Статті в журналах з теми "Time Finite Element Method"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Time Finite Element Method.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Time Finite Element Method".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Yamada, T., and K. Tani. "Finite element time domain method using hexahedral elements." IEEE Transactions on Magnetics 33, no. 2 (March 1997): 1476–79. http://dx.doi.org/10.1109/20.582539.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Becker, Roland, Erik Burman, and Peter Hansbo. "A finite element time relaxation method." Comptes Rendus Mathematique 349, no. 5-6 (March 2011): 353–56. http://dx.doi.org/10.1016/j.crma.2010.12.010.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Hansbo, Peter. "A free-Lagrange finite element method using space-time elements." Computer Methods in Applied Mechanics and Engineering 188, no. 1-3 (July 2000): 347–61. http://dx.doi.org/10.1016/s0045-7825(99)00157-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Feliziani, M., and E. Maradei. "Point matched finite element-time domain method using vector elements." IEEE Transactions on Magnetics 30, no. 5 (September 1994): 3184–87. http://dx.doi.org/10.1109/20.312614.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kobayashi, Osuke, Kazuhiko Adachi, Yohei Azuma, Atsushi Fujita, and Eiji Kohmura. "64028 Computational Time Reduction for Neurosurgical Training System Based on Finite Element Method(Biomechanics)." Proceedings of the Asian Conference on Multibody Dynamics 2010.5 (2010): _64028–1_—_64028–7_. http://dx.doi.org/10.1299/jsmeacmd.2010.5._64028-1_.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Neda, Monika. "Discontinuous Time Relaxation Method for the Time-Dependent Navier-Stokes Equations." Advances in Numerical Analysis 2010 (October 3, 2010): 1–21. http://dx.doi.org/10.1155/2010/419021.

Повний текст джерела
Анотація:
A high-order family of time relaxation models based on approximate deconvolution is considered. A fully discrete scheme using discontinuous finite elements is proposed and analyzed. Optimal velocity error estimates are derived. The dependence of these estimates with respect to the Reynolds number Re is , which is an improvement with respect to the continuous finite element method where the dependence is .
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Jin-Fa Lee, R. Lee, and A. Cangellaris. "Time-domain finite-element methods." IEEE Transactions on Antennas and Propagation 45, no. 3 (March 1997): 430–42. http://dx.doi.org/10.1109/8.558658.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Steinbach, Olaf. "Space-Time Finite Element Methods for Parabolic Problems." Computational Methods in Applied Mathematics 15, no. 4 (October 1, 2015): 551–66. http://dx.doi.org/10.1515/cmam-2015-0026.

Повний текст джерела
Анотація:
AbstractWe propose and analyze a space-time finite element method for the numerical solution of parabolic evolution equations. This approach allows the use of general and unstructured space-time finite elements which do not require any tensor product structure. The stability of the numerical scheme is based on a stability condition which holds for standard finite element spaces. We also provide related a priori error estimates which are confirmed by numerical experiments.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Anees, Asad, and Lutz Angermann. "Time Domain Finite Element Method for Maxwell’s Equations." IEEE Access 7 (2019): 63852–67. http://dx.doi.org/10.1109/access.2019.2916394.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Chessa, Jack, and Ted Belytschko. "A local space–time discontinuous finite element method." Computer Methods in Applied Mechanics and Engineering 195, no. 13-16 (February 2006): 1325–43. http://dx.doi.org/10.1016/j.cma.2005.05.022.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Wang, Li, and Hongzhi Zhong. "A time finite element method for structural dynamics." Applied Mathematical Modelling 41 (January 2017): 445–61. http://dx.doi.org/10.1016/j.apm.2016.09.017.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Réthoré, J., A. Gravouil, and A. Combescure. "A combined space-time extended finite element method." International Journal for Numerical Methods in Engineering 64, no. 2 (2005): 260–84. http://dx.doi.org/10.1002/nme.1368.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Chieh-Tsao Hwang and Ruey-Beei Wu. "Treating late-time instability of hybrid finite-element/finite-difference time-domain method." IEEE Transactions on Antennas and Propagation 47, no. 2 (1999): 227–32. http://dx.doi.org/10.1109/8.761061.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Liu, Y., and X. Peng. "A large time incremental finite element method for finite deformation problem." Communications in Numerical Methods in Engineering 17, no. 11 (October 12, 2001): 789–803. http://dx.doi.org/10.1002/cnm.449.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Kim, Jinkyu, Gary F. Dargush, Hwasung Roh, Jaeho Ryu, and Dongkeon Kim. "Unified Space–Time Finite Element Methods for Dissipative Continua Dynamics." International Journal of Applied Mechanics 09, no. 02 (March 2017): 1750019. http://dx.doi.org/10.1142/s1758825117500193.

Повний текст джерела
Анотація:
Based upon the extended framework of Hamilton’s principle, unified space–time finite element methods for viscoelastic and viscoplastic continuum dynamics are presented, respectively. For numerical efficiency, mixed time-step algorithm in time- and displacement-based algorithm in space are adopted. Through analytical investigation, we demonstrate that the Newmark’s constant average acceleration method and the present method are the same for viscoelasticity. With spatial eight-node brick elements, some numerical simulations are undertaken to validate and investigate the performance of the present non-iterative space–time finite element method for viscoplasticity.
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Sacks, Z. S., and Jin-Fa Lee. "A finite-element time-domain method using prism elements for microwave cavities." IEEE Transactions on Electromagnetic Compatibility 37, no. 4 (1995): 519–27. http://dx.doi.org/10.1109/15.477336.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Kacprzyk, Z. "Third formulation of the space-time finite element method." IOP Conference Series: Materials Science and Engineering 1015, no. 1 (January 1, 2021): 012005. http://dx.doi.org/10.1088/1757-899x/1015/1/012005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Van, Tri, and Aihua Wood. "A Time-Domain Finite Element Method for Maxwell's Equations." SIAM Journal on Numerical Analysis 42, no. 4 (January 2004): 1592–609. http://dx.doi.org/10.1137/s0036142901387427.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Hara, T., T. Naito, and J. Umoto. "Time-periodic finite element method for nonlinear diffusion equations." IEEE Transactions on Magnetics 21, no. 6 (November 1985): 2261–64. http://dx.doi.org/10.1109/tmag.1985.1064193.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Taggar, Karanvir, Emad Gad, and Derek McNamara. "High-Order Unconditionally Stable Time-Domain Finite-Element Method." IEEE Antennas and Wireless Propagation Letters 18, no. 9 (September 2019): 1775–79. http://dx.doi.org/10.1109/lawp.2019.2929734.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Feng, L. B., P. Zhuang, F. Liu, I. Turner, and Y. T. Gu. "Finite element method for space-time fractional diffusion equation." Numerical Algorithms 72, no. 3 (October 21, 2015): 749–67. http://dx.doi.org/10.1007/s11075-015-0065-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Hong, Li, and Liu Ru-xun. "The space-time finite element method for parabolic problems." Applied Mathematics and Mechanics 22, no. 6 (June 2001): 687–700. http://dx.doi.org/10.1007/bf02435669.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Marinkovic, Dragan, and Manfred Zehn. "Survey of Finite Element Method-Based Real-Time Simulations." Applied Sciences 9, no. 14 (July 10, 2019): 2775. http://dx.doi.org/10.3390/app9142775.

Повний текст джерела
Анотація:
The finite element method (FEM) has deservedly gained the reputation of the most powerful, highly efficient, and versatile numerical method in the field of structural analysis. Though typical application of FE programs implies the so-called “off-line” computations, the rapid pace of hardware development over the past couple of decades was the major impetus for numerous researchers to consider the possibility of real-time simulation based on FE models. Limitations of available hardware components in various phases of developments demanded remarkable innovativeness in the quest for suitable solutions to the challenge. Different approaches have been proposed depending on the demands of the specific field of application. Though it is still a relatively young field of work in global terms, an immense amount of work has already been done calling for a representative survey. This paper aims to provide such a survey, which of course cannot be exhaustive.
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Frasson, A. M. F., and H. E. Hernández-Figueroa. "Envelope full-wave 3D finite element time domain method." Microwave and Optical Technology Letters 35, no. 5 (October 25, 2002): 351–54. http://dx.doi.org/10.1002/mop.10604.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Van, Tri, and Aihua Wood. "A Time-Domain Finite Element Method for Helmholtz Equations." Journal of Computational Physics 183, no. 2 (December 2002): 486–507. http://dx.doi.org/10.1006/jcph.2002.7204.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Mukherjee, Shuvajit, S. Gopalakrishnan, and Ranjan Ganguli. "Time domain spectral element-based wave finite element method for periodic structures." Acta Mechanica 232, no. 6 (March 15, 2021): 2269–96. http://dx.doi.org/10.1007/s00707-020-02917-y.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Dodig, Hrvoje, Dragan Poljak, and Mario Cvetković. "On the edge element boundary element method/finite element method coupling for time harmonic electromagnetic scattering problems." International Journal for Numerical Methods in Engineering 122, no. 14 (April 14, 2021): 3613–52. http://dx.doi.org/10.1002/nme.6675.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Agrawal, Manish, and C. S. Jog. "A quadratic time finite element method for nonlinear elastodynamics within the context of hybrid finite elements." Applied Mathematics and Computation 305 (July 2017): 203–20. http://dx.doi.org/10.1016/j.amc.2017.01.059.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Nguyen, Thanh Xuan, and Long Tuan Tran. "A simplified variant of the time finite element methods based on the shape functions of an axial finite bar." Journal of Science and Technology in Civil Engineering (STCE) - HUCE 15, no. 4 (October 31, 2021): 42–53. http://dx.doi.org/10.31814/stce.huce(nuce)2021-15(4)-04.

Повний текст джерела
Анотація:
In the field of structural dynamics, the structural responses in the time domain are of major concern. There already exist many methods proposed previously including widely used direct time integration methods such as ones in the β-Newmark family, Houbolt’s method, and Runge-Kutta method. The time finite element methods (TFEM) that followed the well-posed variational statement for structural dynamics are found to bring about a superior accuracy even with large time steps (element sizes), when compared with the results from methods mentioned above. Some high-order time finite elements were derived with the procedure analogous to the conventional finite element methods. In the formulation of these time finite elements, the shape functions are like the ones for a (spatial) 2-order finite beam. In this article, a simplified variant for the TFEM is proposed where the shape functions similar to the ones for a (spatial) axial bar are used. The accuracy in the obtained results of some numerical examples is found to be comparable with the accuracy in the previous results.
Стилі APA, Harvard, Vancouver, ISO та ін.
30

KUMAR, V., and R. METHA. "IMPACT SIMULATIONS USING SMOOTHED FINITE ELEMENT METHOD." International Journal of Computational Methods 10, no. 04 (April 23, 2013): 1350012. http://dx.doi.org/10.1142/s0219876213500126.

Повний текст джерела
Анотація:
We present impact simulations with the Smoothed Finite Element Method (SFEM). Therefore, we develop the SFEM in the context of explicit dynamic applications based on diagonalized mass matrix. Since SFEM is not based on the isoparametric concept and is based on line integration rather than domain integration, it is very promising for events involving large deformations and severe element distortion as they occur in high dynamic events such as impacts. For some benchmark problems, we show that SFEM is superior to standard FEM for impact events. To our best knowledge, this is the first time SFEM is applied in the context of impact analysis based on explicit time integration.
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Dermentzoglou, Dimitrios, Myrta Castellino, Paolo De Girolamo, Maziar Partovi, Gerd-Jan Schreppers, and Alessandro Antonini. "Crownwall Failure Analysis through Finite Element Method." Journal of Marine Science and Engineering 9, no. 1 (December 31, 2020): 35. http://dx.doi.org/10.3390/jmse9010035.

Повний текст джерела
Анотація:
Several failures of recurved concrete crownwalls have been observed in recent years. This work aims to get a better insight within the processes underlying the loading phase of these structures due to non-breaking wave impulsive loading conditions and to identify the dominant failure modes. The investigation is carried out through an offline one-way coupling of computational fluid dynamics (CFD) generated wave pressure time series and a time-varying structural Finite Element Analysis. The recent failure of the Civitavecchia (Italy) recurved parapet is adopted as an explanatory case study. Modal analysis aimed to identify the main modal parameters such as natural frequencies, modal masses and modal shapes is firstly performed to comprehensively describe the dynamic response of the investigated structure. Following, the CFD generated pressure field time-series is applied to linear and non-linear finite element model, the developed maximum stresses and the development of cracks are properly captured in both models. Three non-linear analyses are performed in order to investigate the performance of the crownwall concrete class. Starting with higher quality concrete class, it is decreased until the formation of cracks is reached under the action of the same regular wave condition. It is indeed shown that the concrete quality plays a dominant role for the survivability of the structure, even allowing the design of a recurved concrete parapet without reinforcing steel bars.
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Abenius, E., and F. Edelvik. "Thin Sheet Modeling Using Shell Elements in the Finite-Element Time-Domain Method." IEEE Transactions on Antennas and Propagation 54, no. 1 (January 2006): 28–34. http://dx.doi.org/10.1109/tap.2005.861554.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Musivand-Arzanfudi, M., and H. Hosseini-Toudeshky. "Moving least-squares finite element method." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 221, no. 9 (September 1, 2007): 1019–36. http://dx.doi.org/10.1243/09544062jmes463.

Повний текст джерела
Анотація:
A new computational method here called moving least-squares finite element method (MLSFEM) is presented, in which the shape functions of the parametric elements are constructed using moving least-squares approximation. While preserving some excellent characteristics of the meshless methods such as elimination of the volumetric locking in near-incompressible materials and giving accurate strains and stresses near the boundaries of the problem, the computational time is decreased by constructing the meshless shape functions in the stage of creating parametric elements and then utilizing them for any new problem. Moreover, it is not necessary to have knowledge about the full details of the shape function generation method in future uses. The MLSFEM also eliminates another drawback of meshless methods associated with the lack of accordance between the integration cells and the problem boundaries. The method is described for two-dimensional problems, but it is extendable for three-dimensional problems too. The MLSFEM does not require the complex mesh generation. Excellent results can be obtained even using a simple mesh. A technique is also presented for isoparametric mapping which enables best possible mapping via a constrained optimization criterion. Several numerical examples are analysed to show the efficiency and convergence of the method.
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Wu, Sheng Bin, and Xiao Bao Liu. "A Material Selection Method Based on Finite Element Method." Advanced Materials Research 887-888 (February 2014): 1013–16. http://dx.doi.org/10.4028/www.scientific.net/amr.887-888.1013.

Повний текст джерела
Анотація:
A new method for material selection in structure design based on the theory of the finite element method was presented. The method made material selection and structure design working at the same time. The mathematical model was established based on the finite element method. Finally, the material selection of an excavator's boom was verified, the results show that the proposed method is effective and feasible.
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Lou, Z., and J. M. Jin. "A New Explicit Time-Domain Finite-Element Method Based on Element-Level Decomposition." IEEE Transactions on Antennas and Propagation 54, no. 10 (October 2006): 2990–99. http://dx.doi.org/10.1109/tap.2006.882178.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Sharma, Vikas, Kazunori Fujisawa, and Akira Murakami. "Velocity-based time-discontinuous Galerkin space-time finite element method for elastodynamics." Soils and Foundations 58, no. 2 (April 2018): 491–510. http://dx.doi.org/10.1016/j.sandf.2018.02.015.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

He, Siriguleng, Hong Li, and Yang Liu. "Time discontinuous Galerkin space-time finite element method for nonlinear Sobolev equations." Frontiers of Mathematics in China 8, no. 4 (May 11, 2013): 825–36. http://dx.doi.org/10.1007/s11464-013-0307-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Liu, Yang, Hong Li, and Siriguleng He. "Mixed time discontinuous space-time finite element method for convection diffusion equations." Applied Mathematics and Mechanics 29, no. 12 (December 2008): 1579–86. http://dx.doi.org/10.1007/s10483-008-1206-y.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Lehrenfeld, Christoph, and Maxim Olshanskii. "An Eulerian finite element method for PDEs in time-dependent domains." ESAIM: Mathematical Modelling and Numerical Analysis 53, no. 2 (March 2019): 585–614. http://dx.doi.org/10.1051/m2an/2018068.

Повний текст джерела
Анотація:
The paper introduces a new finite element numerical method for the solution of partial differential equations on evolving domains. The approach uses a completely Eulerian description of the domain motion. The physical domain is embedded in a triangulated computational domain and can overlap the time-independent background mesh in an arbitrary way. The numerical method is based on finite difference discretizations of time derivatives and a standard geometrically unfitted finite element method with an additional stabilization term in the spatial domain. The performance and analysis of the method rely on the fundamental extension result in Sobolev spaces for functions defined on bounded domains. This paper includes a complete stability and error analysis, which accounts for discretization errors resulting from finite difference and finite element approximations as well as for geometric errors coming from a possible approximate recovery of the physical domain. Several numerical examples illustrate the theory and demonstrate the practical efficiency of the method.
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Matsuo, T., and M. Shimasaki. "Time-periodic finite-element method for hysteretic eddy-current analysis." IEEE Transactions on Magnetics 38, no. 2 (March 2002): 549–52. http://dx.doi.org/10.1109/20.996144.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Richter, Gerard R. "A finite element method for time-dependent convection-diffusion equations." Mathematics of Computation 54, no. 189 (January 1, 1990): 81. http://dx.doi.org/10.1090/s0025-5718-1990-0993932-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Joseph, J., T. J. Sober, K. J. Gohn, and A. Konrad. "Time domain analysis by the point-matched finite element method." IEEE Transactions on Magnetics 27, no. 5 (September 1991): 3852–55. http://dx.doi.org/10.1109/20.104942.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Mousavi, Seyed Reza, Iman Khalaji, Ali Sadeghi Naini, Kaamran Raahemifar, and Abbas Samani. "Statistical finite element method for real-time tissue mechanics analysis." Computer Methods in Biomechanics and Biomedical Engineering 15, no. 6 (June 2012): 595–608. http://dx.doi.org/10.1080/10255842.2010.550889.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Hladky-Hennion, Anne-Christine, Régis Bossut, and Michel de Billy. "Time analysis of immersed waveguides using the finite element method." Journal of the Acoustical Society of America 104, no. 1 (July 1998): 64–71. http://dx.doi.org/10.1121/1.423284.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Kacprzyk, Zbigniew. "A Stationary Formulation of the Space-time Finite Element Method." Procedia Engineering 153 (2016): 248–55. http://dx.doi.org/10.1016/j.proeng.2016.08.110.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Li, Binjie, Hao Luo, and Xiaoping Xie. "A space-time finite element method for fractional wave problems." Numerical Algorithms 85, no. 3 (January 4, 2020): 1095–121. http://dx.doi.org/10.1007/s11075-019-00857-w.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Zhang, Rui, Lihua Wen, Jinyou Xiao, and Dong Qian. "An efficient solution algorithm for space–time finite element method." Computational Mechanics 63, no. 3 (July 14, 2018): 455–70. http://dx.doi.org/10.1007/s00466-018-1603-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Rylander, Thomas, and Jian-Ming Jin. "Perfectly matched layer for the time domain finite element method." Journal of Computational Physics 200, no. 1 (October 2004): 238–50. http://dx.doi.org/10.1016/j.jcp.2004.03.016.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

French, Donald A. "A space-time finite element method for the wave equation." Computer Methods in Applied Mechanics and Engineering 107, no. 1-2 (August 1993): 145–57. http://dx.doi.org/10.1016/0045-7825(93)90172-t.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Zou, Guang-an. "Galerkin finite element method for time-fractional stochastic diffusion equations." Computational and Applied Mathematics 37, no. 4 (March 16, 2018): 4877–98. http://dx.doi.org/10.1007/s40314-018-0609-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії