Добірка наукової літератури з теми "TiO2–CdS"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "TiO2–CdS".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "TiO2–CdS"

1

Du, Yi-en, Xianjun Niu, Xinru He, Kai Hou, Huiling Liu, and Caifeng Zhang. "Synthesis and Photocatalytic Activity of TiO2/CdS Nanocomposites with Co-Exposed Anatase Highly Reactive Facets." Molecules 26, no. 19 (October 4, 2021): 6031. http://dx.doi.org/10.3390/molecules26196031.

Повний текст джерела
Анотація:
In this work, TiO2/CdS nanocomposites with co-exposed {101}/[111]-facets (NH4F-TiO2/CdS), {101}/{010} facets (FMA-TiO2/CdS), and {101}/{010}/[111]-facets (HF-TiO2/CdS and Urea-TiO2/CdS) were successfully synthesized through a one-pot solvothermal method by using [Ti4O9]2− colloidal solution containing CdS crystals as the precursor. The crystal structure, morphology, specific surface area, pore size distribution, separation, and recombination of photogenerated electrons/holes of the TiO2/CdS nanocomposites were characterized. The photocatalytic activity and cycling performance of the TiO2/CdS nanocomposites were also investigated. The results showed that as-prepared FMA-TiO2/CdS with co-exposed {101}/{010} facets exhibited the highest photocatalytic activity in the process of photocatalytic degradation of methyl orange (MO), and its degradation efficiency was 88.4%. The rate constants of FMA-TiO2/CdS was 0.0167 min−1, which was 55.7, 4.0, 3.7, 3.5, 3.3, and 1.9 times of No catalyst, CdS, HF-TiO2/CdS, NH4F-TiO2/CdS, CM-TiO2, Urea-TiO2/CdS, respectively. The highest photocatalytic activity of FMA-TiO2/CdS could be attributed to the synergistic effects of the largest surface energy, co-exposed {101}/{010} facets, the lowest photoluminescence intensity, lower charge-transfer resistance, and a higher charge-transfer efficiency.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Lavand, Atul B., Yuvraj S. Malghe, and Suraj H. Singh. "Synthesis, Characterization, and Investigation of Visible Light Photocatalytic Activity of C Doped TiO2/CdS Core-Shell Nanocomposite." Indian Journal of Materials Science 2015 (October 5, 2015): 1–9. http://dx.doi.org/10.1155/2015/690568.

Повний текст джерела
Анотація:
Carbon (C) doped TiO2/CdS core-shell nanocomposite (C/TiO2/CdS) was synthesized using microemulsion method. Synthesized powder was characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), and UV-visible spectrophotometery. TEM images reveal that C/TiO2/CdS core-shell heterostructure is successfully prepared with CdS as a core and C doped TiO2 as a shell. UV-visible absorption spectra show that CdS nanoparticles act as a sensitizer and effectively enhance the photoabsorption capacity of C/TiO2/CdS nanocomposite in visible region. Visible light photocatalytic activity of synthesized nanocomposite was evaluated for the degradation of methylene blue. C/TiO2/CdS core-shell nanocomposite exhibits better photocatalytic activity as compared to bare TiO2, CdS, CdS/TiO2, and C doped TiO2.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Zou, Zhijun, Zhongli Qu, Longtao Tang, Yang Qiu, Gaohua Liao, Chang Li, Fen Li, and Jiayou Tao. "UV Light Activated Multi-Cycle Photoelectric Properties of TiO2 and CdS/TiO 2 Films in Formaldehyde." Journal of Nanoscience and Nanotechnology 21, no. 11 (November 1, 2021): 5642–47. http://dx.doi.org/10.1166/jnn.2021.19465.

Повний текст джерела
Анотація:
In this work, UV light activated multi-cycle photoelectric properties of TiO2 and CdS/TiO2 films in formaldehyde were researched. TiO2 film was prepared by screen printing, CdS/TiO2 compounded film was synthesized by SILAR method. XRD and FE-SEM was used to characterize the TiO2 and CdS/TiO2 samples. Multi-cycle photoelectric properties of TiO2 and CdS/TiO2 with uv light on and off were evaluated by testing the photocurrent. On one hand, under the same bias voltage, CdS/TiO 2showed a higher photocurrent than that by TiO2. The reason for this result should be ascribed to the compounded structure in CdS/TiO2, with which the separation and transfer of photogenerated electron-hole pairs could be improved. On the other hand, with the testing cycle number increased, the photocurrent amplitudes of TiO2 and CdS/TiO2 increased. These results suggested that the time to reach a stable photocurrent value for TiO2 and CdS/TiO2 is much longer than one cycle time (300 S). To illustrate the increased photocurrent amplitude value cycle by cycle, the photocurrent of CdS/TiO2 to a much longer time (more than 4000 seconds) was also tested. To explain these results, corresponding possible illustrations were presented.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Song, Fengyan, Hao Sun, Hailong Ma, and Hui Gao. "Porous TiO2/Carbon Dot Nanoflowers with Enhanced Surface Areas for Improving Photocatalytic Activity." Nanomaterials 12, no. 15 (July 23, 2022): 2536. http://dx.doi.org/10.3390/nano12152536.

Повний текст джерела
Анотація:
Electron–hole recombination and the narrow-range utilization of sunlight limit the photocatalytic efficiency of titanium oxide (TiO2). We synthesized carbon dots (CDs) and modified TiO2 nanoparticles (NPs) with a flower-like mesoporous structure, i.e., porous TiO2/CDs nanoflowers. Among such hybrid particles, the CDs worked as photosensitizers for the mesoporous TiO2 and enabled the resultant TiO2/CDs nanoflowers with a wide-range light absorption. Rhodamine B (Rh-B) was employed as a model organic pollutant to investigate the photocatalytic activity of the TiO2/CDs nanoflowers. The results demonstrated that the decoration of the CDs on both the TiO2 nanoflowers and the (commercially available AEROXIDE TiO2) P25 NPs enabled a significant improvement in the photocatalytic degradation efficiency compared with the pristine TiO2. The TiO2/CDs nanoflowers, with their porous structure and larger surface areas compared to P25, showed a higher efficiency to prevent local aggregation of carbon materials. All of the results revealed that the introduced CDs, with the unique mesoporous structure, large surface areas and loads of pore channels of the prepared TiO2 NPs, played important roles in the enhancement of the photocatalytic efficiency of the TiO2/CDs hybrid nanoflowers.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Fangyan Chen, Fangyan Chen, Yiming Liu Yiming Liu, Xi Zhang Xi Zhang, and Lina He and Yubin Tang Lina He and Yubin Tang. "Inorganic-Framework Molecularly Imprinted CdS/TiO2 for Selectively Photocatalytic Degradation of Di (2-ethylhexyl) phthalate." Journal of the chemical society of pakistan 41, no. 2 (2019): 308. http://dx.doi.org/10.52568/000737/jcsp/41.02.2019.

Повний текст джерела
Анотація:
In order to improve the photocatalytic efficiency and selectivity of di (2-ethylhexyl) phthalate (DEHP) under solar-driven, the inorganic-framework molecularly imprinted CdS/TiO2, named as MIP-CdS/TiO2, was prepared by using DEHP as template molecule and tetrabutyl titanate as titanium source and functional monomer. The as-prepared MIP-CdS/TiO2 was characterized by scanning electron microscopy (SEM), X-ray energy spectrum (EDS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), UV-Vis Spectroscopy (UV-vis), X-ray photoelectron spectroscopy (XPS) and photoluminescence spectrum (PL). And the specific recognition and photocatalytic selectivity of MIP-CdS/TiO2 to DEHP were investigated. The results show that inorganic-framework molecular imprinting on the surface of CdS/TiO2 can result in existence of specific recognition sites of DEHP, extend and intensify the absorption visible light of CdS/TiO2, inhibit the recombination of the photo-induced electron-holes pairs. MIP-CdS/TiO2 has a specific recognition to DEHP. The binding selectivity coefficients of DEHP relative to its analogues DBP and DMP are 2.78 and 2.60, respectively. Compared with CdS/TiO2, MIP-CdS/TiO2 exhibits higher photocatalytic activity and selectivity for DEHP. Under simulated solar light irradiation, the degradation efficiency of DEHP photocatalyzed by MIP-CdS/TiO2 is 75.5%, which is 1.63 times as high as that of DEHP photocatalyzed by CdS/TiO2.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Li, Dongping, Zeheng Chen, Xin Wang, Zhenhong Zhong, Chunjun Chen, and Mengling Wu. "Synthesis of Durian-like TiO2@CdS Core-Shell Structure and Study on H2 Generation Properties." Catalysts 12, no. 10 (October 11, 2022): 1211. http://dx.doi.org/10.3390/catal12101211.

Повний текст джерела
Анотація:
Novel durian-like TiO2@CdS core-shell particles were synthesized through a solvothermal method in ethylenediamine solution and the obtained nanocomposites were characterized by scanning electron microscopy (SEM), powder X-ray diffraction (XRD), and transmission electron microscopic (TEM) techniques. It can be seen from the characterization that the synthesized core-shell structured particles show uniform size. The possible formation mechanism of TiO2@CdS core-shell particles is also presented schematically. CdS grows on the TiO2 surface in the form of nanorods, turning the TiO2@CdS composite particles into durian-like structures. The durian-like TiO2@CdS core-shell particles prepared in the experiment can overcome the disadvantages of TiO2 and CdS, respectively. They not only produce a higher yield of H2 than pure TiO2; the durian-like TiO2@CdS nanostructures formed at 180 °C for 16 h produced 2.5 times as much H2 as did TiO2, also showing enhanced stability as compared with pure CdS.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ke, Ou Yang, Xie Shan, and Xiao Ou Ma. "Preparation and Characterization of Photocatalytic TiO2/CdS Nanocomposite Loaded on Multi-Walled Carbon Nanotues (MWCNTs)." Applied Mechanics and Materials 184-185 (June 2012): 1114–19. http://dx.doi.org/10.4028/www.scientific.net/amm.184-185.1114.

Повний текст джерела
Анотація:
Multi-walled carbon nanotues (MWCNTs)/TiO2/CdS composite photocatalysts were prepared by sol–gel method in order to investigate its photocatalytic activity under simulated solar irradiation. MWCNTs/TiO2/CdS composite photocatalysts were characterized by the methods of SEM, XRD, TG and UV–vis. The results showed that MWCNTs/TiO2/CdS composites were mainly composed of anatase-TiO2 and little CdS cubic phases. the composite can cause an pronounced red shift of UV–vis spectra compared with pure TiO2. The degradation of MO by MWCNTs/TiO2/CdS composite photocatalysts under simulated solar light irradiation was studied. The results showd that the presence of MWCNTs and CdS can enhance the photoefficiency of TiO2.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Chen, Yue, Ping Li, and Shuwang Duo. "In-situ Preparation of CdS/TiO2 Heterojunction Based on MOFs-Derived TiO2 with Improved Photocatalytic Performance." Journal of Physics: Conference Series 2168, no. 1 (January 1, 2022): 012017. http://dx.doi.org/10.1088/1742-6596/2168/1/012017.

Повний текст джерела
Анотація:
Abstract Aiming at improving the photocatalytic properties of TiO2, CdS/TiO2 binary heterojunctions with different molar ratios of CdS (0.4%, 0.5%, 0.6%) were prepared by facile fabrication of CdS on metal-organic frameworks (MOFs)-derived TiO2. The composition and morphology of the as-synthesized specimens were well confirmed via XRD and SEM. The photocatalytic experiments showed that the photodegradation efficiency of binary heteroconjunctions for RhB aqueous solution was higher than that of bare CdS and TiO2 under visible light irradiation. Among of all the binary heterojunctions, the CdS/TiO2-0.5:1 possessed the optimal photocatalytic property (91.4%) within 70 min, which was almost 90 and 2 times as high as these of pristine TiO2 and CdS, separately. Therefore, the rational design and construction of CdS/TiO2 heterojunction could be adopted as a potential method to improve the visible-light photodegradation efficiency of TiO2.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Rani C., Usha, Pragathiswaran C., Balakrishnan D., Selvarani K., and Smitha C. "TiO2@ZnO–CdS Nanocomposites for Sensing and Cytotoxicity Applications." International Journal of Zoological Investigations 08, Special Issue (2022): 01–06. http://dx.doi.org/10.33745/ijzi.2022.v08i0s.001.

Повний текст джерела
Анотація:
In this study the sol-gel method was used to create a composite of titanium oxide nanoparticles (TiO2- NPs) @ ZnO nanoparticles (TiO2 @ ZnO). Using a hydrothermal process, the TiO2@ZnO nanocomposite (NC) was changed via wreathing cadmium sulphide nanoparticles (CdS NPs) (TiO2@ZnO–CdS). Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDAX) were employed to investigate the TiO2@ZnO–CdS NC. The CdS NPs are uniformly distributed over the TiO2@ZnO NC. According to FESEM analysis. TiO2@ZnO–CdS NC is used to detect imidazole at low concentrations and assess cytotoxicity. The TiO2@ZnO–CdS NC has been found to have the best electrochemical sensing activity and considerable cytotoxicity against A549 lung cancer cells.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

AL-Jawad, Selma M. H., Natheer Jamal Imran, and Mohammad R. Mohammad. "Effect of electrolyte solution and deposition methods on TiO2/CdS core–shell nanotube arrays for photoelectrocatalytic application." European Physical Journal Applied Physics 92, no. 2 (October 30, 2020): 20102. http://dx.doi.org/10.1051/epjap/2020200127.

Повний текст джерела
Анотація:
In this work, TiO2 nanostructure thin films were deposited by using anodization technique, while CdS thin films were deposited on TiO2 films by two methods chemical bath deposition (CBD) and successive ionic layer adsorption and reaction (SILAR). The structure of TiO2/CdS films were investigated and analyzed by XRD, SEM, and AFM, but the optical properties were investigated by UV–visible spectroscopy, PL spectroscopy, and spectral response. XRD analysis of all deposited films has confirmed the formation of two phases one is tetragonal phase (anatase, and rutile) for TiO2, and second hexagonal phase which belong to CdS layer. SEM images of TiO2 nanotubes arrays (NTAs)/CdS showed the TiO2 NTs walls become decorated with aggregates of fine CdS nanoparticles that partly penetrate into the TiO2 NTAs pores. AFM measurements displayed increase in the surface roughness compared with TiO2 films. PL measurement results of TiO2/CdS core–shell show two peaks, one is located at UV-region pointed to energy band gap for TiO2 nano films, and second one is located at visible region pointing to recombination of photogenerated electron–hole pairs within CdS layers. Spectral response measurements showed photocurrent peaks for all TiO2/CdS films deposited with different electrolyte solution have red-shift to visible region. When illuminated with a UV–Vis light source, the TiO2/CdS core–shell films displayed high response. A higher response to UV–Vis light was attained with the use of TiO2 NTAs/CdS films prepared by anodization /CBD. This approach offers a technique for fabricating photoelectrodes.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "TiO2–CdS"

1

Frederice, Rafael. "Preparação e caracterização de sistemas híbridos CdS/TiO2/SiO2 para aplicações fotoquímicas." Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/75/75134/tde-10122014-153643/.

Повний текст джерела
Анотація:
No presente trabalho, três tipos de fotocatalisadores híbridos nanométricos, CdS, CdS/TiO2, e CdS/TiO2/SiO2, foram preparados e utilizados em três aplicações fotoquímicas: fotodegradação macro e microscópica de um corante, fotólise da água para geração de H2 com acompanhamento via espectrometria de massas in situ e estudo de uma reação redox via microscopia de fluorescência de campo largo. As análises por microscopia eletrônica de varredura (MEV) e de transmissão (MET) apresentaram esferas de sílica com diâmetro em torno de 300 nm e nanopartículas de CdS e TiO2 com diâmetro da ordem de 5 nm e com alta aglomeração. O recobrimento da sílica com TiO2 e CdS não foi uniforme, resultando em \"ilhas\" preferencialmente isoladas. Apesar da morfologia heterogênea, os fotocatalisadores foram eficientes na degradação da safranina O, apresentando cinética de 1ª ordem em relação à concentração do corante. No que se refere à fotólise da água, o sistema ternário (CdS/TiO2/SiO2) apresentou a maior taxa de produção de H2 (0,79 mmol h-1 g-1), o que indica maior eficiência na transferência ou injeção de carga entre CdS e TiO2, devido ao melhor contato entre os dois semicondutores na superfície das nanopartículas (NPs) de sílica. Esse sistema também foi o mais eficiente na fotorredução do corante não fluorescente resazurina no corante fluorescente resorufina, acompanhada através de medidas de intermitência de fluorescência utilizando microscopia de fluorescência de campo largo. Em geral, os sistemas após adição do corante apresentaram intermitência de fluorescência mais lenta, com maiores tempos de relaxação de off. A fotorredução do corante estabeleceu um método interessante para o mapeamento das regiões de injeção de carga CdS/TiO2, inicialmente escuras e a seguir com alta intensidade de emissão.
In the present work, three types of nanosized hybrid photocatalysts, CdS, CdS/TiO2 and CdS/TiO2/SiO2, were synthesized and used in three photochemical applications: macro and microscopic photodegradation of a dye, photolysis of water to generate H2 monitored by in situ mass spectrometry and study of a redox reaction by wide-field fluorescence microscopy. Scanning (SEM) and transmission (TEM) electronic microscopies showed quasi-monodispersed silica spheres with a diameter of about 300 nm and CdS and TiO2 nanoparticles with a diameter of approximately 5 nm highly agglomerated. The coating of the silica with CdS and TiO2 was not uniform, resulting in \"islands\" preferentially isolated. Despite the heterogeneous morphology of the photocatalysts, they were efficient in the degradation of a safranine O solution, showing kinetics of first order with respect to dye concentration. With regard to water photolysis, the ternary system (CdS/TiO2/SiO2) showed the highest rate of H2 production (0.79 mmol g-1 h-1) , which indicates more efficient charge transfer or injection between CdS and TiO2 due to better contact between the two semiconductors on the surface of the silica nanoparticles (NPs). This system also was the most efficient photocatalyst in the photorreduction of the nonfluorescent dye resazurin into the fluorescent dye resorufin, monitored by fluorescence intermittency measurements using wide-field microscopy. In general, the systems after adding the dye presented slower fluorescence intermittency, with higher times of off relaxation. The photoreduction of the dye provided an interesting method for mapping the regions of CdS/TiO2 charge injection, initially dark and then with high emission intensity.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Pan, Jie. "MATERIAL PROPERTY STUDY ON DYE SENSITIZED SOLAR CELLS AND CU(GA,IN)SE2 SOLAR CELLS." Miami University / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=miami1240594917.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Sousa, Charllys Barros Andrade. "ObtenÃÃo e AnÃlise de Filmes Finos de CdS e TiO2 Para Uso em CÃlulas Solares Fotovoltaicas." Universidade Federal do CearÃ, 2010. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=5242.

Повний текст джерела
Анотація:
CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior
Dedicado à deposiÃÃo e caracterizaÃÃo de filmes finos de Sulfeto de CÃdmio e DiÃxido de TitÃnio para a aplicaÃÃo em cÃlulas solares fotovoltaicas. Cada filme foi depositado por um processo diferente. O reagente TiO2 da marca vetec, foi misturado com Ãcido clorÃdrico em soluÃÃo aquosa formando uma dispersÃo. Essa dispersÃo foi espalhada sobre o substrato de vidro e depois aquecida com uma chapa aquecedora. Depois de formado o filme, foram feitos MEV e EDX do mesmo. Para preparar o CdS foi necessÃrio um procedimento um pouco mais complexo, que à a deposiÃÃo por banho quÃmico, onde à feita uma mistura de reagentes e mergulhado o substrato nesta mistura. Ocorreram reaÃÃes quÃmicas cujo resultado foi a formaÃÃo do CdS, que ocorre em toda a superfÃcie do recipiente e do substrato imerso na soluÃÃo. As mesmas caracterizaÃÃes feitas no TiO2 foram feitas no CdS, ambos mostraram uma boa uniformidade, tambÃm foi observado que os filmes mostraram uma boa aderÃncia ao substrato. A fim de comprovar a aplicatividade dos filmes para fins fotovoltaicos, preparou-se um protÃtipo de cÃlula solar fotovoltaica, que foi colocada em contato com a luz solar para assim medir a corrente elÃtrica e a diferenÃa de potencial. TambÃm foram medidos os mesmos parÃmetros no escuro, para comparaÃÃo de resultados e comprovaÃÃo da geraÃÃo de energia elÃtrica atravÃs do contato com a luz. AtravÃs dos resultados destes testes, concluiu-se que os filmes apresentaram o efeito fotoelÃtrico, sendo assim, aplicÃveis em cÃlulas solares fotovoltaicas.
This work is dedicated to the deposition and characterization of thin films of cadmium sulfide and titanium dioxide for application in photovoltaic solar cells. Each film is deposited by a different process. The reagent TiO2 brand Vetec, was mixed with hydrochloric acid in aqueous solution forming a dispersion. This dispersion is spread on the glass substrate and then heated with a plate heater. After the deposit, were made SEM and EDX of the films. In order to prepare CdS a more complex process called chemical bath deposition was required, made of a mixture of reagents with the substrate immersed in it. Chemical reactions occurred which result was the formation of CdS, which occurs across the surface of the container and the substrate immersed in the solution. The same characterizations were carried out on TiO2 in CdS, showed in both good uniformity, was also observed that the films showed good adhesion to the substrate. In order to prove that films are applicable for photovoltaic energy conversion, a prototype of a solar photovoltaic cell was prepared, which was placed in contact with a type of light for measuring electrical parameters like the electric current and potential difference. We also measured the same parameters in the dark, for comparison of results and to prove power generation in contact with the light. The research tests provides evidence that films showed the photoelectric effect, therefore, applicable in photovoltaic solar cells.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Pujalte, Igor. "Étude in vitro de la toxicité de nanoparticules métalliques (TiO2, ZnO, CdS) sur la cible rénale." Thesis, Bordeaux 2, 2011. http://www.theses.fr/2011BOR21849/document.

Повний текст джерела
Анотація:
De nombreuses incertitudes persistent sur la toxicité potentielle des nanoparticules (NPs) et leur devenir dans l’organisme humain. L’objectif de ce travail est de mieux comprendre les mécanismes cytotoxiques induits par des NPs métalliques sur une cible secondaire, représentée par le rein. En effet, les NPs sont susceptibles de franchir les barrières cellulaires, d’être véhiculées par le sang pour se retrouver filtrées par le rein au niveau des cellules glomérulaires et peut-être, réabsorbées au niveau des cellules tubulaires. Cette étude est réalisée in vitro, avec des NPs métalliques de titane (TiO2 : 12 nm), de zinc (ZnO : 75 nm) et de cadmium (CdS : 8 nm), sur cellules mésangiales (IP15) et cellules épithéliales tubulaires (HK-2). Les résultats démontrent des effets variables selon le type cellulaire étudié, la nature chimique des NPs et leur solubilité. Si les NPs insolubles de TiO2 (CI50>100 µg/cm²) ne sont que très peu toxiques, les NPs de CdS et de ZnO le sont bien plus du fait de leur solubilité (CI50<7 µg/cm²). La libération de cations métalliques Cd2+ et Zn2+ est à l’origine de cette toxicité. La production d’ERO et la perturbation du statut oxydatif cellulaire (GSH/GSSG) sont corrélées aux effets cytotoxiques des NPs de ZnO et CdS. Une approche moléculaire permet d’identifier les voies de signalisation cellulaire intervenant dans la réponse au stress (translocation nucléaire des facteurs de transcription : Nrf2 et NF-κB). L’internalisation et l’accumulation, des NPs de TiO2 et de CdS, sont responsables de l’induction d’un stress oxydant et d’un effet cytotoxique lors d’exposition sur le long terme
Many uncertainties remain about the potential toxic effect of nanoparticles (NPs), and their becoming in human organism. The aim of this study was to understand the cytotoxic mechanisms induced by metallic NPs, on a secondary target organ, the kidney. NPs were able to cross biological barriers, be carried in blood to kidney cells, on glomerular or tubular cells. This study was performed in vitro, with NPs of titanium (TiO2: 12 nm), zinc (ZnO: 75 nm) and cadmium (CdS: 8 nm), on mesangial IP-15 cells and epithelial HK-2 cells. Results showed effects depending on cell type, chemical nature of NPs and their solubility. TiO2 NPs have no cytotoxic effect (IC50>100µg/cm²), probably due to their insolubility. Exposure to CdS and ZnO NPs lead to cell death (IC50< 7 µg/ cm²). Release of metallic cations Cd2+ and Zn2+ are the main causes of toxicity. ROS production and disruption of oxidative cellular balance (GSH/ GSSG) were correlated to the cytotoxic effects of ZnO and CdS NPs. A molecular approach was used to identify signaling pathways involved in oxidative stress response (nuclear translocation of NF-kappaB and Nrf2).Internalization and accumulation of TiO2 and CdS NPs were responsible of oxidative stress induction and cytotoxic effect on long term exposure
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Sousa, Charllys Barros Andrade. "Obtenção e análise de filmes finos de CdS e TiO2 para uso em células solares fotovoltaicas." reponame:Repositório Institucional da UFC, 2010. http://www.repositorio.ufc.br/handle/riufc/15921.

Повний текст джерела
Анотація:
SOUSA, C. B. A. Obtenção e análise de filmes finos de CdS e TiO2 para uso em células solares fotovoltaicas. 2010. 85 f. Dissertação (Mestrado em Engenharia Mecânica) – Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2010.
Submitted by Marlene Sousa (mmarlene@ufc.br) on 2016-03-21T11:54:46Z No. of bitstreams: 1 2010_dis_cbasousa.pdf: 3271134 bytes, checksum: 26800061b064d35cf64afc5a31bc642f (MD5)
Approved for entry into archive by Marlene Sousa(mmarlene@ufc.br) on 2016-03-31T17:03:13Z (GMT) No. of bitstreams: 1 2010_dis_cbasousa.pdf: 3271134 bytes, checksum: 26800061b064d35cf64afc5a31bc642f (MD5)
Made available in DSpace on 2016-03-31T17:03:13Z (GMT). No. of bitstreams: 1 2010_dis_cbasousa.pdf: 3271134 bytes, checksum: 26800061b064d35cf64afc5a31bc642f (MD5) Previous issue date: 2010-03-05
This work is dedicated to the deposition and characterization of thin films of cadmium sulfide and titanium dioxide for application in photovoltaic solar cells. Each film is deposited by a different process. The reagent TiO2 brand Vetec, was mixed with hydrochloric acid in aqueous solution forming a dispersion. This dispersion is spread on the glass substrate and then heated with a plate heater. After the deposit, were made SEM and EDX of the films. In order to prepare CdS a more complex process called chemical bath deposition was required, made of a mixture of reagents with the substrate immersed in it. Chemical reactions occurred which result was the formation of CdS, which occurs across the surface of the container and the substrate immersed in the solution. The same characterizations were carried out on TiO2 in CdS, showed in both good uniformity, was also observed that the films showed good adhesion to the substrate. In order to prove that films are applicable for photovoltaic energy conversion, a prototype of a solar photovoltaic cell was prepared, which was placed in contact with a type of light for measuring electrical parameters like the electric current and potential difference. We also measured the same parameters in the dark, for comparison of results and to prove power generation in contact with the light. The research tests provides evidence that films showed the photoelectric effect, therefore, applicable in photovoltaic solar cells.
Dedicado à deposição e caracterização de filmes finos de Sulfeto de Cádmio e Dióxido de Titânio para a aplicação em células solares fotovoltaicas. Cada filme foi depositado por um processo diferente. O reagente TiO2 da marca vetec, foi misturado com ácido clorídrico em solução aquosa formando uma dispersão. Essa dispersão foi espalhada sobre o substrato de vidro e depois aquecida com uma chapa aquecedora. Depois de formado o filme, foram feitos MEV e EDX do mesmo. Para preparar o CdS foi necessário um procedimento um pouco mais complexo, que é a deposição por banho químico, onde é feita uma mistura de reagentes e mergulhado o substrato nesta mistura. Ocorreram reações químicas cujo resultado foi a formação do CdS, que ocorre em toda a superfície do recipiente e do substrato imerso na solução. As mesmas caracterizações feitas no TiO2 foram feitas no CdS, ambos mostraram uma boa uniformidade, também foi observado que os filmes mostraram uma boa aderência ao substrato. A fim de comprovar a aplicatividade dos filmes para fins fotovoltaicos, preparou-se um protótipo de célula solar fotovoltaica, que foi colocada em contato com a luz solar para assim medir a corrente elétrica e a diferença de potencial. Também foram medidos os mesmos parâmetros no escuro, para comparação de resultados e comprovação da geração de energia elétrica através do contato com a luz. Através dos resultados destes testes, concluiu-se que os filmes apresentaram o efeito fotoelétrico, sendo assim, aplicáveis em células solares fotovoltaicas.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Pan, Jie. "Material property study on dye sensitized solar cells and cu(ga,in)se2 solar cells." Oxford, Ohio : Miami University, 2008. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=miami1240594917.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Melo, Tede Fernandes. "Obtaining an photovoltaic solar cell based in CdS and TiO2 photosensitized with dye in glass substrate with conductive layer." Universidade Federal do CearÃ, 2014. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=12131.

Повний текст джерела
Анотація:
CoordenaÃÃo de AperfeÃoamento de Pessoal de NÃvel Superior
This research describes the process of obtaining a photovoltaic cell, since getting electrical conductor glasses used for the flow of electrons coming from the photovoltaic effect until the deposition of thin films of semiconductor titanium dioxide (TiO2) and cadmium sulfide (CdS) at each of these glasses. The use of natural or synthetic dyes deposited on titanium dioxide layer has the objective to increase the absorption spectrum of the TiO2, since sunlight emits most of its energy in the frequency range of visible light. After joining the two glasses with thin films deposited over TiO2 plus dye and CdS, it was used a potassium triiodide electrolyte for regeneration and consequently the activation of photovoltaic solar cell. After mounting the cell concerned, tests of photoactivity have been performed by exposing the cells to sunlight collected for specified periods and the values of voltage and photocurrent generated. Theoretical studies have been conducted to mathematical modeling of the behavior of the solar cell mounted, and then we have analyzed the efficiency of converting solar energy into electrical energy. The constituents of the cell have been characterized by the techniques of X-ray diffraction (XRD) and scanning electron microscopy (SEM) for analyzing the porosity, uniformity and other physical parameters of thin films.
O presente trabalho descreve o processo de obtenÃÃo de uma cÃlula fotovoltaica, desde a obtenÃÃo de vidros condutores elÃtricos utilizados para o fluxo dos elÃtrons oriundos do efeito fotovoltaico, atà a deposiÃÃo dos filmes finos dos semicondutores diÃxido de titÃnio (TiO2) e sulfeto de cÃdmio (CdS) em cada um dos vidros. O uso de corantes naturais ou sintÃticos na camada depositada de diÃxido de titÃnio possuiu como objetivo aumentar o espectro de absorÃÃo do mesmo, uma vez que a luz solar emite uma grande parte de sua energia na faixa de frequÃncia da luz visÃvel. Depois de unir os dois vidros com os filmes finos depositados de TiO2 mais corante e o CdS, utilizou-se o eletrÃlito de tri-iodeto de potÃssio para a regeneraÃÃo e consequentemente a ativaÃÃo da cÃlula solar fotovoltaica. ApÃs a montagem da cÃlula em questÃo, foram realizados testes de fotoatividade, expondo as cÃlulas ao sol por perÃodos determinados e coletados os valores da fotocorrente gerada e a tensÃo, alÃm disso, foram realizados estudos teÃricos para modelagem matemÃtica do comportamento da cÃlula solar montada e em seguida analisou-se a eficiÃncia de conversÃo de energia solar em energia elÃtrica. Os constituintes da cÃlula foram caracterizados pelas tÃcnicas de difraÃÃo de raios-X (DRX) e microscopia eletrÃnica de varredura (MEV) para analisar a porosidade, uniformidade e outros parÃmetros fÃsicos dos filmes finos.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

MOYA, Johan René González. "Nanotubos de TiO2 sensibilizados com quantum dots de CdS e suas aplicações para a geração de hidrogênio mediante fotocatálise e fotoeletrocatálise." Universidade Federal de Pernambuco, 2016. https://repositorio.ufpe.br/handle/123456789/17768.

Повний текст джерела
Анотація:
Submitted by Fabio Sobreira Campos da Costa (fabio.sobreira@ufpe.br) on 2016-08-31T13:00:29Z No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Tese Doutorado Johan CD.pdf: 3689018 bytes, checksum: 956c4e0d76742d36ffe10e5bd9f4fa90 (MD5)
Made available in DSpace on 2016-08-31T13:00:29Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) Tese Doutorado Johan CD.pdf: 3689018 bytes, checksum: 956c4e0d76742d36ffe10e5bd9f4fa90 (MD5) Previous issue date: 2016-02-29
CNPq
No presente trabalho foi investigado o desempenho de nanotubos de TiO2 sensibilizados com quantum dots de CdS na geração de hidrogênio por meio da reação de dissociação da água por meio da fotocatálise e fotoeletrocatálise. Os nanotubos de TiO2 foram obtidos pelo método de anodização (30 V, 1 hora) de chapas de Ti, em etilenoglicol e água contendo íons fluoreto. As amostras anodizadas foram submetidas a tratamento térmico 400°C durante 3 horas. Posteriormente as amostras foram sensibilizadas com quantum dots de CdS via síntese hidrotérmica in situ usando o ácido 3-mercaptopropiônico como agente estabilizante. A eficiência fotocatalítica dos materiais na produção de hidrogênio foi investigada por meio da reação de dissociação da água utilizando como fonte de irradiação um simulador solar. A quantificação do hidrogênio gerado foi determinada por meio de cromatógrafia gasosa. Por outro lado, para estimar a eficiência de geração de hidrogênio via fotoeletrocatálise, as amostras foram avaliadas como fotoânodos e medidas da fotocorrente gerada pela irradiação em uma célula fotoeletroquímica (PEC) de três eletrodos foram realizadas. A sensibilização dos nanotubos de TiO2 com os quantum dots de CdS a partir da síntese hidrotérmica in situ, permitiu uma boa impregnação e distribuição uniforme dos quantum dots ao redor da superfície dos nanotubos, de acordo com as análises de EDS e XPS. O perfil de profundidade de XPS mostrou que a concentração de CdS permaneceu praticamente inalterada (homogênea) ao longo da matriz nanotubular. A presença de ânions sulfato evidenciou a oxidação do material preferentemente na superfície. Os nanotubos conferem uma proteção ao CdS frente à oxidação e protegem também os quantum dots quanto à fotocorrosão na solução de sacrifício S2-/SO32- utilizada. Este comportamento define uma boa estabilidade na fotocorrente gerada como mostrado em experimentos de longa duração (20 horas) sob irradiação. Os resultados experimentais mostraram três comportamentos diferentes para a geração de H2 quando o tempo de síntese dos QDs de CdS aumenta. Foram observados, efeitos similares, antagônicos e sinérgicos frente à atividade fotocatalítica em relação aos nanotubos de TiO2. O efeito antagônico parece estar relacionado com a presença de duas populações de tamanhos de QDs de CdS, onde a população com um band gap menor atua como uma armadilha para os elétrons fotogerados pela população com um band gap maior, diminuindo a atividade fotocatalítica do TiO2 na região ultravioleta. A transferência de elétrons a partir dos QDs de CdS para o TiO2 foi comprovada pelos resultados de UPS combinados com as medidas do band gap óptico. A maior absorção no visível após a sensibilização com o CdS combinada com a transferência de elétrons possibilita um incremento na taxa de geração de hidrogênio por meio da fotocatálise a partir de luz visível de quase zero para os nanotubos de TiO2 até cerca de 0,3 μmol cm-2 h-1 após sensibilização com os QDs de CdS. No caso da fotoeletrocatálise em uma PEC, a taxa de geração de H2 a partir de luz visível estimada pela fotocorrente gerada após a sensibilização (1,79 μmol cm-2 h-1) chega a ser até 12 vezes maior que para os nanotubos de TiO2 sem sensibilizar (0,15 μmol cm-2 h-1).
In the present work, we investigated the performance of TiO2 nanotubes sensitized with CdS quantum dots on the photocatalytic and photoelectrocatalytic H2 production reaction. TiO2 nanotubes were obtained by anodization of Ti foil, followed by annealing to crystallize the nanotubes into anatase phase. Afterwards, the samples were sensitized with CdS quantum dots via an in situ hydrothermal route using 3-mercaptopropionic acid as the capping agent. This sensitization technique permits high loading and uniform distribution of CdS quantum dots onto TiO2 nanotubes. The XPS depth profile showed that CdS concentration remains almost unchanged (homogenous), while the concentration relative to the sulfate anion decreases by more than 80 % with respect to the initial value after ~200 nm in depth. The presence of sulfate anions is due to the oxidation of sulfide and occurs in greater proportion in the material surface. This protection for air oxidation inside the nanotubular matrix also protected the CdS from photocorrosion in sacrificial solution leading to good stability properties proved by a long duration photocurrent measurements. The effect of the sizes of CdS quantum dots attached to TiO2 nanotubes on the hydrogen production via photocatalysis was investigated. The experimental results showed three different behaviors when the CdS size is increased in the sensitized samples, e.g., similar, deactivation and activation effects on the hydrogen production with regard to TiO2 nanotubes. The deactivation effect was related with two populations of sizes of CdS, where the population with a shorter band gap acts as a trap for the electrons photogenerated by the population with a larger band gap. Electron transfer from CdS quantum dots to TiO2 semiconductor nanotubes was proven by the results of UPS combined with optical band gap measurements. This property facilitates an improvement of the visible-light photocatalytic hydrogen evolution rate from zero, for TiO2 nanotubes, to approximately 0.3 μmolcm-2h-1 for TiO2 nanotubes sensitized with CdS quantum dots. The hydrogen generation rate estimated from photocurrents measurements via photoelectrocatalysis in PEC systems was also investigated. The hydrogen generation rate after sensitization was improved from 0,15 μmol cm-2 h-1 to 1,79 μmol cm-2 h-1, near to 12 times better performance under visible-light irradiation.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Melo, Tede Fernandes. "Obtenção de uma célula solar fotovoltaica baseada em CdS e TiO2 fotossensibilizada com corante em substrato de vidro com camada condutora." reponame:Repositório Institucional da UFC, 2014. http://www.repositorio.ufc.br/handle/riufc/11063.

Повний текст джерела
Анотація:
MELO, T. F. Obtenção de uma célula solar fotovoltaica baseada em CdS e TiO2 fotossensibilizada com corante em substrato de vidro com camada condutora. 2014. 90 f. Dissertação (Mestrado em Engenharia Mecânica) – Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2014.
Submitted by Marlene Sousa (mmarlene@ufc.br) on 2015-03-05T11:43:18Z No. of bitstreams: 1 2014_dis_tfmelo.pdf: 3211633 bytes, checksum: 047f4fcb695cbf88597e4382a967713e (MD5)
Approved for entry into archive by Marlene Sousa(mmarlene@ufc.br) on 2015-03-24T11:48:42Z (GMT) No. of bitstreams: 1 2014_dis_tfmelo.pdf: 3211633 bytes, checksum: 047f4fcb695cbf88597e4382a967713e (MD5)
Made available in DSpace on 2015-03-24T11:48:42Z (GMT). No. of bitstreams: 1 2014_dis_tfmelo.pdf: 3211633 bytes, checksum: 047f4fcb695cbf88597e4382a967713e (MD5) Previous issue date: 2014-06-02
This research describes the process of obtaining a photovoltaic cell, since getting electrical conductor glasses used for the flow of electrons coming from the photovoltaic effect until the deposition of thin films of semiconductor titanium dioxide (TiO2) and cadmium sulfide (CdS) at each of these glasses. The use of natural or synthetic dyes deposited on titanium dioxide layer has the objective to increase the absorption spectrum of the TiO2, since sunlight emits most of its energy in the frequency range of visible light. After joining the two glasses with thin films deposited over TiO2 plus dye and CdS, it was used a potassium triiodide electrolyte for regeneration and consequently the activation of photovoltaic solar cell. After mounting the cell concerned, tests of photoactivity have been performed by exposing the cells to sunlight collected for specified periods and the values of voltage and photocurrent generated. Theoretical studies have been conducted to mathematical modeling of the behavior of the solar cell mounted, and then we have analyzed the efficiency of converting solar energy into electrical energy. The constituents of the cell have been characterized by the techniques of X-ray diffraction (XRD) and scanning electron microscopy (SEM) for analyzing the porosity, uniformity and other physical parameters of thin films.
O presente trabalho descreve o processo de obtenção de uma célula fotovoltaica, desde a obtenção de vidros condutores elétricos utilizados para o fluxo dos elétrons oriundos do efeito fotovoltaico, até a deposição dos filmes finos dos semicondutores dióxido de titânio (TiO2) e sulfeto de cádmio (CdS) em cada um dos vidros. O uso de corantes naturais ou sintéticos na camada depositada de dióxido de titânio possuiu como objetivo aumentar o espectro de absorção do mesmo, uma vez que a luz solar emite uma grande parte de sua energia na faixa de frequência da luz visível. Depois de unir os dois vidros com os filmes finos depositados de TiO2 mais corante e o CdS, utilizou-se o eletrólito de tri-iodeto de potássio para a regeneração e consequentemente a ativação da célula solar fotovoltaica. Após a montagem da célula em questão, foram realizados testes de fotoatividade, expondo as células ao sol por períodos determinados e coletados os valores da fotocorrente gerada e a tensão, além disso, foram realizados estudos teóricos para modelagem matemática do comportamento da célula solar montada e em seguida analisou-se a eficiência de conversão de energia solar em energia elétrica. Os constituintes da célula foram caracterizados pelas técnicas de difração de raios-X (DRX) e microscopia eletrônica de varredura (MEV) para analisar a porosidade, uniformidade e outros parâmetros físicos dos filmes finos.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Mazumdar, Sayantan. "Harvesting Solar Photon Using TiO2-CdS Nanostructured Semiconductor Assemblies." Thesis, 2015. https://etd.iisc.ac.in/handle/2005/4527.

Повний текст джерела
Анотація:
Abstract The present Thesis discusses various Titanium dioxide (TiO2) - Cadmium Sulfide (CdS) assemblies for efficient harvesting of the solar photon. Inorganic semiconductor nanocrystals such as CdS have attracted considerable attention in the realm of solar photon harvesting mainly due to beneficial properties such as easy tunability of their optical, electrical, magnetic properties, functional stability i.e. non-degradability under atmospheric conditions, materials synthesis and device fabrication by benchtop methods. However, a major detrimental issue that prevails in semiconductor nanocrystals is charge recombination. Tailored semiconductor assemblies with favourable energetics can significantly alleviate the effect of charge recombination. Improved charge separation in an optimum semiconductor assembly may aid in decrease in charge recombination and hence, result in enhanced photoelectrochemical function. Owing to the band structure, CdS can harvest solar photon and when attached with wide band gap semiconductor TiO2. The photogenerated electron in the CdS conduction band can be injected at ultrafast timescales to the conduction band of the TiO2. The thesis discusses easy and cost-effective synthesis of various TiO2 and CdS assemblies and explores application of them in photovoltaics, photocatalysis and (photo conducting) image sensor. Various interactions and physical properties are also studied including the ultrafast photoinduced electron dynamics from CdS to TiO2. Sun is a great source of alternative energy especially, electrical energy. In this context, nanostructured semiconductor assemblies have demonstrated great potential towards efficient harvest of the solar photon. In Chapter 1, general properties and scope of nanostructured assemblies in the context of few applications namely liquid junction semiconductor sensitized solar cell (for solar photon conversion to electricity), visible light photocatalysis (to degrade pollutants using solar photon) and large area image sensor (sensitive to white light) are discussed. The Chapter also discusses the various characterization and quantification methods which not only provide detailed analysis of properties of the novel semiconductor assemblies but also throw light on the prospects for industrial applications. Chapters 2 to 5 comprises of discussions on the electronic and photovoltaic properties of various shaped semiconductor nanocrystals (average size  30 nm). In Chapter 2, cadmium sulfide (CdS) semiconductor nanocrystals of various shapes (tetrapod, tetrahedron, sphere and rod) obtained using an optimized solvothermal process exhibited a mixed cubic (zinc blende) and hexagonal (wurtzite) crystal structure. The various nanocrystal shapes obtained here are a consequence of the simultaneous presence of wurtzite and zinc blende phases in varying amounts. The simultaneous presence of the two crystal phases in varying amounts is observed to play a pivotal role in not only determining the final nanocrystal shape but also both the electronic and photovoltaic properties of the CdS nanocrystals. Light to electrical energy conversion efficiencies measured in two-electrode configuration laboratory solar cells remarkably decreased by one order in magnitude from tetrapod  tetrahedron  sphere  rod. The tetrapod-CdS nanocrystals, which displayed the highest light to electrical energy conversion efficiency, showed a favourable shift in position of the conduction band edge leading to highest rate of electron injection (from CdS to TiO2) and lowest rate of electron-hole recombination (higher free electron lifetimes). Chapter 2 successfully demonstrated that the photovoltaic (PV) efficiency of a device can be influenced by tuning the shape of the light harvester nanocrystal. While the light to electricity conversion efficiencies varied by one order in magnitude between the various nanocrystal shapes (average size  30 nm), the magnitude of the efficiencies was itself not very high. In Chapter 3, the same nanocrystal shapes are used to sensitize multi-layered Titania films and liquid junction solar cells are then fabricated using them. This optimization of the cell configuration showed tremendous enhancement in the light to electricity conversion efficiency by nearly one order in magnitude compared to the ones discussed in Chapter 2. The semiconductor-electrolyte interface is also studied in detail by performing ac-impedance spectroscopy on the full cell to estimate the electron lifetime of the device. The estimated recombination resistance and the electron lifetime are observed to follow the same trend as of the PV-performances of the cells composed of various shaped nanocrystals in the new configuration. The photoinduced electron transfer processes in a nano-heterostructure semiconductor assembly are complex and depend on various parameters of the constituents of the assembly. Chapter 4 discusses the ultrafast electron transfer characteristics of an assembly comprising of a wide band gap semiconductor, titanium dioxide (TiO2) attached to light harvesting cadmium sulfide (CdS) nanocrystals of varying crystallographic phase content. The nanocrystals employed here are the same as that discussed in Chapters 2 and 3. Quantitative analysis of synchrotron high resolution X-ray diffraction data of CdS nanocrystals precisely reveal the presence of both wurtzite and zinc blende phases in varying amounts. The biphasic nature of CdS influences directly the shape of the nanocrystal at long reaction times (as also highlighted in Chapters 2 and 3) as well as the transfer of the photo-excited electrons from the CdS to TiO2 as obtained from transient absorption spectroscopy. Higher amount of zinc blende phase is observed to be beneficial for fast electron transfer across the CdS-TiO2 interface. The electron transfer rate constant differs by one order in magnitude between the CdS nanocrystals and varies linearly with the fraction of the phases. Chapters 2-4 show that the electron recombination lifetime in a sensitized semiconductor assembly, which has a major impact on the performance in a solar cell, is greatly influenced by the crystal structure and geometric form of the light harvesting semiconductor nanocrystal. In Chapter 5, the final Thesis Chapter related to semiconductor assemblies for liquid junction based semiconductor sensitized solar cells, deals with the influence of downsizing of light harvester nanocrystals on the electron recombination lifetime and its eventual influence on the light to electricity conversion efficiency of the solar cell. The semiconductor (photoanode)-electrolyte interface in a liquid junction semiconductor sensitized solar cell which has a direct impact on the photovoltaic performance is probed here systematically. The light harvesting cadmium sulfide (CdS) nanocrystals (average size  6-12 nm) of distinctly different and controlled shapes are obtained using a novel and simple liquid-gas phase synthesis method performed at different temperatures involving very short reaction times. High resolution synchrotron X-ray diffraction and spectroscopic studies respectively exhibit different crystallographic phase content and optical properties. When assembled on a mesoscopic TiO2 film by a linker molecule, they exhibit remarkable variation in electron recombination lifetime by one order in magnitude, as determined by ac-impedance spectroscopy. This also drastically affects the photovoltaic efficiency of the differently shaped nanocrystals sensitized solar cells. In Chapter 6, focus shifts from liquid junction semiconductor sensitized solar cells to visible light photocatalysis. The possibility of harvesting light via a semiconductor assembly of the same chemical compositions (as in Chapters 2-5) however, in a different spatial configuration is again explored. An unprecedented morphology of titanium dioxide (TiO2) and cadmium sulfide (CdS) self-assembly obtained using a ‘truly’ one-pot and highly cost-effective method with a multi-gram scale yield is discussed here. The TiO2– CdS assembly comprised of TiO2 and CdS nanoparticles residing next to each other homogeneously self-assemble into ‘woollen knitting ball’ like microspheres. The microspheres exhibited remarkable potential as a visible light photocatalysts with high recyclability. Finally, in Chapter 7, a semiconductors assembly comprising of titanium dioxide (TiO2) rods sensitized by cadmium sulfide (CdS) nanocrystals for potential applications in large area electronics on three dimensional (3-D) substrates is discussed. Vertically aligned TiO2 rods are grown on a substrate using a 1500C process flow and then sensitized with CdS by SILAR method at room temperature. This structure forms an effective photoconductor as the photo-generated electrons are rapidly removed from the CdS (‘carpet’) via the TiO2 thereby permitting a hole rich CdS. Current-voltage characteristics are measured, and models illustrate space charge limited photo-current as the mechanism of charge transport at moderate voltage bias. With this stable assembly, high speed can be achieved. The frequency response with a loading of 10 pF and 9 M shows a half power frequency of 100 Hz.
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "TiO2–CdS"

1

Gnatyuk, Yuriy, Maxim Zhukovskyj, Natalia Smirnova, Anna Eremenko, Asta Guobiene, and Sigitas Tamulevičius. "Sol-Gel Synthesis of Mesoporous TiO2 Films for Visible Light Sensitive TiO2/CdS Heterostructures." In Sol-Gel Methods for Materials Processing, 315–21. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-8514-7_22.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kodan, Nisha, Aadesh P. Singh, Dipika Sharma, and B. R. Mehta. "Photoelectrochemical Study of TiO2/CdS Heterostructure Thin Films Prepared via rf Sputtering." In Springer Proceedings in Physics, 1235–39. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-97604-4_188.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Manivannan, A., Aaron Peterson, Winn Wilson, Bratindranath Mukherjee, and Vaidyanathan Ravi Subramanian. "Hydrogen Production and Photodegradation at TiO2/Metal/CdS Sandwich Using UV–Visible Light." In Semiconductor Materials for Solar Photovoltaic Cells, 141–67. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-20331-7_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Song, Yan, Shusen Chen, Yantao Su, Ziming Li, Fengju Wang, Yangfei Gou, Haizhen Wang, and Hua Chang. "Construction of CDS/TIO2/HGS Composite Materials and Photocatalytic Reduction of Hexavalent Uranium in Wastewater." In Springer Proceedings in Physics, 443–52. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-8899-8_46.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Serpone, Nick, and Ezio Pelizzetti. "Fundamental Studies Into Primary Events in Photocatalysis Employing CdS and TiO2 Semiconductors: Photoluminescence, Laser Flash Photolysis and Pulse Radiolysis." In Homogeneous and Heterogeneous Photocatalysis, 51–89. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4642-2_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Peterson, Aaron, Winn Wilson, Bratindranath Mukherjee, and Vaidyanathan (Ravi) Subramanian. "Simultaneous Photodegradation and Hydrogen Production with TiO2/Pt/CdS Using UV–Visible Light in the Presence of a Sacrificial Agent and a Pollutant." In Materials and Processes for Solar Fuel Production, 153–71. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-1628-3_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Zhao, Liuying, Fufang Zhou, Songjie Han, Ping Wang, and Bi Jing. "Researches on TiO2 nanometer electrode of CdS quantum dots sensitized solar cells." In Advances in Energy Equipment Science and Engineering, 207–9. CRC Press, 2015. http://dx.doi.org/10.1201/b19126-42.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Christine Almeida Silva, Anielle, Jerusa Maria de Oliveira, Kelen Talita Romão da Silva, Francisco Rubens Alves dos Santos, João Paulo Santos de Carvalho, Rose Kethelyn Souza Avelino, Eurípedes Alves da Silva Filho, et al. "Fluorescent Markers: Proteins and Nanocrystals." In Bioluminescence [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.96675.

Повний текст джерела
Анотація:
This book chapter will comment on fluorescent reporter proteins and nanocrystals’ applicability as fluorescent markers. Fluorescent reporter proteins in the Drosophila model system offer a degree of specificity that allows monitoring cellular and biochemical phenomena in vivo, such as autophagy, mitophagy, and changes in the redox state of cells. Titanium dioxide (TiO2) nanocrystals (NCs) have several biological applications and emit in the ultraviolet, with doping of europium ions can be visualized in the red luminescence. Therefore, it is possible to monitor nanocrystals in biological systems using different emission channels. CdSe/CdS magic-sized quantum dots (MSQDs) show high luminescence stability in biological systems and can be bioconjugated with biological molecules. Therefore, this chapter will show exciting results of the group using fluorescent proteins and nanocrystals in biological systems.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Bhatt, Jayesh, Shubang Vyas, Avinash Kumar Rai, Neeru Madan, and Rakshit Ameta. "Graphene–Based Photocatalysts." In Graphene-based Carbocatalysts: Synthesis, Properties and Applications (Volume 2), 1–49. BENTHAM SCIENCE PUBLISHERS, 2023. http://dx.doi.org/10.2174/9789815136050123020005.

Повний текст джерела
Анотація:
Graphene is a single layer of graphite with a unique two-dimensional structure with high conductivity, superior electron mobility, absorptivity, and specific surface area. The extraordinary mechanical, thermal, and electrical properties of graphene are due to long-range π conjugation. Due to these properties, graphene can be used in nanosystems and nano- devices. The photocatalytic efficiency of composites (semiconductor-based metal oxides and graphene-based photocatalysts) can be improved under visible light. Graphene behaves as an electron acceptor in these types of composite photocatalysts. Different types of graphene-based composites (graphene (G)-semiconductor, graphene oxide (GO)-semiconductor, and reduced graphene oxide (RGO)-semiconductor, where the semiconductor is TiO2 , ZnO, CdS, Zn2SnO4 , etc.) can be prepared through simple mixing and/or sonication, sol-gel process, liquid-phase, hydrothermal, and solvothermal methods. This chapter includes the most recent advances in different applications of graphene-based semiconductor photocatalysts for degrading various contaminants (treatment of waste water) and producing hydrogen (fuel of future) by photosplitting water, and photo-catalytically reducing carbon dioxide to energy-rich synthetic fuels (combating against global warming and energy crisis), etc<br>
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "TiO2–CdS"

1

Pan, Jie, Lei L. Kerr, and Xuege Wang. "CDS sensitized nanostructured TiO2 and ZnO solar cells." In 2009 34th IEEE Photovoltaic Specialists Conference (PVSC). IEEE, 2009. http://dx.doi.org/10.1109/pvsc.2009.5411664.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Enlai, Dong, Li Shuangyuan, Gao Mengdi, Zhang Lina, Zhang Wei, and Ma Jinwen. "The photoelectronchemical properties of H:PbS/CdS/TiO2 photoelectrodes." In 2017 32nd Youth Academic Annual Conference of Chinese Association of Automation (YAC). IEEE, 2017. http://dx.doi.org/10.1109/yac.2017.7967550.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Pena, Juan Luis, E. Hernandez-Rodriguez, Victor Rejon, R. Mis-Fernandez, and I. Riech. "Thermal behavior of ITO/TiO2/CdS/CdTe solar cells." In 2015 IEEE 42nd Photovoltaic Specialists Conference (PVSC). IEEE, 2015. http://dx.doi.org/10.1109/pvsc.2015.7355894.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Bhattacharjee, Mitradip, Saptak Rarotra, Sagnik Middya, and Dipankar Bandyopadhyay. "The effect of annealing on band gap and optical properties of CdS/CdS-TiO2 nanoparticles." In 2017 4th International Conference on Opto-Electronics and Applied Optics (Optronix). IEEE, 2017. http://dx.doi.org/10.1109/optronix.2017.8349999.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Zhao, Junwei, Jingjing Du, Youbin Yu, Huaijun Wang, and Fengmin Ji. "Photocatalytic Degradation of Gaseous Benzene over CdS/TiO2 Nanotube Arrays." In Asia Communications and Photonics Conference. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/acpc.2016.af2a.138.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Enlai Dong, Zhiying Wu, Wei zhang, Chunxi Lu, Lina Zhang, Qiushi Wang, Jinwen Ma, and Jing Wang. "Photoelectrochemical performance of PbS/CdS quantum dot cosensitized TiO2 photoelectrodes." In 2015 Chinese Automation Congress (CAC). IEEE, 2015. http://dx.doi.org/10.1109/cac.2015.7382695.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Peter, I. John, S. Dhinakaran, K. Ramachandran, and P. Nithiananthi. "Performance of TiO2/CdS/Bi2S3 heterostructure based semiconductor sensitized solar cell." In DAE SOLID STATE PHYSICS SYMPOSIUM 2018. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5113396.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Wang, Bo, and Lei L. Kerr. "Nanostructured TiO2 and ZnO solar cells using CdS as sensitizer: Stability investigation." In 2010 35th IEEE Photovoltaic Specialists Conference (PVSC). IEEE, 2010. http://dx.doi.org/10.1109/pvsc.2010.5615926.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Wen, Min, Wen Chen, Jingjing Du, Yueli Liu, and Chao Zhang. "Photocatalytic Degradation of Gaseous Benzene with CdS/TiO2 Prepared by Water in Oil Method." In Nanophotonics, Nanoelectronics and Nanosensor. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/n3.2013.nsa3a.43.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Misra, M., Madan Lal Singla, P. Kapur, and C. Ghansyam. "Compact packing of CdS nanoparticle in flower like TiO2 nanorods for DSSC solar cell." In 2012 International Conference on Devices, Circuits and Systems (ICDCS 2012). IEEE, 2012. http://dx.doi.org/10.1109/icdcsyst.2012.6188745.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії