Добірка наукової літератури з теми "Topological selection"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Topological selection".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Topological selection"

1

Hu, Shaoxiong, Hugo Maruri-Aguilar, and Zixiang Ma. "Topological techniques in model selection." Algebraic Statistics 13, no. 1 (2022): 41–56. http://dx.doi.org/10.2140/astat.2022.13.41.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Yatsyshen, V. V., and A. Yu Gordeev. "Electrodynamic target selection techniques." Journal of «Almaz – Antey» Air and Space Defence Corporation, no. 1 (March 30, 2016): 61–68. http://dx.doi.org/10.38013/2542-0542-2016-1-61-68.

Повний текст джерела
Анотація:
We examine a new electrodynamic approach to target selection. The study shows that in the case of p-polarisation, a topological portrait of two types of angle reflectors is in a certain sense inverted in relation to that of the s-polarisation case, and consequently, evident polarisation dependence of angle reflector topological portraits may be traced.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Erins, Matiss. "Topological Modeling Based Diagnostic Tests Selection." Technologies of Computer Control 15 (January 16, 2015): 42. http://dx.doi.org/10.7250/tcc.2014.006.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Bahraini, Alireza, and Abdolhossein Abbassian. "Topological pattern selection in recurrent networks." Neural Networks 31 (July 2012): 22–32. http://dx.doi.org/10.1016/j.neunet.2012.02.037.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

de Vel, M. Van. "A Selection Theorem for Topological Convex Structures." Transactions of the American Mathematical Society 336, no. 2 (1993): 463. http://dx.doi.org/10.2307/2154358.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Scheepers, Marion, and Franklin D. Tall. "Lindelöf indestructibility, topological games and selection principles." Fundamenta Mathematicae 210, no. 1 (2010): 1–46. http://dx.doi.org/10.4064/fm210-1-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

van de Vel, M. "A selection theorem for topological convex structures." Transactions of the American Mathematical Society 336, no. 2 (1993): 463–96. http://dx.doi.org/10.1090/s0002-9947-1993-1169083-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Varposhti, Marzieh, Mehdi Dehghan, and Reza Safabakhsh. "Distributed Topological Camera Selection Without Location Information." IEEE Sensors Journal 14, no. 8 (2014): 2579–89. http://dx.doi.org/10.1109/jsen.2014.2309797.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Song, Chaofan, Tongqiang Liu, Huan Wang, Haifeng Shi, and Zhuqing Jiao. "Multi-modal feature selection with self-expression topological manifold for end-stage renal disease associated with mild cognitive impairment." Mathematical Biosciences and Engineering 20, no. 8 (2023): 14827–45. http://dx.doi.org/10.3934/mbe.2023664.

Повний текст джерела
Анотація:
<abstract> <p>Effectively selecting discriminative brain regions in multi-modal neuroimages is one of the effective means to reveal the neuropathological mechanism of end-stage renal disease associated with mild cognitive impairment (ESRDaMCI). Existing multi-modal feature selection methods usually depend on the <italic>Euclidean</italic> distance to measure the similarity between data, which tends to ignore the implied data manifold. A self-expression topological manifold based multi-modal feature selection method (SETMFS) is proposed to address this issue employing self-expression topological manifold. First, a dynamic brain functional network is established using functional magnetic resonance imaging (fMRI), after which the betweenness centrality is extracted. The feature matrix of fMRI is constructed based on this centrality measure. Second, the feature matrix of arterial spin labeling (ASL) is constructed by extracting the cerebral blood flow (CBF). Then, the topological relationship matrices are constructed by calculating the topological relationship between each data point in the two feature matrices to measure the intrinsic similarity between the features, respectively. Subsequently, the graph regularization is utilized to embed the self-expression model into topological manifold learning to identify the linear self-expression of the features. Finally, the selected well-represented feature vectors are fed into a multicore support vector machine (MKSVM) for classification. The experimental results show that the classification performance of SETMFS is significantly superior to several state-of-the-art feature selection methods, especially its classification accuracy reaches 86.10%, which is at least 4.34% higher than other comparable methods. This method fully considers the topological correlation between the multi-modal features and provides a reference for ESRDaMCI auxiliary diagnosis.</p> </abstract>
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Scheepers, Marion. "A Selection Principle and Products in Topological Groups." Axioms 11, no. 6 (2022): 286. http://dx.doi.org/10.3390/axioms11060286.

Повний текст джерела
Анотація:
We consider the preservation under products, finite powers, and forcing of a selection-principle-based covering property of T0 topological groups. Though the paper is partly a survey, it contributes some new information: (1) The product of a strictly o-bounded group with an o-bounded group is an o-bounded group—Corollary 1. (2) In the generic extension by a finite support iteration of ℵ1 Hechler reals the product of any o-bounded group with a ground model ℵ0 bounded group is an o-bounded group—Theorem 11. (3) In the generic extension by a countable support iteration of Mathias reals the product of any o-bounded group with a ground model ℵ0 bounded group is an o-bounded group—Theorem 12.
Стилі APA, Harvard, Vancouver, ISO та ін.
Більше джерел
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії