Добірка наукової літератури з теми "Tomography in-situ"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Tomography in-situ".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Tomography in-situ"
Maire, Eric, Jerome Adrien, Caroline Landron, Marco Dimichiel, and Luc Salvo. "OS05-2-1 In situ experiments in Synchrotron X ray Tomography." Abstracts of ATEM : International Conference on Advanced Technology in Experimental Mechanics : Asian Conference on Experimental Mechanics 2011.10 (2011): _OS05–2–1—. http://dx.doi.org/10.1299/jsmeatem.2011.10._os05-2-1-.
Повний текст джерелаHata, Satoshi, Shinsuke Miyazaki, Takashi Gondo, Hiroya Miyazaki, Katsumi Kawamoto, Noritaka Horii, Hiromitsu Furukawa, Kazuhisa Sato, Hiroyuki Kudo, and Mitsuhiro Murayama. "Electron Tomography with in-situ Deformation." Materia Japan 55, no. 12 (2016): 595. http://dx.doi.org/10.2320/materia.55.595.
Повний текст джерелаVamvakeros, Antonios, Simon D. M. Jacques, Marco Di Michiel, Pierre Senecal, Vesna Middelkoop, Robert J. Cernik, and Andrew M. Beale. "Interlaced X-ray diffraction computed tomography." Journal of Applied Crystallography 49, no. 2 (March 1, 2016): 485–96. http://dx.doi.org/10.1107/s160057671600131x.
Повний текст джерелаMerkle, Arno, Marijn Boone, and Denis Van Loo. "In situ Dynamic X-ray Tomography in the Laboratory." Microscopy and Microanalysis 24, S1 (August 2018): 998–99. http://dx.doi.org/10.1017/s1431927618005482.
Повний текст джерелаNestola, Fabrizio, Marcello Merli, Paolo Nimis, Matteo Parisatto, Maya Kopylova, Andrea De Stefano, Micaela Longo, Luca Ziberna, and Murli Manghnani. "In situ analysis of garnet inclusion in diamond using single-crystal X-ray diffraction and X-ray micro-tomography." European Journal of Mineralogy 24, no. 4 (July 30, 2012): 599–606. http://dx.doi.org/10.1127/0935-1221/2012/0024-2212.
Повний текст джерелаJørgensen, J. S., E. Ametova, G. Burca, G. Fardell, E. Papoutsellis, E. Pasca, K. Thielemans, et al. "Core Imaging Library - Part I: a versatile Python framework for tomographic imaging." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 379, no. 2204 (July 5, 2021): 20200192. http://dx.doi.org/10.1098/rsta.2020.0192.
Повний текст джерелаPatterson, Brian M., Nikolaus L. Cordes, Kevin Henderson, Xianghui Xiao, and Nikhilesh Chawla. "In situ Imaging of Materials using X-ray Tomography." Microscopy and Microanalysis 24, S1 (August 2018): 1002–3. http://dx.doi.org/10.1017/s1431927618005500.
Повний текст джерелаMeglis, I. L., T. Chow, C. D. Martin, and R. P. Young. "Assessing in situ microcrack damage using ultrasonic velocity tomography." International Journal of Rock Mechanics and Mining Sciences 42, no. 1 (January 2005): 25–34. http://dx.doi.org/10.1016/j.ijrmms.2004.06.002.
Повний текст джерелаEggert, Anja, Martina Müller, Frank Nachtrab, Jannika Dombrowski, Alexander Rack, and Simon Zabler. "High-speed in-situ tomography of liquid protein foams." International Journal of Materials Research 105, no. 7 (July 14, 2014): 632–39. http://dx.doi.org/10.3139/146.111057.
Повний текст джерелаErdmann, Philipp S., Jürgen M. Plitzko, and Wolfgang Baumeister. "Addressing cellular compartmentalization by in situ cryo-electron tomography." Current Opinion in Colloid & Interface Science 34 (March 2018): 89–99. http://dx.doi.org/10.1016/j.cocis.2018.05.003.
Повний текст джерелаДисертації з теми "Tomography in-situ"
Jailin, Clément. "Projection-based in-situ 4D mechanical testing." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLN034/document.
Повний текст джерелаThe quantitative analysis of 3D volumes obtained from tomography allows models to be identified and validated. It consists of a sequence of three successive inverse problems: (i) volume reconstruction (ii) kinematic measurement from Digital Volume Correlation (DVC) and (iii) identification. The required very long acquisition times prevent fast phenomena from being captured.A measurement method, called Projection-based DVC (P-DVC), shortens the previous sequence and identifies the kinematics directly from the projections. The number of radiographs needed for tracking the time evolution of the test is thereby reduced from 500 to 1000 down to 2.This thesis extends this projection-based approach to further reduce the required data, letting faster phenomena be captured and pushing the limits of time resolution. Two main axes were developed:- On the one hand, the use of different spatial and temporal regularizations of the 4D fields (space/time) generalizes the P-DVC approach (with a known reference volume) to the exploitation of a single radiograph per loading step. Thus, the test can be carried out with no interruptions, in a few minutes instead of several days.- On the other hand, the measured motion can be used to correct the reconstructed volume itself. This observation leads to the proposition of a novel procedure for the joint determination of the volume and its kinematics (without prior knowledge) opening up new perspectives for material and medical imaging where sometimes motion cannot be interrupted.end{itemize}The development of these two axes opens up new ways of performing tests, faster and driven to the identification of key quantities of interest. These methods are compatible with the recent ``hardware" developments of fast tomography, both at synchrotron beamlines or laboratory and save several orders of magnitude in acquisition time and radiation dose
Arnold, Klaus, Astrid Ziemann, and Armin Raabe. "Acoustic tomography in comparision to in-situ temperature and wind measurements." Universitätsbibliothek Leipzig, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-216523.
Повний текст джерелаDie Akustische Laufzeittomographie wird als ein experimentelles Verfahren zur Sondierung meteorologischer Parameter, wie z.B. der Lufttemperatur und der horizontalen Windgeschwindigkeit, vorgestellt. Dieses bodengebundene Fernerkundungsverfahren nutzt die horizontale Ausbreitung von Schallwellen in der atmosphärischen Grenzschicht. Hier wird das Verfahren der Laufzeittomographie angewendet, d.h. bei bekannter Weglänge wird die Ausbreitungszeit von ausgesendeten Schallsignalen zwischen mehreren Schallquellen und Empfängern gemessen. Die resultierenden Schallgeschwindigkeitsinformationen werden genutzt, um daraus die entsprechenden meteorologischen Parameter abzuleiten. Auf dem Gelände des Meteorologischen Observatoriums Lindenberg (DWD) wurde eine Messkampagne durchgeführt, um die akustischen Sondierungen mit konventionellen Systemen zu vergleichen. Die Auswertungen zeigen, dass einerseits die Genauigkeit der Akustischen Tomographie vergleichbar mit den konventionellen in-situ Messungen ist und andererseits, dass die Lufttemperatur aufgrund des Strahlungseinflusses bei Messungen mit den üblichen Sensoren zum Teil erheblich überschätzt wird
Arnold, Klaus, Astrid Ziemann, and Armin Raabe. "Acoustic tomography in comparision to in-situ temperature and wind measurements." Wissenschaftliche Mitteilungen des Leipziger Instituts für Meteorologie ; 22 = Meteorologische Arbeiten aus Leipzig ; 6 (2001), S. 60-68, 2001. https://ul.qucosa.de/id/qucosa%3A15201.
Повний текст джерелаDie Akustische Laufzeittomographie wird als ein experimentelles Verfahren zur Sondierung meteorologischer Parameter, wie z.B. der Lufttemperatur und der horizontalen Windgeschwindigkeit, vorgestellt. Dieses bodengebundene Fernerkundungsverfahren nutzt die horizontale Ausbreitung von Schallwellen in der atmosphärischen Grenzschicht. Hier wird das Verfahren der Laufzeittomographie angewendet, d.h. bei bekannter Weglänge wird die Ausbreitungszeit von ausgesendeten Schallsignalen zwischen mehreren Schallquellen und Empfängern gemessen. Die resultierenden Schallgeschwindigkeitsinformationen werden genutzt, um daraus die entsprechenden meteorologischen Parameter abzuleiten. Auf dem Gelände des Meteorologischen Observatoriums Lindenberg (DWD) wurde eine Messkampagne durchgeführt, um die akustischen Sondierungen mit konventionellen Systemen zu vergleichen. Die Auswertungen zeigen, dass einerseits die Genauigkeit der Akustischen Tomographie vergleichbar mit den konventionellen in-situ Messungen ist und andererseits, dass die Lufttemperatur aufgrund des Strahlungseinflusses bei Messungen mit den üblichen Sensoren zum Teil erheblich überschätzt wird.
Kareh, Kristina Maria. "In situ synchrotron tomography of granular deformation in semi-solid Al-Cu alloys." Thesis, Imperial College London, 2013. http://hdl.handle.net/10044/1/29367.
Повний текст джерелаAndo, Edward. "Experimental investigation of microstructural changes in deforming granular media using x-ray tomography." Thesis, Grenoble, 2013. http://www.theses.fr/2013GRENI097/document.
Повний текст джерелаThis doctoral thesis presents an experimental investigation into the mechanics of granular media.The novelty that this work brings is that the specimens of sand tested in this work are systematicallyand non-destructively imaged using x-ray tomography. Sample size is considerably reducedfrom standard (specimens measure approximately 22 mm height by 11 mm diameter), allowingentire specimens to be scanned at a sufficiently high resolution to identify all the grains (morethan fifty thousand) in each specimen.A campaign of triaxial compression tests has been run on a series of three different naturalsands with different grain shapes (Hostun sand, Ottawa sand and Caicos ooids – all prepared atrelatively dense initial states), and tested at 100 or 300 kPa cell pressure. In each test around 15x-ray scans are performed. In the 3D images resulting from the reconstruction of the x-ray scansperformed, grains are identified each state using a standard watershed algorithm. Starting fromthese discretised data, techniques are developed in order characterise grain-to-grain contacts,as well as to measure the kinematics of all the identified grains between imaged states. Grainkinematics are measured with two specifically-developed tools: “ID-Track” to track grains yieldingtheir displacements, and a discrete image correlation technique to measure grain rotations.Grain-scale measurements are reported in detail for one test, and are then compared to testsin different conditions, in order to highlight the micro-mechanisms responsible for the observedmacroscopic behaviour. This comparison highlights some important micro-scale mechanisms suchas the increasing rotational frustration of more angular grains when the sample’s deformation isconcentrated in a fully developed shear band; this is used to explain to some extent the highervalue of their residual stress for these materials. Signs of localised deformation are seen to occurwell before the peak in many samples, and complex patterns of rotating grains (which match alocal, grain-based measurement of strain) are noticed around the peak of each sample’s response
Philippe, Julien. "Développement d'une presse portative pour les études in et ex situ sous conditions extrêmes de pression, température et déformation." Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066008.
Повний текст джерелаHigh pressures are essential in several scientific field. This will be the case in this thesis with the development of a new device enabling new possibilities tomography and deformation under high pressure and high temperature. It brings the possibility of further scientific studies in the various disciplines that are Earth science, mechanical chemistry, physics of materials and liquids physics
Renner, Axel, Uwe Marschner, and Wolf-Joachim Fischer. "A new imaging approach for in situ and ex situ inspections of conductive fiber–reinforced composites by magnetic induction tomography." Sage, 2014. https://tud.qucosa.de/id/qucosa%3A35619.
Повний текст джерелаTireira, Aly. "Endommagement dans les alliages AlSi12 pour moteurs automobiles : Observations in situ et modélisation micromécanique." Thesis, Saint-Etienne, EMSE, 2015. http://www.theses.fr/2015EMSE0780/document.
Повний текст джерелаThis thesis focuses on the mechanisms of deformation and damage in cast aluminum alloysfor automotive industry. Studies were carried on a model alloy containing 12% silicon and added element like iron and nickel. The material was prepared by squeeze-casting process at the Vienna University of Technology in Austria with which this thesis was held in collaboration. In situ tensile test with X-rays tomographic observations as well as with Scanning Electron Microscope observations were performed. They allowed following microstructure evolution under mechanical loading. Particular attention was paid to the mechanisms of initiation and propagation of damage. Furthermore the technic of Digital Image Correlation (DIC) developed to be applied to SEM images was used to visualize 2D strain localization mechanisms at second phases particles scale. DIC were also applied on tomographic images and allowed to measure accurately in 3D damage evolution under loading. Experimental data obtained from DIC were used to identify parameters of a Gurson Tvergaard Needleman model and allow to simulate by Finite Element Modeling the damage evolution. At last stages micro mechanical studies were performed by FEM using microstructure obtained from tomographic images. Algorithms were developed to measure and identify statistics parameters of the microstructure. In consideration of the mechanism of deformations and second phase particles morphology, generatedmicrostructures are proposed to simulate the behavior of the material. This approach aims to simplify the FEM models by reducing the number of degree of Freedom and, then reduce computation time. It also enables to insert complex mechanisms in the model to be as close as possible the actual behavior of the material
Ren, Wenyuan. "In-situ X-ray computed tomography characterisation and mesoscale image based fracture modelling of concrete." Thesis, University of Manchester, 2015. https://www.research.manchester.ac.uk/portal/en/theses/insitu-xray-computed-tomography-characterisation-and-mesoscale-image-based-fracture-modelling-of-concrete(3307ca0b-b492-4bfc-91f7-61c092b21707).html.
Повний текст джерелаCai, Biao. "In situ synchrotron tomographic quantification of semi-solid properties of aluminum-copper alloys." Thesis, University of Manchester, 2015. https://www.research.manchester.ac.uk/portal/en/theses/in-situ-synchrotron-tomographic-quantification-of-semisolid-properties-of-aluminumcopper-alloys(60c222d0-7e70-4a1e-9ed4-75b8f559d5de).html.
Повний текст джерелаКниги з теми "Tomography in-situ"
Tweeton, Daryl R. A tomographic computer program with constraints to improve reconstructions for monitoring in situ mining leachate. Pittsburgh, Pa: U.S. Dept. of the Interior, Bureau of Mines, 1988.
Знайти повний текст джерелаIn-Situ X-Ray Tomographic Study of Materials. MDPI, 2020. http://dx.doi.org/10.3390/books978-3-03936-530-2.
Повний текст джерелаЧастини книг з теми "Tomography in-situ"
Sause, Markus G. R. "Computed Tomography." In In Situ Monitoring of Fiber-Reinforced Composites, 457–532. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-30954-5_6.
Повний текст джерелаBaumeister, Wolfgang. "Cryoelectron Tomography or Doing Structural Biology In Situ." In Macromolecular Crystallography, 51–54. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-2530-0_4.
Повний текст джерелаEnglmeier, Robert, and Friedrich Förster. "In Situ Studies of Mitochondrial Translation by Cryo-Electron Tomography." In Methods in Molecular Biology, 243–68. New York, NY: Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-0834-0_18.
Повний текст джерелаWells, J. M. "In-Situ Fragment Analysis with X-Ray Computed Tomography, XCT." In Advances in Ceramic Armor III, 181–92. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2009. http://dx.doi.org/10.1002/9780470339695.ch16.
Повний текст джерелаLai, Longsheng, Yee-Wai Cheung, Matthew Martinez, Kathryn Kixmoeller, Leon Palao, Stefan Steimle, Meng-Chiao Ho, Ben E. Black, Erh-Min Lai, and Yi-Wei Chang. "In Situ Structure Determination of Bacterial Surface Nanomachines Using Cryo-Electron Tomography." In Methods in Molecular Biology, 211–48. New York, NY: Springer US, 2023. http://dx.doi.org/10.1007/978-1-0716-3060-0_18.
Повний текст джерелаGreenawald, Edward C., James B. Nagode, Chester F. Poranski, and Young S. Ham. "In-Situ NDE of Navy Sonar Domes Via X-Ray Backscatter Tomography." In Review of Progress in Quantitative Nondestructive Evaluation, 881–88. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4615-1987-4_110.
Повний текст джерелаZhu, Shiwei, Zhuan Qin, Juyu Wang, Dustin R. Morado, and Jun Liu. "In Situ Structural Analysis of the Spirochetal Flagellar Motor by Cryo-Electron Tomography." In Methods in Molecular Biology, 229–42. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-6927-2_18.
Повний текст джерелаPatterson, Brian M., Nikolaus L. Cordes, Kevin Henderson, Xianghui Xiao, and Nikhilesh Chawla. "Data Challenges of In Situ X-Ray Tomography for Materials Discovery and Characterization." In Materials Discovery and Design, 129–65. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-99465-9_6.
Повний текст джерелаKaplan, Mohammed, William J. Nicolas, Wei Zhao, Stephen D. Carter, Lauren Ann Metskas, Georges Chreifi, Debnath Ghosal, and Grant J. Jensen. "In Situ Imaging and Structure Determination of Biomolecular Complexes Using Electron Cryo-Tomography." In cryoEM, 83–111. New York, NY: Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-0966-8_4.
Повний текст джерелаSingh, Sudhanshu S., Jason J. Williams, X. Xiao, F. De Carlo, and N. Chawla. "In Situ Three Dimentional (3D) X-Ray Synchrotron Tomography of Corrosion Fatigue in Al7075 Alloy." In Fatigue of Materials II, 17–25. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-48105-0_2.
Повний текст джерелаТези доповідей конференцій з теми "Tomography in-situ"
Scopelliti, Matteo Giuseppe, Yasin Karimi, and Maysamreza Chamanzar. "Ultrasonically-assisted in-situ Micro-endoscopic Optical Imaging." In Optical Tomography and Spectroscopy. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/ots.2020.stu4d.1.
Повний текст джерелаMoosmann, Julian, D. C. Florian Wieland, Berit Zeller-Plumhoff, Silvia Galli, Diana Krüger, Alexey Ershov, Silke Lautner, et al. "A load frame for in situ tomography at PETRA III." In Developments in X-Ray Tomography XII, edited by Bert Müller and Ge Wang. SPIE, 2019. http://dx.doi.org/10.1117/12.2530445.
Повний текст джерелаLe Bourlot, Christophe, Amin Azman, Jérôme Adrien, and Eric Maire. "An example of in situ ductile damage analysis by tracking algorithm." In Developments in X-Ray Tomography XII, edited by Bert Müller and Ge Wang. SPIE, 2019. http://dx.doi.org/10.1117/12.2531357.
Повний текст джерелаAlbinet, C., P. Borderies, A. Hamadi, P. Dubois-Fernandez, T. Koleck, S. Angelliaume, and Hubert Cantalloube. "High resolution in-situ tomography on pine forests." In IGARSS 2013 - 2013 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2013. http://dx.doi.org/10.1109/igarss.2013.6721090.
Повний текст джерелаHolodovsky, Vadim, Yoav Y. Schechner, Anat Levin, Aviad Levis, and Amit Aides. "In-situ multi-view multi-scattering stochastic tomography." In 2016 IEEE International Conference on Computational Photography (ICCP). IEEE, 2016. http://dx.doi.org/10.1109/iccphot.2016.7492869.
Повний текст джерелаZheng, Yi, Melania Rogowska, Yi Yang, and Carsten Gundlach. "Micro-CT in situ study of carbonate rock microstructural evolution for geologic CO2 storage." In Developments in X-Ray Tomography XI, edited by Bert Müller and Ge Wang. SPIE, 2017. http://dx.doi.org/10.1117/12.2273877.
Повний текст джерелаWu, Yanlin, Hidekazu Takano, and Atsushi Momose. "In situ observation of polymer blend phase separation by x-ray Talbot-Lau interferometer." In Developments in X-Ray Tomography XI, edited by Bert Müller and Ge Wang. SPIE, 2017. http://dx.doi.org/10.1117/12.2273320.
Повний текст джерелаDe Andrade, Vincent, Alex Deriy, Michael Wojcik, Doga Gürsoy, Deming Shu, Tim Mooney, Kevin M. Peterson, et al. "A new transmission x-ray microscope for in-situ nano-tomography at the APS (Conference Presentation)." In Developments in X-Ray Tomography X, edited by Bert Müller, Ge Wang, and Stuart R. Stock. SPIE, 2016. http://dx.doi.org/10.1117/12.2239449.
Повний текст джерелаShi, Lei, Wen-Zhan Song, Fan Dong, and Goutham Kamath. "Sensor Network for Real-time In-situ Seismic Tomography." In International Conference on Internet of Things and Big Data. SCITEPRESS - Science and and Technology Publications, 2016. http://dx.doi.org/10.5220/0005897501180128.
Повний текст джерелаCroton, Linda, Kelly Crossley, Courtney McDonald, Kaye Morgan, Tayla Penny, Robert Galinsky, Stuart Hooper, et al. "Pre-clinical phase-contrast imaging of the whole brain in situ: from traumatic to diffuse white matter injury." In Developments in X-Ray Tomography XIV, edited by Bert Müller and Ge Wang. SPIE, 2022. http://dx.doi.org/10.1117/12.2633340.
Повний текст джерелаЗвіти організацій з теми "Tomography in-situ"
Hunter, Bryan. Compression Analysis of Materials via in situ X-ray Computed Tomography. Office of Scientific and Technical Information (OSTI), June 2022. http://dx.doi.org/10.2172/1872330.
Повний текст джерелаPatterson, Brian M., Nikolaus Lynn Cordes, Bryce C. Tappan, Darla Graff Thompson, and Virginia Warren Manner. Damaging HMX/HTPB formulations: In-situ compression imaging using X-ray micro computed tomography. Office of Scientific and Technical Information (OSTI), April 2015. http://dx.doi.org/10.2172/1178309.
Повний текст джерела