reducing this power consumption would be greatly beneficial as our demand for connectivity increases in the future. One newly emerging candidate for an information carrier in low power memory devices is the magnetic skyrmion. This magnetic texture is characterized by its specific non-trivial topology, giving it particle-like characteristics. Recent experimental work has shown that these skyrmions can be stabilized at room temperature and moved with extremely low electrical current densities. This rapidly developing field requires new measurement techniques capable of determining the topology of these textures at greater speed than previous approaches. In this dissertation, I give a brief introduction to the magnetic structures found in Fe/Gd multilayered systems. I then present newly developed techniques that streamline the analysis of Lorentz Transmission Electron Microscopy (LTEM) data. These techniques are then applied to further the understanding of the magnetic properties of these Fe/Gd based multilayered systems.

This dissertation includes previously published and unpublished co-authored material.

Стилі APA, Harvard, Vancouver, ISO та ін.
25

Higginbotham, Andrew Patrick. "Quantum Dots for Conventional and Topological Qubits." Thesis, Harvard University, 2015. http://nrs.harvard.edu/urn-3:HUL.InstRepos:23845477.

Повний текст джерела
Анотація:
This thesis presents a series of quantum dot studies, performed with an eye towards improved conventional and topological qubits. Chapters 1-3 focus on improved conventional (spin) qubits; Chapters 4-6 focus on the topological Majorana qubits. Chapter 1 presents the first investigation of Coulomb peak height distributions in a spin-orbit coupled quantum dot, realized in a Ge/Si nanowire. Strong spin-orbit coupling in this hole-gas system leads to antilocalization of Coulomb blockade peaks, consistent with theory. In particular, the peak height distribution has its maximum away from zero at zero magnetic field, with an average that decreases with increasing field. Magnetoconductance in the open-wire regime places a bound on the spin-orbit length (lso < 20 nm), consistent with values extracted in the Coulomb blockade regime (lso < 25 nm). Chapters 2 & 3 demonstrate operation of improved spin qubits. Chapter 2 continues the investigation of Ge/Si nanowires, demonstrating a qubit with tenfold-improved dephasing time compared to the standard GaAs case. e combination of long dephasing time and strong spin-orbit coupling suggests that Ge/Si nanowires are promising for a spin-orbit qubit. In Chap. 3, multi-electron spin qubits are operated in GaAs, and improved resilience to charge noise is found compared to the single-electron case. Chapters 4 & 5, present a series of studies on composite superconductor/semiconductor Al/InAs quantum dots. Detailed study of transport cycles and Coulomb blockade peak spacings in zero magnetic field are presented in Chap. 4, and the parity lifetime of a bound state in the nanowire is inferred to exceed 10 milliseconds. Next, in Chap. 5, finite magnetic field behavior is investigated while varying quantum dot length. Coulomb peak spacings are consistent with the emergence of Majorana modes in the quantum dot. The robustness of Majorana modes to magnetic-field perturbations is measured, and is found to be exponential with increasing nanowire length. Coulomb peak heights are also investigated, and show signatures of electron teleportation by Majorana fermions. Finally, Chap. 6 outlines some schemes to create topological Majorana qubits. Using experimental techniques similar to those in Chap.’s 2 & 3, it may be possible to demonstrate Majorana initialization, readout, and fusion rules.
Physics
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Hart, Sean. "Electronic Phenomena in Two-Dimensional Topological Insulators." Thesis, Harvard University, 2016. http://nrs.harvard.edu/urn-3:HUL.InstRepos:33493567.

Повний текст джерела
Анотація:
In recent years, two-dimensional electron systems have played an integral role at the forefront of discoveries in condensed matter physics. These include the integer and fractional quantum Hall effects, massless electron physics in graphene, the quantum spin and quantum anomalous Hall effects, and many more. Investigation of these fascinating states of matter brings with it surprising new results, challenges us to understand new physical phenomena, and pushes us toward new technological capabilities. In this thesis, we describe a set of experiments aimed at elucidating the behavior of two such two-dimensional systems: the quantum Hall effect, and the quantum spin Hall effect. The first experiment examines electronic behavior at the edge of a two-dimensional electron system formed in a GaAs/AlGaAs heterostructure, under the application of a strong perpendicular magnetic field. When the ratio between the number of electrons and flux quanta in the system is tuned near certain integer or fractional values, the electrons in the system can form states which are respectively known as the integer and fractional quantum Hall effects. These states are insulators in the bulk, but carry gapless excitations at the edge. Remarkably, in certain fractional quantum Hall states, it was predicted that even as charge is carried downstream along an edge, heat can be carried upstream in a neutral edge channel. By placing quantum dots along a quantum Hall edge, we are able to locally monitor the edge temperature. Using a quantum point contact, we can locally heat the edge and use the quantum dot thermometers to detect heat carried both downstream and upstream. We find that heat can be carried upstream when the edge contains structure related to the $\nu=2/3$ fractional quantum Hall state. We further find that this fractional edge physics can even be present when the bulk is tuned to the $\nu=1$ integer quantum Hall state. Our experiments also demonstrate that the nature of this fractional reconstruction can be tuned by modifying the sharpness of the confining potential at the edge. In the second set of experiments, we focus on an exciting new two-dimensional system known as a quantum spin Hall insulator. Realized in quantum well heterostructures formed by layers of HgTe and HgCdTe, this material belongs to a set of recently discovered topological insulators. Like the quantum Hall effect, the quantum spin Hall effect is characterized by an insulating bulk and conducting edge states. However, the quantum spin Hall effect occurs in the absence of an external magnetic field, and contains a pair of counter propagating edge states which are the time-reversed partners of one another. It was recently predicted that a Josephson junction based around one of these edge states could host a new variety of excitation called a Majorana fermion. Majorana fermions are predicted to have non-Abelian braiding statistics, a property which holds promise as a robust basis for quantum information processing. In our experiments, we place a section of quantum spin Hall insulator between two superconducting leads, to form a Josephson junction. By measuring Fraunhofer interference, we are able to study the spatial distribution of supercurrent in the junction. In the quantum spin Hall regime, this supercurrent becomes confined to the topological edge states. In addition to providing a microscopic picture of these states, our measurement scheme generally provides a way to investigate the edge structure of any topological insulator. In further experiments, we tune the chemical potential into the conduction band of the HgTe system, and investigate the behavior of Fraunhofer interference as a magnetic field is applied parallel to the plane of the quantum well. By theoretically analyzing the interference in a parallel field, we find that Cooper pairs in the material acquire a tunable momentum that grows with the magnetic field strength. This finite pairing momentum leads to the appearance of triplet pair correlations at certain locations within the junction, which we are able to control with the external magnetic field. Our measurements and analysis also provide a method to obtain information about the Fermi surface properties and spin-orbit coupling in two-dimensional materials.
Physics
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Maffei, Maria. "Simulation and bulk detection of topological phases of matter." Doctoral thesis, Universitat Politècnica de Catalunya, 2019. http://hdl.handle.net/10803/665708.

Повний текст джерела
Анотація:
Differently from the majority of the other phases of matter, which are characterized by local order parameters, the topological phases are characterized by integer or semi-integer numbers, the topological invariants, which are depending on global properties and robust against impurities or deformations. In the last decade, the study of the topological phases of matter has been developing parallel to the field of quantum simulation. Quantum simulators are fully controllable experimental platforms simulating the dynamics of systems of interest by the use of the mapping between the two Hamiltonians. These simulators represent a key resource in the study of topological phases of matter because their observation in natural systems is usually highly problematic and sometimes impossible. Quantum simulators are commonly realized with cold atoms in optical lattices or with photonic systems. The unitary and time-periodic protocols, known as quantum walks, are a versatile class of photonic quantum simulators. The purpose of this PhD thesis is to design feasible protocols to simulate and characterize topological non-interacting crystalline Hamiltonians in 1 and 2 dimensions. Moreover, this thesis contains the description of the experiments that have been completed using the theoretical proposals. In details: i) We demonstrate that the topological invariant associated to chiral symmetric 1D Hamiltonians becomes apparent through the long time limit of a bulk observable, the mean chiral displacement (MCD). This detection method converges rapidly and requires no additional elements (i.e. external fields) or filled bands. The MCD has been used to characterize the topology of a chiral-symmetric 1D photonic quantum walk and to detect a signature of the so-called topological Anderson insulating phase in a disordered chiral symmetric wire simulated with ultracold atoms. ii) We designed the protocol to measure the topological invariant that characterizes a 2D photonic quantum walk simulating a Chern insulator.
A diferencia de la mayoría de las otras fases de la materia, caracterizadas por un parámetro de orden local, las fases topológicas de la materia se definen por su invariante topológico que depende de las propiedades globales del sistema y es robusto frente a la presencia de impurezas y/o deformaciones. En la última década, el estudio de las fases topológicas de la materia se ha desarrollado en paralelo con el campo de la simulación cuántica. Un simulador cuántico es unas plataformas experimental altamente controlable cuyo objetivo es simular la dinámica de un sistema de interés, mediante la correspondencia entre los dos Hamiltonianos. Estos simuladores representan un recurso clave en el estudio de las fases topológicas dado que su observación en sistemas reales es en general muy problemática y en determinadas ocasiones hasta imposible. Normalmente, los simuladores cuánticos se crean mediante átomos fríos en redes ópticas o con sistemas fotónicos. Los paseos cuánticos (quantum walks), un proceso unitario y temporalmente periódico, representan una de las clases mas versátiles de simuladores cuánticos. El propósito de esta tesis de doctorado es el diseño de protocolos para la simulación y la caracterización de Hamiltonianos topológicos no interactivos de estructuras cristalinas, tanto en una como en dos dimensiones. Además, en esta tesis se expone la descripción de experimentos llevados a cabo a partir del modelo teórico propuesto. En detalle: Demostramos que el invariante topologico asociado a la simetría quiral en una dimensión se hace aparente a partir del limite a tiempos largos de un observable del volumen (bulk), el desplazamiento quiral medio (MCD, por sus siglas en inglés). Este método de detección converge de manera rápida y no necesita de elementos adicionales (es decir, de campos externos) o bandas pobladas. El MCD ha sido utilizado para caracterizar la topología de un paseo cuántico en una dimensión con simetria quiral y para detectar la fase topológica aislante de Anderson en hilos quirales con desorden, simulados con átomos ultra fríos. Hemos diseñado un protocolo para medir el invariante topológico que caracteriza un paseo cuántico en dos dimensiones simulando un aislante de Chern.
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Phuphachong, Thanyanan. "Magneto-spectroscopy of Dirac matter : graphene and topological insulators." Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066170/document.

Повний текст джерела
Анотація:
Ce travail consiste en l'étude sous champ magnétique des propriétés électroniques des fermions de Dirac relativistes dans deux systèmes: graphène et isolants topologiques. Leur analogie avec la physique des hautes énergies et leurs applications potentielles ont suscité récemment de nombreux travaux. Les états électroniques sont donnés par un Hamiltonien de Dirac et la dispersion est analogue à celle des particules relativistes. La masse au repos est liée au gap du matériau avec une vitesse de Fermi remplaçant la vitesse de la lumière. Le graphène a été considéré comme un " système école " qui nous permet d'étudier le comportement relativiste des fermions de Dirac sans masse satisfaisant une dispersion linéaire. Quand un système de Dirac possède un gap non nul, nous avons des fermions de Dirac massifs. Les fermions de Dirac sans masse et massifs ont été étudiés dans le graphène épitaxié et les isolants topologiques cristallins Pb1-xSnxSe et Pb1-xSnxTe. Ces derniers systèmes sont une nouvelle classe de matériaux topologiques où les états de bulk sont isolants mais les états de surface sont conducteurs. Cet aspect particulier résulte de l'inversion des bandes de conduction et de valence du bulk ayant des parités différentes, conduisant à une transition de phase topologique. La magnéto-spectroscopie infrarouge est une technique idéale pour sonder ces matériaux de petit gap car elle fournit des informations quantitatives sur les paramètres du bulk via la quantification de Landau des états électroniques. En particulier, la transition de phase topologique est caractérisée par une mesure directe de l'indice topologique
This thesis reports on the study under magnetic field of the electronic properties of relativistic-like Dirac fermions in two Dirac systems: graphene and topological insulators. Their analogies with high-energy physics and their potential applications have attracted great attention for fundamental research in condensed matter physics. The carriers in these two materials obey a Dirac Hamiltonian and the energy dispersion is analogous to that of the relativistic particles. The particle rest mass is related to the band gap of the Dirac material, with the Fermi velocity replacing the speed of light. Graphene has been considered as a “role model”, among quantum solids, that allows us to study the relativistic behavior of massless Dirac fermions satisfying a linear dispersion. When a Dirac system possesses a nonzero gap, we have massive Dirac fermions. Massless and massive Dirac fermions were studied in high-mobility multilayer epitaxial graphene and in topological crystalline insulators Pb1-xSnxSe and Pb1-xSnxTe. The latter system is a new class of topological materials where the bulk states are insulating but the surface states are conducting. This particular aspect results from the inversion of the lowest conduction and highest valence bulk bands having different parities, leading to a topological phase transition. Infrared magneto-spectroscopy is an ideal technique to probe these zero-gap or narrow gap materials since it provides quantitative information about the bulk parameters via the Landau quantization of the electron states. In particular, the topological phase transition can be characterized by a direct measurement of the topological index
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Dauphin, Alexandre. "Cold atom quantum simulation of topological phases of matter." Doctoral thesis, Universite Libre de Bruxelles, 2015. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209076.

Повний текст джерела
Анотація:
L'étude des phases de la matière est d'un intérêt fondamental en physique. La théorie de Landau, qui est le "modèle standard" des transitions de phases, caractérise les phases de la matière en termes des brisures de symétrie, décrites par un paramètre d'ordre local. Cette théorie a permis la description de phénomènes remarquables tels que la condensation de Bose-Einstein, la supraconductivité et la superfluidité.

Il existe cependant des phases qui échappent à la description de Landau. Il s'agit des phases quantiques topologiques. Celles-ci constituent un nouveau paradigme et sont caractérisées par un ordre global défini par un invariant topologique. Ce dernier classe les objets ou systèmes de la manière suivante: deux objets appartiennent à la même classe topologique s'il est possible de déformer continument le premier objet en le second. Cette propriété globale rend le système robuste contre des perturbations locales telles que le désordre.

Les atomes froids constituent une plateforme idéale pour simuler les phases quantiques topologiques. Depuis l'invention du laser, les progrès en physique atomique et moléculaire ont permis un contrôle de la dynamique et des états internes des atomes. La réalisation de gaz quantiques,tels que les condensats de Bose-Einstein et les gaz dégénérés de Fermi, ainsi que la réalisation de réseaux optiques à l'aide de faisceaux lasers, permettent d'étudier ces nouvelles phases de la matière et de simuler aussi la physique du solide cristallin.

Dans cette thèse, nous nous concentrons sur l'etude d'isolants topologiques avec des atomes froids. Ces derniers sont isolants de volume mais possèdent des états de surface qui sont conducteurs, protégés par un invariant topologique. Nous traitons trois sujets principaux. Le premier sujet concerne la génération dynamique d'un isolant topologique de Mott. Ici, les interactions engendrent l'isolant topologique et ce, sans champ de jauge de fond. Le second sujet concerne la détection des isolants topologiques dans les expériences d'atomes froids. Nous proposons deux méthodes complémentaires pour caractériser celles-ci. Finalement, le troisième sujet aborde des thèmes au-delà de la définition standard d'isolant topologique. Nous avons d'une part proposé un algorithme efficace pour calculer la conductivité de Berry, la contribution topologique à la conductivité transverse lorsque l'énergie de Fermi se trouve dans une bande d'énergie. D'autre part, nous avons utilisé des méthodes pour caractériser les propriétés quantiques topologiques de systèmes non-périodiques.

L'étude des isolants topologiques dans les expériences d'atomes froids est un sujet de recherche récent et en pleine expansion. Dans ce contexte, cette thèse apporte plusieurs contributions théoriques pour la simulation de systèmes quantiques sur réseau avec des atomes froids.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished

Стилі APA, Harvard, Vancouver, ISO та ін.
30

Chu, Ruilin, and 储瑞林. "Numerical study of topological insulators and semi-metals." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2011. http://hub.hku.hk/bib/B47163252.

Повний текст джерела
Анотація:
Topological insulators(TIs) constitute a novel state of quantum matter which possesses non-trivial topological properties. Although discovered only in the recent few years, TIs have attracted intensive interest among the community of condensed matter physics and material science. TIs are insulating in the bulk but have conductive gapless edge or surface states on the boundaries, which have their origin in the nontrivial bulk band topology that is induced by the strong spin-orbital interactions in the materials. Existing in all dimensions, TIs exhibit a variety of exotic physics such as quantum spin Hall effect, momentum-spin locked surface states, Dirac fermion transport, quantized anomalous Hall effect, Majorana fermions, etc. In this thesis, I study the transport properties of 2D and 3D TIs by numerical approaches. As an introduction, a brief review of TIs is given. A detailed description of the numerical methods is also presented. The results can be summarized in four aspects. First, disorder is found be able to induce a non-trivial TI from an originally trivial band insulator, where the conductance of a two terminal device drops to nearly zero and then rises to form an anomalous plateau as disorder strength is increased, and finally all the states become localized. The real space Chern number calculation as well as the effective medium theory suggests that disorder is fundamentally responsible for the emerging of the extended helical edge states in this system. We also present a levitation and pair annihilation picture of the extended states for this model. Second, by making the 2D TIs into singly connected quantum point contacts(QPCs), I show a coherent and fast Aharonov-Bohm oscillation of conductance caused by the quantum interference of the helical edge states. This oscillation not only happens against weak magnetic field but also against the gate voltage in the zero-field condition. This results in a giant edge magnetoresistance of the device in weak magnetic fields. The amplitude of the magnetoresistance is controllable by adjusting either the QPCs' slit width or the interference loop size in the device. The oscillation is found robust against disorder. Third, by applying a uniform spin-splitting Zeeman field in the bulk of the 3D TI whose surface states can be viewed as massless Dirac fermions, I find chiral edge states on the gapped surfaces of the 3D TI, which can be considered as interface states between domains of massive and massless Dirac fermions. Effectively these states are result of splitting of a perfect interface conducting channel. This picture is confirmed by the Landauer-B?ttiker calculations in four-terminal Hall bars. Finally, I propose the concept of topological semi-metals. By calculating the local density of states on the surfaces, I demonstrate that surface states and the gapless Dirac cone already exist in the system although the bulk is not gapped. We show how the uni-axial strain induces an insulating band gap and turn the semi-metal into true TI. We predict existence of quantum spin Hall effect in the thin films made of these materials, which can be significantly enhanced by disorders.
published_or_final_version
Physics
Doctoral
Doctor of Philosophy
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Moore, Christopher Paul. "Tunneling Transport Phenomena in Topological Systems." Thesis, Clemson University, 2019. http://pqdtopen.proquest.com/#viewpdf?dispub=13420479.

Повний текст джерела
Анотація:

Originally proposed in high energy physics as particles, which are their own anti-particles, Majorana fermions have never been observed in experiments. However, possible signatures of their condensed matter analog, zero energy, charge neutral, quasiparticle excitations, known as Majorana zero modes (MZMs), are beginning to emerge in experimental data. The primary method of engineering topological superconductors capable of supporting MZMs is through proximity-coupled semiconductor nanowires with strong Rashba spin-orbit coupling and an applied magnetic field. Recent tunneling transport experiments involving these materials, known as semiconductor-superconductor heterostructures, were capable for the first time of measuring quantized zero bias conductance plateaus, which are robust over a range of control parameters, long believed to be the smoking gun signature of the existence of MZMs. The possibility of observing Majorana zero modes has garnered great excitement within the field due to the fact that MZMs are predicted to obey non-Abelian quantum statistics and therefore are the leading candidates for the creation of qubits, the building blocks of a topological quantum computer. In this work, we first give a brief introduction to Majorana zero modes and topological quantum computing (TQC). We emphasize the importance that having a true topologically protected state, which is not dependent on local degrees of freedom, has with regard to non-Abelian braiding calculations. We then introduce the concept of partially separated Andreev bound states (ps-ABSs) as zero energy states whose constituent Majorana bound states (MBSs) are spatially separated on the order of the Majorana decay length. Next, through numerical calculation, we show that the robust 2 e2/h zero bias conductance plateaus recently measured and claimed by many in the community to be evidence of having observed MZMs for the first time, can be identically created due to the existence of ps-ABSs. We use these results to claim that all localized tunneling experiments, which have been until now the main way researchers have tried to measure MZMs, have ceased to be useful. Finally, we outline a two-terminal tunneling experiment, which we believe to be relatively straight forward to implement and fully capable of distinguishing between ps-ABSs and true topologically protected MZMs.

Стилі APA, Harvard, Vancouver, ISO та ін.
32

Farrell, Aaron. "Topological superconductivity without proximity effect." Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=119741.

Повний текст джерела
Анотація:
The search for a Majorana Fermion has been an area of intense interest in condensed matter research of late. This elusive particle, predicted to exist in 1937, has been sought after for both fundamental and practical reasons. On the fundamental level, no particle to date has been observed to be a Majorana fermion, meanwhile on the practical level a Majorana fermion, if found, would represent a non-abelian anyon and could thus be used to build a quantum computer. The search for a Majorana Fermion has recently shifted to topological superconductivity. Topological superconductors are categorized by the nontrivial winding of their order parameter phase and for this reason are expected to support Majorana Fermions in their vortex cores. Owing to this, the study of topological superconductors has intensified in recent years. Current proposals for a device that may behave as a topological superconductor are based on semiconductor heterostructures, where the spin-orbit coupled bands of a semiconductor are split by a band gap or Zeeman field and superconductivity is induced by proximity to a conventional superconductor. In this setup, topological superconductivity is obtained in the semiconductor layer and the proposed heterostructures typically include two or three layers of different materials. In this thesis we propose a simplification to these types of devices, suggesting a way in which the superconducting layer can be replaced. Part of our proposal includes a model Hamiltonian for these types of systems. This thesis will also develop several different methods to analyze this model Hamiltonian in various different parameter regimes with the ultimate goal of classifying its topology.
Récemment, une région d'intérêt en la recherché de la matière condensée est le recherche pour les "Majorana Fermions". Les physiciens sont fascinés avec cette particule pour des raisons fondamentales et pratiques. Fondamentalement, une particule se comporte comme un Majorana Fermion n'a jamais été trouvée avant. Pratiquement, un Majorana Fermion pourrait être utilisé pour la construction d'un ordinateur quantique. Dans les dernières années, les chercheurs ont commencé à chercher pour des Majorana Fermions dans les supraconducteurs. En particulier, les supraconducteurs topologiques sont crus de supportes les Majorana Fermions dans leur vortex cores et de ce fait des nombreux dispositifs supraconducteurs topologiques ont été proposées. Les propositions récemment sont basées sur les hétérostructures de trois ou deux couches. Dans ces hétérostructures, les bandes d'un semiconducteur avec le couplage de spin-orbit sont séparées par le champ Zeeman d'une couche ferromagnétique (ou un champ appliqué). Après cette, supraconductivité topologique est établie dans la couche de semiconductrice en raison de la proximité d'une couche de supraconducteur ordinaire. Dans cette thèse nous proposons une simplification des dispositifs décrits ci-dessus; nous suggérons un moyen d'enlever la couche de supraconductivité. Nous commençons par proposer un Hamiltonian du cette système et procède à développer des nombreuses méthodes pour analyser cette Hamiltonian avec l'objectif ultime de classifier la topologie de ce système.
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Zhong, Shudan. "Linear and Nonlinear Electromagnetic Responses in Topological Semimetals." Thesis, University of California, Berkeley, 2019. http://pqdtopen.proquest.com/#viewpdf?dispub=13421373.

Повний текст джерела
Анотація:

The topological consequences of time reversal symmetry breaking in two dimensional electronic systems have been a focus of interest since the discovery of the quantum Hall effects. Similarly interesting phenomena arise from breaking inversion symmetry in three dimensional systems. For example, in Dirac and Weyl semimetals the inversion symmetry breaking allows for non-trivial topological states that contain symmetry-protected pairs of chiral gapless fermions. This thesis presents our work on the linear and nonlinear electromagnetic responses in topological semimetals using both a semiclassical Boltzmann equation approach and a full quantum mechanical approach. In the linear response, we find a ``gyrotropic magnetic effect" (GME) where the current density $j

B$ in a clean metal is induced by a slowly-varying magnetic field. It is shown that the experimental implications and microscopic origin of GME are both very different from the chiral magnetic effect (CME). We develop a systematic way to study general nonlinear electromagnetic responses in the low-frequency limit using a Floquet approach and we use it to study the circular photogalvanic effect (CPGE) and second-harmonic generation (SHG). Moreover, we derive a semiclassical formula for magnetoresistance in the weak field regime, which includes both the Berry curvature and the orbital magnetic moment. Our semiclassical result may explain the recent experimental observations on topological semimetals. In the end, we present our work on the Hall conductivity of insulators in a static inhomogeneous electric field and we discuss its relation to Hall viscosity.

Стилі APA, Harvard, Vancouver, ISO та ін.
34

Li, Cheng. "Engineering High Dimensional Topological Matters in Quantum Gases." The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1585827770946136.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Chiel, Joshua R. "Natural Mechanical Topological Insulators." Case Western Reserve University School of Graduate Studies / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=case1586315731890489.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

de, Lisle James. "The characterisation and manipulation of novel topological phases of matter." Thesis, University of Leeds, 2016. http://etheses.whiterose.ac.uk/13809/.

Повний текст джерела
Анотація:
This thesis contains work in three areas. The works are presented chronologically starting with my work on the decomposition and measurement of Chern numbers in four component topological insulators and superconductors. This is followed by the work done in the discovery and analysis of four new models of topological superconductivity in three spatial dimensions. Lastly, I present the work done on dimensional reduction through localisation of Majorana modes at the boundary of topological superconductors in three spatial dimensions. Each work is presented in a separate chapter.
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Kavoussanaki, Eleftheria. "Topological defects in the universe and in condensed matter systems." Thesis, Imperial College London, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.401774.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Lo, Wei-Chang. "Ring polymers as topological glass, a new phase of matter?" Thesis, University of Warwick, 2012. http://wrap.warwick.ac.uk/46819/.

Повний текст джерела
Анотація:
In this thesis the dynamic properties of unknotted ring polymers at high densities is investigated. We hypothesise an unusual type of glass transition which is purely attributed to the topological constraints between the penetrating rings. A mean-field model is developed to describe the strongly constrained ring polymers as ideal lattice trees. Equilibrium properties can be derived within the framework of statistical thermodynamics using an argument based on structural recurrence. Here each ring can be seen as a linear object|as a loop strand with branching protrusions. The ring polymers were simplified as loop strands without any branching. We focused on the constraints emerging from the circular topology, and the polymer dynamics was simulated using a Monte Carlo technique. The degree of inter-ring penetrations essentially controls the slowing of dynamics and represents a universal parameter for the glass transition. The penetrating rings form a percolating network involving reversible quasi-topological entanglements. As such, the stress relaxation of each ring is prolonged by the coupled penetrations which have limited pathways to release constraints from one another. The simulation data suggest the existence of a glassy material exclusively formed by the topological constraints associated with the circular structure. In order to test the picture of topological glass, the uorescence-labelled circular DNA was used to observe its self-diffusion in the entangled state. The experimental method has demonstrated its potential for the future investigation of the dynamics of entangled ring polymers despite the fact that it failed to provide evidence of the glassy state in our experiment.
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Janot, Alexander. "Quantum Condensates and Topological Bosons in Coupled Light-Matter Excitations." Doctoral thesis, Universitätsbibliothek Leipzig, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-199239.

Повний текст джерела
Анотація:
Motivated by the sustained interest in Bose Einstein condensates and the recent progress in the understanding of topological phases in condensed matter systems, we study quantum condensates and possible topological phases of bosons in coupled light-matter excitations, so-called polaritons. These bosonic quasi-particles emerge if electronic excitations (excitons) couple strongly to photons. In the first part of this thesis a polariton Bose Einstein condensate in the presence of disorder is investigated. In contrast to the constituents of a conventional condensate, such as cold atoms, polaritons have a finite life time. Then, the losses have to be compensated by continued pumping, and a non-thermal steady state can build up. We discuss how static disorder affects this non-equilibrium condensate, and analyze the stability of the superfluid state against disorder. We find that disorder destroys the quasi-long range order of the condensate wave function, and that the polariton condensate is not a superfluid in the thermodynamic limit, even for weak disorder, although superfluid behavior would persist in small systems. Furthermore, we analyze the far field emission pattern of a polariton condensate in a disorder environment in order to compare directly with experiments. In the second part of this thesis features of polaritons in a two-dimensional quantum spin Hall cavity with time reversal symmetry are discussed. We propose a topological invariant which has a nontrivial value if the quantum spin Hall insulator is topologically nontrivial. Furthermore, we analyze emerging polaritonic edge states, discuss their relation to the underlying electronic structure, and develop an effective edge state model for polaritons.
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Rosenberg, Peter. "Exotic Phases in Attractive Fermions: Charge Order, Pairing, and Topological Signatures." W&M ScholarWorks, 2018. https://scholarworks.wm.edu/etd/1550153985.

Повний текст джерела
Анотація:
Strongly interacting many-body systems remain a central challenge of modern physics. Recent developments in the field of ultra-cold atomic physics have opened a new window onto this enduring problem. Experimental progress has revolutionized the approach to studying many-body systems and the exotic behaviors that emerge in these systems. It is now possible to engineer and directly measure a variety of models that can capture the essential features of real materials without the added complexity of disorder, impurities, or complicated or irregular geometries. The parameters of these models can be freely tuned with tremendous precision. These experimental realizations are an ideal setting in which to test and calibrate computational many-body methods that can provide insight and quantitative understanding to many of the open questions in condensed matter and many-body physics. in this thesis we study several models of strongly interacting many-fermion systems using cutting-edge numerical techniques including Hartree-Fock-Bogoliubov (HFB) mean-field theory and auxiliary-field quantum Monte Carlo (AFQMC). We explore the exotic phases and behaviors that emerge in these systems, beginning with finite-momentum pairing states in attractive spin-polarized fermions. We next demonstrate the unique capability of AFQMC to treat systems with spin-orbit coupling (SOC). We obtain high-precision, and in many cases numerically exact, results on SOC systems that can eventually be compared directly to experiment. The first system we highlight is the attractive Fermi gas with Rashba SOC, which displays unconventional pairing, charge, and spin properties. We then study the coexistence of charge and superfluid order, as well as topological signatures, in attractive lattice fermions with Rashba SOC. Our results provide a new, high-accuracy understanding of a strongly interacting many-body system and its exotic behaviors. These techniques can serve as a general framework for the treatment of strong interactions and SOC in many-body systems, and provide a foundation for future work on exotic phases in models and real materials.
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Nemytov, Vadim. "Topological insulators: theory and electronic transport calculations." Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=114415.

Повний текст джерела
Анотація:
In this thesis we investigate quantum transport properties of topological insulator (TI) Bi2 Se3 from atomistic point of view. TI is a material having an energy gap in its bulk but supporting gapless helical states on its boundary. The helical states have Dirac-like linear energy dispersion continuously crossing the bulk band gap with a spin texture in which the electron spin is locked perpendicular to the electron momentum. The peculiar electronic structure of TI material Bi2 Se3 is due to a strong spin-orbit interaction and is protected by the time reversal symmetry. The thesis consists of two main parts. The first reviews the theory of TI and the second presents our atomistic calculations of electron transport in the Bi2 Se3 material. In the theoretical review of the physics of TI, I follow the literature and attempt to present it in a reasonably accessible manner. The theory of TI is explained in terms of well known physical phenomena including classical and quantum Hall effects, spin-orbit coupling, spin current, and spin-Hall effect. The concept of Berry's phase is then introduced to link with the formal conventionalclassification of TI by the topological Z2 invariants. The entire discussion is within the well known Bloch band theory. In the second part of this thesis, numerical studies of transport properties of Bi2 Se3 are presented. After a brief discussion of the relevant quantum transport theory and the tight binding atomistic model, we present our calculated quantum transport results of Bi2 Se3 films having a trench in the middle. Such a large defect, if on normal conductors, would cause significant back scattering of the carriers. Here, by topological protection of the helical states, back scattering is forbidden due to the spin-momentum locking. Nevertheless, large trenches in the film may cause the helical states on the surface to mix inside the trench, thereby affecting the transmission.
Dans cette thèse, nous étudions le transport quantique dans l'isolant topologique (TI) Bi2Se3 à partir d'un modèle d'échelle atomique. Un TI est un matériau ayant une structure de bande de type isolant bien qu'on y retrouve des états hélicodaux en surface. Ces états hélicoı̈daux ont une relation de dispersion linéaire, dite dispersion de Dirac, qui traverse la bande interdite du cristal. Ces électrons voyageant selon les relations de Dirac sont contraints à se mouvoir perpendiculairement à leur spin. La structure électronique particulière de l'isolant topologique Bi2Se3 est due à une forte interaction spin-orbite et est protégée par une symétrie par renversement du temps. Cette thse comporte deux grands segments. Dans un premier temps, nous présentons une synthèse de la théorie générale des isolants topologiques. Nous présentons ensuite les résultats de nossimulation de transport quantique dans le matériau Bi2Se3. Dans notre résumé de la théorie des TI, nous présentons une revue de littérature et décrivons conceptuellement, dans la mesure du possible, le comportement des TI de sorte à rendre notre texte intelligible au non-expert. La théorie des TI est expliquée à artir de phénomènes classiques et quantiques connus tels que l'effet Hall, l'interaction spin-orbite, le courant de spin, l'effet Hall de spin, etc. Le concept de la phase de Berry est ensuite introduit pour faire le pont avec la classification traditionnelle des TI, laquelle se base sur les invariants topologiques de Z2. Le tout est présenté avec la théorie des bandes en filigrane. Dans le second segment de cette thése, nous étudions les propriétés physiques du Bi2Se3 à partir de simulations numériques. Après une brève discussion de certains éléments pertinents empruntés de la théorie du transport quantique et du modèle des liens étroits d'échelle atomique, nous présentons les résultats d'une simulation dans laquelle des électrons voyagent à travers un film de Bi2Se3 ayant une dépression en son milieu. Un tel défaut provoquerait une forte diffusion des porteurs de charge dans un conducteur standard. Dans le cas qui nous concerne, la diffusion des états hélicoı̈daux est endiguée par la contrainte qui force ces états à voyager perpendiculairement à leur spin. Néanmoins, de larges dépressions dans le film peuvent provoquer le mélange des états hélicoı̈daux de surface et des états localisés à l'intérieur du cristal, ce qui affecte le transport des porteurs de charge.
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Calvanese, Strinati Marcello. "Topological effects in one-dimensional quantum systems." Doctoral thesis, Scuola Normale Superiore, 2018. http://hdl.handle.net/11384/85903.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Igram, Dale J. "A Topological Explanation of the Urbach Tail." Ohio University / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1459885929.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

陳柏緯 and Pak-wai Chan. "Equation of state of nuclear matter." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1994. http://hub.hku.hk/bib/B31211215.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Zhang, Shilei. "Chiral and topological nature of magnetic skyrmions." Thesis, University of Oxford, 2016. https://ora.ox.ac.uk/objects/uuid:11306f2a-77e6-4f65-a3dd-3b1c2365ea32.

Повний текст джерела
Анотація:
This work focuses on characterising the chiral and topological nature of magnetic skyrmions in noncentrosymmetric helimagnets. In these materials, the skyrmion lattice phase appears as a long-range-ordered, close-packed lattice of nearly millimetre-level correlation length, while the size of a single skyrmion is 3-100 nm. This is a very challenging range of lengthscales (spanning 5 orders of magnitude from tens of nm to mm) for magnetic characterisation techniques. As a result, only three methods have been proven to be applicable for characterising certain aspects of the magnetic information: neutron diffraction, electron microscopy, and magnetic force microscopy. Nevertheless, none of them reveals the complete information about this fascinating magnetically ordered state. On the largest scale, the skyrmions form a three-dimensional lattice. The lateral structure and the depth profile are of importance for understanding the system. On the mesoscopic scale, the rigid skyrmion lattice can break up into domains, with the domain size about tens to hundreds of micrometers. The information of the domain shape, distribution, and the domain boundary is of great importance for a magnetic system. On the smallest scale, a single skyrmion has an extremely fine structure that is described by the topological winding number, helicity angle, and polarity. These pieces of information reveal the underlying physics of the system, and are currently the focus of spintronics applications. However, so far, there is no experimental technique that allows one to quantitatively study these fine structures. It has to be emphasised that the word 'quantitative' here means that no speculations have to be made and no theoretical modelling is required to assist the data interpretation -- what has been measured must be straightforward, and give a unique and unambiguous answer. Motivated by these questions, we developed soft x-ray scattering techniques that allow us to acquire much deeper microscopic information of the magnetic skyrmions -- reaching far beyond what has been possible so far. We will show that by using only one technique, all the information about the magnetic structure (spanning 5 orders of magnitude in length) can be accurately measured. The thesis is structured as follows: The key development is the Dichroism Extinction Rule, which is summarised in Chapter 6, and quintessentially summarises the thesis. In Chapter 1, the well-established theory for skyrmions is introduced, reconstructing the picture from single skyrmions to the skyrmion crystal. A few comments about the current characterisation techniques will be given. In Chapter 2, we will start with the largest lengthscale, the long-range-ordered skyrmion lattice phase. This is an intensely studied phase, mostly using neutron diffraction, and we will show that this piece of information can be equivalently (or actually even better) obtained using resonant x-ray diffraction. The theoretical foundation of this technique is also given. In Chapter 3, we will demonstrate imaging technique with which we were able to effectively map the skyrmion domains. The measurements also suggest a way to control the formation of skyrmion domains, which might be the key for enabling skyrmion-based device applications. Chapters 4 and 5 present the highlights of this work, in which we will show that using the dichroism extinction rule, the topological winding number and the skyrmion helicity angle can be unambiguously determined. In this sense, this technique is capable of accurately measuring the internal structure of single skyrmions.
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Kerr, Steven. "Topological quantum field theory and quantum gravity." Thesis, University of Nottingham, 2014. http://eprints.nottingham.ac.uk/14094/.

Повний текст джерела
Анотація:
This thesis is broadly split into two parts. In the first part, simple state sum models for minimally coupled fermion and scalar fields are constructed on a 1-manifold. The models are independent of the triangulation and give the same result as the continuum partition functions evaluated using zeta-function regularisation. Some implications for more physical models are discussed. In the second part, the gauge gravity action is written using a particularly simple matrix technique. The coupling to scalar, fermion and Yang-Mills fields is reviewed, with some small additions. A sum over histories quantisation of the gauge gravity theory in 2+1 dimensions is then carried out for a particular class of triangulations of the three-sphere. The preliminary stage of the Hamiltonian analysis for the (3+1)-dimensional gauge gravity theory is undertaken.
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Ronquillo, David C. "Identifying topological order in the Shastry-Sutherland model via entanglement entropy." Thesis, California State University, Long Beach, 2015. http://pqdtopen.proquest.com/#viewpdf?dispub=1596474.

Повний текст джерела
Анотація:

It is known that for a topologically ordered state the area law for the entanglement entropy shows a negative universal additive constant contribution, –γ, called the topological entanglement entropy. We theoretically study the entanglement entropy of the two-dimensional Shastry-Sutherland quantum antiferromagnet using exact diagonalization on clusters of 16 and 24 spins. By utilizing the Kitaev-Preskill construction, we extract a finite topological term, –γ , in the region of bond-strength parameter space corresponding to high geometrical frustration. Thus, we provide strong evidence for the existence of an exotic topologically ordered state and shed light on the nature of this model's strongly frustrated, and long controversial, intermediate phase.

Стилі APA, Harvard, Vancouver, ISO та ін.
48

González, Cuadra Daniel. "A cold-atom approach to topological quantum matter across the energy scale." Doctoral thesis, Universitat Politècnica de Catalunya, 2020. http://hdl.handle.net/10803/670622.

Повний текст джерела
Анотація:
The outstanding progress achieved in the last decades to isolate and manipulate individual quantum systems has revolutionized the way in which quantum many-body phenomena, appearing across Nature's different energy scales, can be investigated. By employing atomic systems such as ultracold atoms in optical lattices, an enormous range of paradigmatic models from condensed-matter and high-energy physics are being currently studied using table-top experiments, turning Feynman's idea of a quantum simulator into a reality.Quantum simulators offer the possibility to gather information about complex quantum systems, which are either not accessible to experiments or whose properties can not be easily derived using standard analytical or numerical approaches. These synthetic quantum systems can be designed precisely such that they are described under the same models as natural systems, and their remarkable control allows to probe the relevant phenomena associated to them. Apart from their quantum simulation capabilities, atomic systems can also be employed to generate quantum matter with novel properties beyond those found in Nature, offering interesting prospects for quantum technological applications. In this thesis, we investigate the possibilities that cold-atom systems present to address, in particular, quantum matter with non-trivial topological properties. Using mixtures of ultracold atoms, we analyze various quantum simulation strategies to access several many-body phenomena for which a satisfactory understanding is still lacking. Moreover, we show how such platforms display strongly-correlated topological effects beyond those found in natural systems. We first focus on models inspired by condensed-matter physics. More precisely, we propose how lattices dynamics, similar to those described by phonons in solid crystals, can be implemented in an otherwise static optical lattice. By coupling the former to quantum matter using a mixture of bosonic atoms, we reproduce typical effects described by electronic systems, such as topological defects or charge fractionalization. We then extend these results and find novel features, from boson fractionalization to intertwined topological phases.We then consider the quantum simulation of high-energy-physics problems. By using Bose-Fermi mixtures, we show how non-perturbative phenomena characteristic of non-abelian gauge theories, such as quark confinement, emerge in simpler models that are within the reach of current technology. Finally, we investigate how the interplay between gauge invariance and strong correlations gives rise to various mechanisms to prepare robust topological order in near-term quantum simulators.In summary, our results show several connections between different areas of theoretical and experimental physics, and indicate how these can be harnessed further to advance our understanding of strongly-correlated quantum matter, as well as to utilize the latter for new technological applications.
El enorme progreso llevado a cabo en las últimas decadas para aislar y manipular sistemas cuánticos individuales ha revolucionado la manera de investigar fenómenos cuánticos de muchos cuerpos, los cuales se presentan a diferentes escalas energéticas en la naturaleza. Actualmente, una gran variedad de modelos paradigmáticos en física de la materia condensada y de altas energías se estudian experimentalmente utilizando sistemas atómicos tales como átomos ultrafríos en retículos ópticos, llevando a la realidad la idea de simulador cuántico de Feynman. Los simuladores cuánticos ofrecen la posibilidad de obtener información sobre otros sistemas cuánticos más complejos que, o bien no son accesibles experimentalmente, o cuyas propiedades no se pueden predecir fácilmente utilizando técnicas analíticas o numéricas usuales. Estos sistemas cuánticos sintéticos se pueden diseñar de tal manera que se encuentren descritos precisamente por los mismos modelos que los anteriores y, gracias a su notable control, permiten investigar los fenómenos más relevantes asociados a ellos. Aparte de su uso como simuladores cuánticos, estos sistemas atómicos se pueden utilizar para crear nuevos tipos de materia cuántica cuyas propiedades pueden ser diferentes de aquellas encontradas en la naturaleza, ofreciendo así aplicaciones interesantes en tecnología cuántica. En esta tesis investigamos las posibilidades que los sistemas de átomos fríos ofrecen para obtener materia cuántica con propiedades topológicas no triviales. Analizamos, en particular, diferentes estrategias de simulación cuántica para acceder a varios fenómenos de muchos cuerpos que aún no se entienden de forma satisfactoria, utilizando para ello mezclas de átomos ultrafríos. Mostramos además como estas plataformas pueden dar lugar a efectos topológicos fuertemente correlacionados que van más allá de los encontrados hasta ahora en sistemas naturales. Primero nos enfocamos en modelos inspirados por sistemas de materia condensada. En particular, proponemos como implementar retículos dinámicos, los cuales suelen ser estáticos en sitemas ópticos, de manera que podamos simular las partículas fonónicas que aparecen en sólidos cristalinos. Acoplamos estos últimos a materia cuántica utilizando una mezcla de átomos bosónicos, lo cual nos permite reproducir algunos de los efectos típicos que aparecen en sitemas electrónicos, tales como defectos topológicos o fraccionalización de la carga. Por último, extendemos estos resultados encontrando rasgos nuevos, desde la fraccionalización de bosones hasta fases topológicas entrelazadas. Consideramos además simulaciones cuánticas para problemas en física de altas energías. Utilizando mezclas de átomos bosónicos y fermiónicos, mostramos como algunos fenómenos no perturbativos característicos de teorías gauge no abelianas, tales como el confinamiento de quarks, pueden aparecer en modelos más sencillos, los cuales están al alcance de la tecnología actual. Finalmente, investigamos como la interacción entre simetría gauge y correlaciones fuertes puede dar lugar a nuevos mecanismos para genera orden topológico más robusto en simuladores cuánticos a corto plazo. En resumen, nuestros resultados muestras varias conexiones entre diferentes areas de la física teórica y experimental, e indican como estas pueden ser exploradas para avanzar en el conocmiento de la materia cuántica fuertemente correlacionada, así como en las posibles aplicaciones tecnológicas de esta última.
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Edvardsson, Elisabet. "Band structures of topological crystalline insulators." Thesis, Karlstads universitet, Institutionen för ingenjörsvetenskap och fysik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-65536.

Повний текст джерела
Анотація:
Topological insulators and topological crystalline insulators are materials that have a bulk band structure that is gapped, but that also have toplogically protected non-gapped surface states. This implies that the bulk is insulating, but that the material can conduct electricity on some of its surfaces. The robustness of these surface states is a consequence of time-reversal symmetry, possibly in combination with invariance under other symmetries, like that of the crystal itself. In this thesis we review some of the basic theory for such materials. In particular we discuss how topological invariants can be derived for some specific systems. We then move on to do band structure calculations using the tight-binding method, with the aim to see the topologically protected surface states in a topological crystalline insulator. These calculations require the diagonalization of block tridiagonal matrices. We finish the thesis by studying the properties of such matrices in more detail and derive some results regarding the distribution and convergence of their eigenvalues.
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Dos, Santos Luiz Henrique Bravo. "Topological Properties of Interacting Fermionic Systems." Thesis, Harvard University, 2012. http://dissertations.umi.com/gsas.harvard:10195.

Повний текст джерела
Анотація:
This thesis is a study of three categories of problems in fermionic systems for which topology plays an important role: (i) The properties of zero modes arising in systems of fermions interacting with a bosonic background, with a special focus on Majorana modes arising in the superconductor state. We propose a method for counting Majorana modes and we study a mechanism for controlling their number parity in lattice systems, two questions that are of relevance to the protection of quantum bits. (ii) The study of dispersionless bands in two dimensions as a platform for correlated physics, where it is shown the possibility of stabilizing the fractional quantum Hall effect in a flat band with Chern number. (iii) The extension of the hierarchy of quantum Hall fluids to the case of time-reversal symmetric incompressible ground states describing a phase of strongly interacting topological insulators in two dimensions.
Physics
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!