Добірка наукової літератури з теми "Tissu vascularisé"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Tissu vascularisé".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Tissu vascularisé"
Hannen, Egied J. M., Jeroen A. W. M. van der Laak, Harold M. J. Kerstens, Vincent M. J. I. Cuijpers, Antonius G. J. M. Hanselaar, Johannes J. Manni, and Peter C. M. de Wilde. "Quantification of Tumour Vascularity in Squamous Cell Carcinoma of the Tongue Using CARD Amplification, a Systematic Sampling Technique, and True Colour Image Analysis." Analytical Cellular Pathology 22, no. 4 (2001): 183–92. http://dx.doi.org/10.1155/2001/780576.
Повний текст джерелаNagahara, Kunihiko, Youichi Miyake, Takushi Aoyama, and Fumimaru Ogino. "Tissue Oxygen Tension in the Stria Vascularis." Acta Oto-Laryngologica 105, sup456 (January 1988): 137–42. http://dx.doi.org/10.3109/00016488809125091.
Повний текст джерелаPARKASH, S. "Simulated Testis Using Vascularised Autogenous Tissue." British Journal of Urology 59, no. 1 (January 1987): 97–98. http://dx.doi.org/10.1111/j.1464-410x.1987.tb04597.x.
Повний текст джерелаMorelon, Emmanuel, Jean Kanitakis, Olivier Thaunat, Palmina Petruzzo, and Lionel Badet. "Aspects immunologiques des greffes de tissus composites vascularisés." Soins 64, no. 839 (October 2019): 20–21. http://dx.doi.org/10.1016/j.soin.2019.09.006.
Повний текст джерелаButterworth, Mark, and Peter E. M. Butler. "FLAP VASCULARITY AFTER FREE MUSCULOCUTANEOUS TISSUE TRANSFER." Plastic and Reconstructive Surgery 107, no. 3 (March 2001): 894–95. http://dx.doi.org/10.1097/00006534-200103000-00054.
Повний текст джерелаMachens, Hans-Günther. "FLAP VASCULARITY AFTER FREE MUSCULOCUTANEOUS TISSUE TRANSFER." Plastic and Reconstructive Surgery 107, no. 3 (March 2001): 895. http://dx.doi.org/10.1097/00006534-200103000-00055.
Повний текст джерелаNettelblad, H., and E. Tarpila. "Abdominal Wall Reconstruction with Vascularised Autologous Tissue." Scandinavian Journal of Surgery 92, no. 4 (December 2003): 297–300. http://dx.doi.org/10.1177/145749690309200410.
Повний текст джерелаWilliams, G., P. Butler, and N. Niranjan. "FLAP VASCULARITY AFTER FREE MUSCULOCUTANEOUS TISSUE TRANSFER." Plastic & Reconstructive Surgery 102, no. 5 (October 1998): 1781. http://dx.doi.org/10.1097/00006534-199810000-00104.
Повний текст джерелаMachens, H. G., N. Pallua, J. Pasel, P. Mailaender, J. Liebau, and A. Berger. "FLAP VASCULARITY AFTER FREE MUSCULOCUTANEOUS TISSUE TRANSFER." Plastic & Reconstructive Surgery 102, no. 5 (October 1998): 1782. http://dx.doi.org/10.1097/00006534-199810000-00105.
Повний текст джерелаMorritt, A. N., R. J. Dilley, J. Rickards, X. L. Han, D. McCombe, W. A. Morrison, and S. K. Bortolotto. "Tissue Engineering of Spontaneously Beating, Vascularised, Three-Dimensional Cardiac Tissue." Journal of Molecular and Cellular Cardiology 41, no. 4 (October 2006): 742. http://dx.doi.org/10.1016/j.yjmcc.2006.06.040.
Повний текст джерелаДисертації з теми "Tissu vascularisé"
Devillard, Chloé. "Développement de tissus vasculaires par bioimpression 3D." Thesis, Lyon, 2021. http://www.theses.fr/2021LYSE1339.
Повний текст джерелаThis thesis aims to develop a vascular tissue by the method of 3D bioprinting of living tissue. To carry out this work, a bioink composed of three natural biomaterials: gelatin, alginate, and fibrinogen, was formulated. An improvement in the manufacturing process of a 3D object by bioprinting as well as the development of a specific consolidation solution allowed the development of a three-dimensional cellular network. The particular use of culture medium at all stages of manufacture, from the preparation of the biomaterials to the consolidation of the object, has demonstrated a marked increase in cell proliferation. Rheological and histological characterizations were set up to demonstrate this increased proliferation. To develop vascular tissue, several technological approaches have been presented, following well-defined specifications: (i) tubular vascular biofabrication technology and (ii) planar vascular biofabrication technology. The methods of 3D bioprinting by micro-extrusion with 1 and 3 extruders, co-axial and tri-axial 3D bioprinting, 3D bioprinting in a constrained environment, 4D printing by enzymatic diffusion, bio- 3D printing by winding, have thus been studied to respond to the creation of a tubular, multilayer structure of centimeter size. Micro-extrusion 3D bioprinting and 4D bioprinting were presented to respond to the creation of a planar multilayer structure, biologically relevant, mimicking the vascular wall composed of an endothelial layer, d 'a layer of vascular smooth muscle cells, and a layer of fibroblasts. The last part of this thesis concerns the results of bioprinting, allowing to biofabricate a vascularized tissue. A study of the impact of communications between fibroblasts and endothelial cells, within a 3D environment, on the development of a complex network, was presented. A vascularized tissue organized by endothelial cells inside a dense extracellular matrix and neosynthesized by fibroblasts could thus be placed in 7 days. Histological characterizations demonstrated the presence of micro-vascularization and transmission electron microscopy technology characterized the formation of collagen and elastin fibers, secreted by fibroblasts
Vijayasekaran, Aparna. "Human Adipose Derived Stem Cells (hASC's) and Soft Tissue Reconstruction: Evaluation of Methods for Increasing the Vascularity of Tissue Engineered Soft Tissue Construct." Thesis, The University of Arizona, 2012. http://hdl.handle.net/10150/265352.
Повний текст джерелаPimenta, Felipe Araújo. "Desenvolvimento de arcabouços para a engenharia tecidual de enxertos vasculares." reponame:Repositório Institucional da UFABC, 2017.
Знайти повний текст джерелаDissertação (mestrado) - Universidade Federal do ABC. Programa de Pós-Graduação em Engenharia Biomédica, 2017.
Os enxertos vasculares sao comumente usados em procedimentos de revascularizacao, porem existe recorrencia de falhas dos enxertos sinteticos quando usados em areas de baixo fluxo e/ou pressao sanguinea, bem como dificuldade quanto a disponibilidade e disparidade de tamanhos em substituintes autogenos. O objetivo desse trabalho foi o desenvolvimento de arcaboucos para engenharia tecidual de enxertos vasculares de pequeno calibre. O trabalho foi divido em etapas: etapa 1 . para selecionar o(s) polimero(s) mais adequado(s) e tecnica de fabricacao dos arcaboucos; etapa 2 e 3 . para definir as melhores condicoes de processamento; etapa 4 . para a producao dos arcaboucos tubulares (enxertos vasculares), determinar a porosidade aparente, bem como estimar valores de complacencia e pressao de ruptura. A caracterizacao das amostras obtidas nas diferentes etapas foi realizada atraves de imagens de microscopia optica (MO), eletromicrografias de microscopica eletronica (MEV) de varredura com quantificacao de diametro de fibras, ensaios tensao x deformacao sob tracao, e de simulacao computacional dinamica dos fluidos. Foi definido como meta para os arcaboucos a obtencao de estruturas de nanofibras homogeneas livres de contas e valores de propriedades mecanicas proximas aos apresentados pelos vasos naturais. Na Etapa 1, foram selecionados o poli(¿Ã-caprolactona) (PCL) como materia prima e a tecnica de airbrushing como metodo de fabricacao de estruturas fibrosas; na Etapa 2, a pressao de trabalho de 40 PSI foi definida por ser o parametro que resultou em formacao de fibras livres de contas; na etapa 3, o alinhamento de fibras e distancia de 25 cm com coletor rotativo foi definido por resultarem em propriedades mais proximas as dos vasos naturais; e na etapa 4 a condicao de 750 rpm do coletor rotativo, por resultar em arcaboucos com propriedades satisfatorias (complacencia de 12,47 } 2,78 %/100 mmHg; pressao de ruptura de 3483,9 } 358,5 mmHg, e porosidade de 91,07 } 2,69 %). Foi possivel a obtencao de mantas de fibras com diametros em torno de 200 nm tanto para fibras alinhadas quanto nao-alinhadas, com dimensoes na faixa de dimensoes das proteinas estruturais (50 a 500 nm), bem como a obtencao de arcaboucos tubulares promissores para serem usados como enxertos vasculares de pequeno calibre, o que abre perspectiva para a continuacao do estudo.
Vascular grafts are commonly used in revascularization procedures, but there are recurrences when synthetic grafts are used in areas of low blood flow and/or blood pressure, difficulty in the availability as well as disparity of sizes in case of autogenous substituents. The objective of this work was the development of scaffolds for tissue engineering of small caliber vascular grafts. The work was divided in steps: step 1 . to select the most suitable polymer (s) and technique to manufacture the scaffolds; step 2 and 3 . to define the best processing conditions; step 4 . for the production of tubular scaffolds (vascular grafts), to determine the apparent porosity, as well as to estimate values of compliance and burst pressure. The characterization of the obtained samples in the different stages was performed through optical microscopy (OM) images, scanning electron microscopy (SEM) images with fiber diameter quantification, tensile stress x strain tests, and dynamic computational fluid simulation. The goal of the scaffolds was to obtain homogeneous bead-free nanofibrous structures and values of mechanical properties similar to those presented by natural vessels. In Step 1, the poly(¿Ã-caprolactone) (PCL) was selected as the raw material and the airbrushing technique was chosen as a method of manufacturing fibrous structures; in Step 2, the working pressure of 40 PSI was defined as the parameter that resulted in the less beads formation; in step 3, fiber alignment and rotating collectorLs distance of 25 cm was chosen, since resulted in properties closer to those of natural vessels; and in step 4 the 750 rpm rotating collector condition resulted in satisfactory properties (compliance of 12,47 } 2,78 % /100 mmHg, burst pressure of 3483,9 } 358,5 mmHg, and porosity of 91,07 } 2,69 %). It was possible to obtain nanofibers with diameters around 200 nm for both aligned and non-aligned fibers, with dimensions in the range of structural proteins (50 to 500 nm), as well as obtaining tubular scaffolds to be used as small-caliber vascular grafts, which opens the prospect for further study.
Makhene, Lebohang. "The development of biodegradable aerogel scaffolds for the generation of vascularised 3D adipose tissue models." Thesis, Rhodes University, 2017. http://hdl.handle.net/10962/59245.
Повний текст джерелаMauroux, Adèle. "Développement d’un substitut cutané vascularisé au derme compartimenté : impact des microenvironnements papillaires et réticulaires." Thesis, Sorbonne université, 2019. http://www.theses.fr/2019SORUS532.
Повний текст джерелаThe dermis is divided between the papillary and reticular dermis that display distinct extracellular matrix (ECM) and vascularization. Fibroblasts isolated from each compartment play different role in skin physiology. However, little information is available regarding their role in angiogenesis regulation and no substitute allows to study dermal compartments. The aim of this work was thus to develop a vascularized skin substitute that reproduces papillary and reticular microenvironments.We first developed a vascularized skin substitute using a mixed population of fibroblasts by cell sheet layering. This technique relies on the ability of cells to generate their own ECM and reproduces a more physiological ECM. Furthermore, angiogenic molecules could remodel the vascular network of this skin substitute, indicating that this model is appropriate to study complex interaction between microenvironment and vascularization. We then studied cell sheets generated by papillary and reticular fibroblasts and characterized their matrisome and angiogenic gene expression signature. These difference in gene expression resulted in the generation of specific ECM and secretome. The microenvironment generated by each population of fibroblasts differentially regulated angiogenesis and reproduced some features of native skin in vivo. Overall, these results demonstrate that papillary and reticular fibroblasts contribute to skin angiogenesis via distinct paracrine factors and microenvironments and that vascularized cell sheets reproduce some features of native dermal compartments
Sandlund, Johanna. "Angiogenesis in human renal cell carcinoma : hypoxia, vascularity and prognosis." Doctoral thesis, Umeå : Univ, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-1331.
Повний текст джерелаPourchet, Léa. "Développement d’une bio-encre pour la bioimpression 3D de tissus vivants : étude de la formulation et caractérisation du développement tissulaire." Thesis, Lyon, 2018. http://www.theses.fr/2018LYSE1232/document.
Повний текст джерелаThis thesis focus on the development of a 3D bioprinting process for living tissue. This new field of research, 3D bioprinting, aims to fabricate tissues using a bioprinter based on the tissue engineering fundamentals.To carry out this work, a specific bioink was formulated using natural biomaterials to meet the requirement of biocompatibility, cell viability and support of a three-dimensional cellular network. Several characterizations have been used to demonstrate the cells viability during the 3D bioprinting process.The bioprinter technological evolution is then presented, starting from an open-source technology and ending with the use of a 6-axis robotic arm. The specifications of this bioprinter evolved through different prototypes.The last part of this thesis concerns tissue bioprinting results obtained through multiple collaborations. Several tissues will be studied and characterized: the dermis and its maturation towards a total skin, the cartilage and the mesenchymal stem cells bioprinting, a microvascularized tissue thanks to the incorporation of endothelial cells and finally a perfusable tissue by using a dynamic culture approach in bioreactor
Simplicio, Janaina Aparecida. "Participação do TNF-a nas disfunções vasculares induzidas pelo consumo crônico de etanol: envolvimento do tecido adiposo perivascular." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/17/17133/tde-17042018-160849/.
Повний текст джерелаChronic ethanol consumption is an important risk factor in the development of cardiovascular diseases, inducing increased blood pressure, inflammation, vascular dysfunction and enhanced oxidative stress in several tissues. Furthermore, chronic ethanol consumption induces the production of Tumor necrosis factor-? (TNF-?). Perivascular adipose tissue (PVAT) is known as an important source of adipokines and proinflammatory cytokines. This tissue is involved in the pathophysiology of different cardiovascular diseases. The hypothesis of this work is that the chronic ethanol consumption stimulates the production of TNF-?, which in turn, will induce an increase in reactive oxygen species (ROS) generation, nitric oxide (NO) reduction, vascular inflammation, impairment of PVAT function, alterations of vascular reactivity and increased blood pressure. Therefore, the aim of this study was to investigate the role of TNF-? in chronic ethanol consumption-induced vascular dysfunctions and to evaluate the role of PVAT in such damages. This study demonstrated that chronic ethanol consumption for 12 weeks induced an increase in systolic blood pressure (SBP) in C57BL/6 mice (wild type-WT) and this increase was blunted in TNF-? receptor 1 knockout mice (TNFR1-/-). There was no change in vascular relaxation induced by acetylcholine and sodium nitroprusside (NPS). Ethanol consumption increased the superoxide anion (O2-) generation, thiobarbituric acid reactive species (TBARS) and reduction of hydrogen peroxide (H2O2) levels in aorta without and with PVAT (PVAT- and PVAT+, respectively) from WT animals, but not from TNFR1-/- mice. There was an increase in catalase (CAT) and superoxide dismutase (SOD) activities in aorta PVAT- and PVAT+, decrease on plasma reduced-glutathione (GSH) levels from ethanol-treated WT but not in TNFR1-/-. Ethanol consumption did not change glutathione peroxidase (GPx) activity in any group. Nitrate/nitrite (NOx) aortic levels were decreased in WT animals, but not in TNFR1-/- after chronic ethanol consumption. Ethanol consumption increased TNF-?, IL-6 cytokines and myeloperoxidase activity (MPO) which suggest a strong vascular inflammation and migration of neutrophils into the aortic tissue. Such changes were not observed in TNFR1-/- mice. The results show for the first time the participation of TNF-? in the increase of blood pressure, increase of oxidative stress and vascular dysfunction induced by the chronic ethanol consumption. The perivascular adipose tissue had no beneficial effect on these changes.
Costa, Rafael Menezes da. "Disfunção mitocondrial no tecido adiposo perivascular e seu papel nas alterações vasculares em modelo experimental de obesidade." Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/17/17133/tde-20072016-144840/.
Повний текст джерелаObesity promotes structural and functional changes in the perivascular adipose tissue (PVAT), favoring the release of vasoconstrictor and proinflammatory substances, as well as altering the vascular signaling pathways activated by PVAT-derived factors. Oxidative stress is an important mechanism proposed to explain the loss of anticontractile effects of the PVAT in obesity. Reactive oxygen species (ROS) play an important role in the modulatory effects of PVAT on vascular function. Considering that mitochondria are a potential source of ROS in the cells, the present study tested the hypothesis that mitochondrial dysfunction leads to the loss of the anticontractile effects of PVAT in obesity. We evaluated whether the mitochondrial matrix of the cells that make up the periaortic fat tissue constitute a major source of ROS, and if mROS contribute to defective regulation of vascular reactivity by the PVAT. Our study shows that obese animals exhibit vascular dysfunction and loss of anticontractile effects of PVAT. Oxidative stress is involved in PVAT dysfunction, with a significant contribution of mitochondria to ROS generation. Obesity promotes mitochondrial dysfunction, reducing oxygen consumption. These events increase the generation of mitochondrial hydrogen peroxide in the PVAT, which impairs the anticontractile effects of this tissue via direct activation of the RhoA / Rho kinase pathway
Muller, Quentin Philippe Sylvain. "Développement par génie tissulaire d’un modèle de peau humaine innervée, vascularisée et immunocompétente pour l’étude des réactions inflammatoires cutanées." Thesis, Strasbourg, 2018. http://www.theses.fr/2018STRAJ061.
Повний текст джерелаImmune reactions in the skin are initiated by the cutaneous dendritic cells (DCs). The potential sensitizing effect of a compound can be predicted in vitro using human monocytes differentiated into DCs (Mono-DCs). However, these simplistic models remain inaccurate because the activation of cutaneous DCs by sensitizers may be triggered or modulated by microenvironmental interactions with multiple types of non-immune cells. Our goal is to develop an immunocompetent human tissue-engineered skin that will combine DCs with all structural and functional element of the skin, i.e. an epidermal barrier laid upon a dermis containing a pseudo-vascularization and nociceptive neurons. Collagen matrix was seeded with fibroblasts and endothelial cells, then with precursors of nerve fibers derived from either human iPSC or murine embryonic DRG. Finally, we introduced Mono-DCs and keratinocytes. We observed that in situ differentiated neurons grow axons towards the epidermis as usually observed in normal human skin. What's more, the neurons derive from iPSC, express neuropeptides and calcium channel as normal nociceptive fibers. Moreover, Mono-DCs settled as expected beneath the epidermis and remained sessile to stimulation for several weeks. The model will be used to predict the irritant potential of chemical compounds, and the impact of nerves on DC activation
Книги з теми "Tissu vascularisé"
McGuigan, Alison P. Design and fabrication of a modular vascularised tissue-engineered construct. 2005.
Знайти повний текст джерелаCalder, Peter. Chronic long bone osteomyelitis. Oxford University Press, 2011. http://dx.doi.org/10.1093/med/9780199550647.003.011001.
Повний текст джерелаЧастини книг з теми "Tissu vascularisé"
Moortgat, Peter, Mieke Anthonissen, Ulrike Van Daele, Jill Meirte, Tine Vanhullebusch, and Koen Maertens. "Shock Wave Therapy for Wound Healing and Scar Treatment." In Textbook on Scar Management, 485–90. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-44766-3_55.
Повний текст джерелаNischwitz, Sebastian P., David B. Lumenta, Stephan Spendel, and Lars-Peter Kamolz. "Minimally Invasive Technologies for Treatment of HTS and Keloids: Pulsed-Dye Laser." In Textbook on Scar Management, 263–69. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-44766-3_31.
Повний текст джерелаA., Remo, Venkat M., Martin Ehrbar, Algirdas Ziogas, Jan A., and Daniel Eberli. "Angiogenesis and Vascularity for Tissue Engineering Applications." In Regenerative Medicine and Tissue Engineering - Cells and Biomaterials. InTech, 2011. http://dx.doi.org/10.5772/25141.
Повний текст джерела"Plastic surgery." In Oxford Handbook of Clinical Surgery, edited by Greg McLatchie, Neil Borley, Anil Agarwal, Santhini Jeyarajah, Rhiannon Harris, and Ruwan Weerakkody, 699–744. Oxford University Press, 2021. http://dx.doi.org/10.1093/med/9780198799481.003.0017.
Повний текст джерела"Soft Tissue Reconstruction." In Standards for the Management of Open Fractures, edited by Simon Eccles, Bob Handley, Umraz Khan, Iain McFadyen, Jagdeep Nanchahal, and Selvadurai Nayagam, 63–74. Oxford University Press, 2020. http://dx.doi.org/10.1093/med/9780198849360.003.0008.
Повний текст джерелаSpickett, Gavin. "Autoimmune eye disease." In Oxford Handbook of Clinical Immunology and Allergy, edited by Gavin Spickett, 273–80. Oxford University Press, 2019. http://dx.doi.org/10.1093/med/9780198789529.003.0011.
Повний текст джерела"Prehospital and Emergency Department Care, Including Prophylactic Antibiotics." In Standards for the Management of Open Fractures, edited by Simon Eccles, Bob Handley, Umraz Khan, Iain McFadyen, Jagdeep Nanchahal, and Selvadurai Nayagam, 1–10. Oxford University Press, 2020. http://dx.doi.org/10.1093/med/9780198849360.003.0001.
Повний текст джерелаSpickett, Gavin P. "Autoimmune eye disease." In Oxford Handbook of Clinical Immunology and Allergy, 251–56. Oxford University Press, 2013. http://dx.doi.org/10.1093/med/9780199603244.003.0011.
Повний текст джерелаMcHugh, Kieran, and Thierry A. G. M. Huisman. "Imaging in Paediatric Oncology." In Oxford Textbook of Cancer in Children, 12–20. Oxford University Press, 2020. http://dx.doi.org/10.1093/med/9780198797210.003.0002.
Повний текст джерелаAyaz, Ercan. "Ultrasound of the Pediatric Gastrointestinal Emergencies." In Ultrasound Imaging - Current Topics [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.99759.
Повний текст джерелаТези доповідей конференцій з теми "Tissu vascularisé"
Yoshikawa, Hideki. "Visualization of Tumor’s Vascularity for HIFU Treatment with Tissue Motion Correction." In THERAPEUTIC ULTRASOUND: 5th International Symposium on Therapeutic Ultrasound. AIP, 2006. http://dx.doi.org/10.1063/1.2205440.
Повний текст джерелаIonescu, Lara C., Grant H. Garcia, Tiffany L. Zachry, Gregory C. Lee, Brian J. Sennett, and Robert L. Mauck. "In Vitro Meniscus Integration Potential is Inversely Correlated With Tissue Maturation State." In ASME 2010 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2010. http://dx.doi.org/10.1115/sbc2010-19369.
Повний текст джерелаArjunan, Krishna Priya, Gary Friedman, and Alisa Morss Clyne. "Non-Thermal Dielectric Barrier Discharge Plasma Promotes Vascularization Through Reactive Oxygen Species." In ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-53664.
Повний текст джерелаLee, Sue Hyun, Angela L. Zachman, Desirae L. Deskins, Pampee P. Young, and Hak-Joon Sung. "ROS-Responsive Scaffold for Angiogenic Differentiation of Mesenchymal Stem Cells." In ASME 2013 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/sbc2013-14553.
Повний текст джерелаTan, Andrea R., Jamie L. Ifkovits, Brendon M. Baker, Robert L. Mauck та Jason A. Burdick. "Electrospinning of Photopolymerizable Poly(β-Amino Ester) Networks for Fibrous Tissue Engineering". У ASME 2007 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2007. http://dx.doi.org/10.1115/sbc2007-176206.
Повний текст джерелаMistry, Vishal, Jaydip Desai, Suzanne Li, Hong Man, and Arthur Ritter. "Evaluation of echogenicity, vascularity index and tissue thickness of localized scleroderma ultrasound images Using MATLAB." In 2011 37th Annual Northeast Bioengineering Conference (NEBEC). IEEE, 2011. http://dx.doi.org/10.1109/nebc.2011.5778679.
Повний текст джерелаTannenbaum, SH, K. Phoenix, P. Hegde, and KP Claffey. "The correlation of tumor vascularity as imaged by near-infrared technology with tissue distribution of angiogenic and growth promoters." In CTRC-AACR San Antonio Breast Cancer Symposium: 2008 Abstracts. American Association for Cancer Research, 2009. http://dx.doi.org/10.1158/0008-5472.sabcs-907.
Повний текст джерелаVandenberg, Theodore W., Christopher R. Nehme, and Thomas P. James. "Application of Microforming to Create Chondrocyte Home Sites in a Natural Cartilage Matrix." In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-36953.
Повний текст джерелаBose, S., J. Darsell, R. Kintner, K. Feely, H. L. Hosick, and A. Bandyopadhyay. "Controlled Porosity Ceramics for Bone Graft Applications." In ASME 2000 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/imece2000-1945.
Повний текст джерелаHedjazi, G., G. Guterman-Ram, Joan C. Marini, N. Fratzl-Zelman, S. Bloui, P. Roschger, K. Klaushofer, and J. Zwerina. "Bone tissue characterization of a mouse model of atypical type VI osteogenesis imperfecta reveals hypermineralization of the bone matrix, elevated osteocyte lacunar density and altered vascularity." In Osteologie 2020. © Georg Thieme Verlag KG, 2020. http://dx.doi.org/10.1055/s-0039-3402837.
Повний текст джерела