Добірка наукової літератури з теми "Thermosensitive bilayer"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Thermosensitive bilayer".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Thermosensitive bilayer"

1

Li, Xian, Xiudan Wang, Luping Sha, Da Wang, Wei Shi, Qinfu Zhao, and Siling Wang. "Thermosensitive Lipid Bilayer-Coated Mesoporous Carbon Nanoparticles for Synergistic Thermochemotherapy of Tumor." ACS Applied Materials & Interfaces 10, no. 23 (May 25, 2018): 19386–97. http://dx.doi.org/10.1021/acsami.8b03008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Jun, Indong, Taufiq Ahmad, Seongwoo Bak, Joong-Yup Lee, Eun Mi Kim, Jinkyu Lee, Yu Bin Lee, Hongsoo Jeong, Hojeong Jeon, and Heungsoo Shin. "Spatially Assembled Bilayer Cell Sheets of Stem Cells and Endothelial Cells Using Thermosensitive Hydrogels for Therapeutic Angiogenesis." Advanced Healthcare Materials 6, no. 9 (February 23, 2017): 1601340. http://dx.doi.org/10.1002/adhm.201601340.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Alrbyawi, Hamad, Sai H. S. Boddu, Ishwor Poudel, Manjusha Annaji, Nur Mita, Robert D. Arnold, Amit K. Tiwari, and R. Jayachandra Babu. "Cardiolipin for Enhanced Cellular Uptake and Cytotoxicity of Thermosensitive Liposome-Encapsulated Daunorubicin toward Breast Cancer Cell Lines." International Journal of Molecular Sciences 23, no. 19 (October 4, 2022): 11763. http://dx.doi.org/10.3390/ijms231911763.

Повний текст джерела
Анотація:
Daunorubicin (DNR) and cardiolipin (CL) were co-delivered using thermosensitive liposomes (TSLs). 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1-myristoyl-2-stearoyl-sn-glycero-3-phosphocholine (MSPC), cholesterol, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] or DSPE-mPEG (2000) and CL were used in the formulation of liposomes at a molar ratio of 57:40:30:3:20, respectively. CL forms raft-like microdomains that may relocate and change lipid organization of the outer and inner mitochondrial membranes. Such transbilayer lipid movement eventually leads to membrane permeabilization. TSLs were prepared by thin-film hydration (drug:lipid ratio 1:5) where DNR was encapsulated within the aqueous core of the liposomes and CL acted as a component of the lipid bilayer. The liposomes exhibited high drug encapsulation efficiency (>90%), small size (~115 nm), narrow size distribution (polydispersity index ~0.12), and a rapid release profile under the influence of mild hyperthermia. The liposomes also exhibited ~4-fold higher cytotoxicity against MDA-MB-231 cells compared to DNR or liposomes similar to DaunoXome® (p < 0.001). This study provides a basis for developing a co-delivery system of DNR and CL encapsulated in liposomes for treatment of breast cancer.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Lu, Yu-Jen, Hao-Lung Hsu, Yu-Hsiang Lan, and Jyh-Ping Chen. "Thermosensitive Cationic Magnetic Liposomes for Thermoresponsive Delivery of CPT-11 and SLP2 shRNA in Glioblastoma Treatment." Pharmaceutics 15, no. 4 (April 6, 2023): 1169. http://dx.doi.org/10.3390/pharmaceutics15041169.

Повний текст джерела
Анотація:
Thermosensitive cationic magnetic liposomes (TCMLs), prepared from dipalmitoylphosphatidylcholine (DPPC), cholesterol, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)]-2000, and didodecyldimethylammonium bromide (DDAB) were used in this study for the controlled release of drug/gene for cancer treatment. After co-entrapping citric-acid-coated magnetic nanoparticles (MNPs) and the chemotherapeutic drug irinotecan (CPT-11) in the core of TCML (TCML@CPT-11), SLP2 shRNA plasmids were complexed with DDAB in the lipid bilayer to prepare TCML@CPT-11/shRNA with a 135.6 ± 2.1 nm diameter. As DPPC has a melting temperature slightly above the physiological temperature, drug release from the liposomes can be triggered by an increase in solution temperature or by magneto-heating induced with an alternating magnetic field (AMF). The MNPs in the liposomes also endow the TCMLs with magnetically targeted drug delivery with guidance by a magnetic field. The successful preparation of drug-loaded liposomes was confirmed by various physical and chemical methods. Enhanced drug release, from 18% to 59%, at pH 7.4 was observed when raising the temperature from 37 to 43 °C, as well as during induction with an AMF. The in vitro cell culture experiments endorse the biocompatibility of TCMLs, whereas TCML@CPT-11 shows some enhancement of cytotoxicity toward U87 human glioblastoma cells when compared with free CPT-11. The U87 cells can be transfected with the SLP2 shRNA plasmids with very high efficiency (~100%), leading to silencing of the SLP2 gene and reducing the migration ability of U87 from 63% to 24% in a wound-healing assay. Finally, an in vivo study, using subcutaneously implanted U87 xenografts in nude mice, demonstrates that the intravenous injection of TCML@CPT11-shRNA, plus magnetic guidance and AMF treatment, can provide a safe and promising therapeutic modality for glioblastoma treatment.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Lee, Hwankyu, Hyun Ryoung Kim, and Jae Chan Park. "Dynamics and stability of lipid bilayers modulated by thermosensitive polypeptides, cholesterols, and PEGylated lipids." Physical Chemistry Chemical Physics 16, no. 8 (2014): 3763. http://dx.doi.org/10.1039/c3cp52639a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Chong, Parkson Lee-Gau, Abby Chang, Allyson Yu, and Ayna Mammedova. "Vesicular and Planar Membranes of Archaea Lipids: Unusual Physical Properties and Biomedical Applications." International Journal of Molecular Sciences 23, no. 14 (July 9, 2022): 7616. http://dx.doi.org/10.3390/ijms23147616.

Повний текст джерела
Анотація:
Liposomes and planar membranes made of archaea or archaea-like lipids exhibit many unusual physical properties compared to model membranes composed of conventional diester lipids. Here, we review several recent findings in this research area, which include (1) thermosensitive archaeosomes with the capability to drastically change the membrane surface charge, (2) MthK channel’s capability to insert into tightly packed tetraether black lipid membranes and exhibit channel activity with surprisingly high calcium sensitivity, and (3) the intercalation of apolar squalane into the midplane space of diether bilayers to impede proton permeation. We also review the usage of tetraether archaeosomes as nanocarriers of therapeutics and vaccine adjuvants, as well as the biomedical applications of planar archaea lipid membranes. The discussion on archaeosomal therapeutics is focused on partially purified tetraether lipid fractions such as the polar lipid fraction E (PLFE) and glyceryl caldityl tetraether (GCTE), which are the main components of PLFE with the sugar and phosphate removed.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Lee, Hwankyu, Hyun Ryoung Kim, Ronald G. Larson, and Jae Chan Park. "Effects of the Size, Shape, and Structural Transition of Thermosensitive Polypeptides on the Stability of Lipid Bilayers and Liposomes." Macromolecules 45, no. 17 (August 23, 2012): 7304–12. http://dx.doi.org/10.1021/ma301327j.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Theodosiou, Maria, Elias Sakellis, Nikos Boukos, Vladan Kusigerski, Beata Kalska-Szostko, and Eleni Efthimiadou. "Iron oxide nanoflowers encapsulated in thermosensitive fluorescent liposomes for hyperthermia treatment of lung adenocarcinoma." Scientific Reports 12, no. 1 (May 24, 2022). http://dx.doi.org/10.1038/s41598-022-12687-3.

Повний текст джерела
Анотація:
AbstractMagnetic hyperthermia (MHT) is in the spotlight of nanomedical research for the treatment of cancer employing magnetic iron oxide nanoparticles and their intrinsic capability for heat dissipation under an alternating magnetic field (AMF). Herein we focus on the synthesis of iron oxide nanoflowers (Nfs) of different sizes (15 and 35 nm) and coatings (bare, citrate, and Rhodamine B) while comparing their physicochemical and magnetothermal properties. We encapsulated colloidally stable citrate coated Nfs, of both sizes, in thermosensitive liposomes via extrusion, and RhB was loaded in the lipid bilayer. All formulations proved hemocompatible and cytocompatible. We found that 35 nm Nfs, at lower concentrations than 15 nm Nfs, served better as nanoheaters for magnetic hyperthermia applications. In vitro, magnetic hyperthermia results showed promising therapeutic and imaging potential for RhB loaded magnetoliposomes containing 35 nm Nfs against LLC and CULA cell lines of lung adenocarcinoma.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Sou, Keitaro, Li Yan Chan, Satoshi Arai, and Chi-Lik Ken Lee. "Highly cooperative fluorescence switching of self-assembled squaraine dye at tunable threshold temperatures using thermosensitive nanovesicles for optical sensing and imaging." Scientific Reports 9, no. 1 (November 29, 2019). http://dx.doi.org/10.1038/s41598-019-54418-1.

Повний текст джерела
Анотація:
AbstractThermosensitive fluorescent dyes can convert thermal signals into optical signals as a molecular nanoprobe. These nanoprobes are playing an increasingly important part in optical temperature sensing and imaging at the nano- and microscale. However, the ability of a fluorescent dye itself has sensitivity and accuracy limitations. Here we present a molecular strategy based on self-assembly to overcome such limitations. We found that thermosensitive nanovesicles composed of lipids and a unique fluorescent dye exhibit fluorescence switching characteristics at a threshold temperature. The switch is rapid and reversible and has a high signal to background ratio (>60), and is also highly sensitive to temperature (10–22%/°C) around the threshold value. Furthermore, the threshold temperature at which fluorescence switching is induced, can be tuned according to the phase transition temperature of the lipid bilayer membrane forming the nanovesicles. Spectroscopic analysis indicated that the fluorescence switching is induced by the aggregation-caused quenching and disaggregation-induced emission of the fluorescent dye in a cooperative response to the thermotropic phase transition of the membrane. This mechanism presents a useful approach for chemical and material design to develop fluorescent nanomaterials with superior fluorescence sensitivity to thermal signals for optical temperature sensing and imaging at the nano- and microscales.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Thermosensitive bilayer"

1

Chung, Pinzás Carla Meylín [Verfasser], Cordt [Akademischer Betreuer] Zollfrank, Cordt [Gutachter] Zollfrank, and Herbert [Gutachter] Riepl. "Thermosensitive bilayer actuators based on comb-type graft carboxymethylcellulose-g-poly-N-isopropylacrylamide hydrogels / Carla Meylín Chung Pinzás ; Gutachter: Cordt Zollfrank, Herbert Riepl ; Betreuer: Cordt Zollfrank." München : Universitätsbibliothek der TU München, 2020. http://d-nb.info/1214808441/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ratovonkery, Julie. "DYNABIOSOL : Conception bio-inspirée d'une enveloppe solaire Photovoltaïque dynamique aux fonctionnalités évolutives." Electronic Thesis or Diss., Chambéry, 2023. http://www.theses.fr/2023CHAMA027.

Повний текст джерела
Анотація:
L'urgence climatique, l'augmentation de demandes énergétiques et l'épuisement de ressources fossiles ont mené à des ambitions énergétiques et environnementales de plus en plus élevées. Dans le secteur de bâtiment, ces ambitions visent à des bâtiments résilients, durables, à faible impact environnemental et à énergie positive. L'innovation de l'enveloppe du bâtiment, qui est un élément clé de son efficacité énergétique, est donc primordiale. En effet, l'enveloppe est souvent conçue sur des bases de fonctionnalités statiques. Pourtant, elle devrait être comme une interface adaptative et multifonctionnelle, qui échange et exploite les effets de son environnement, afin d'assurer la qualité des ambiances intérieures et la production d'énergie de fonctionnement du bâtiment.Dans ce contexte, cette thèse consiste à la conception d'une facade adaptative à composants photovoltaïques (PV) intégrés. Les fonctionnalités adaptives sont visées tant pour l'amélioration de sa performance thermique que pour la maximisation de la production électrique des modules photovoltaïques. L'obtention d'un élément d'enveloppe, muni de fonctionnalités dynamiques et adaptatives, fait souvent recours à des systèmes mécaniques et de contrôles complexes. Pour cette raison, une approche de bioinspiration et l'utilisation des matériaux intelligents sont choisies pour obtenir des mécanismes d'adaptation flexibles et intelligemment low-tech.L'approche consiste à l'analyse thermique et électrique d'une facade photovoltaïque de base. Dans notre étude, elle est composée de modules PV bifaciaux, d'une lame d'air ventilée et d'un mur multicouche. Le principe est d'identifier des propriétés limitant cette facade à des fonctionnalités statiques. De cette manière, les êtres vivants en lien avec les propriétés identifiées et pouvant franchir ses limitations sont explorés. Par la suite, les matériaux intelligents pouvant assurer les stratégies bioinspirées sont sélectionnés afin de développer le nouveau concept. Enfin, la solution est validée grâce à des études expérimentales sur les échantillons de composants intelligents choisis et sur un prototype à échelle réduite de la facade. Des études numériques de faisabilité et d'analyse de performance énergétique à l'échelle du bâtiment sont également réalisées.Cette démarche a conduit à l'application de composants de bilames thermosensibles et réfléchissants sur le mur derrière les modules PV. Les bilames, en forme de lamelle rectangulaire sont disposés sur le mur en face des cellules PV. Lorsque la température augmente, ils fléchissent progressivement. Leur déformation cyclique permet d'ajuster les fonctionnalités de la facade suivant trois principes. Premièrement, en été, la facade photovoltaïque se rafraichit grâce à l'ombrage du mur et à la dissipation de chaleur par augmentation progressive de surface d'échange dans la lame d'air. Deuxièmement, en hiver, l'énergie solaire thermique est collectée soit en fermant la lame d'air ou par la valorisation de l'air préchauffée. Enfin, la production électrique des modules PV est optimisée grâce à la réflexion des rayons solaires vers la face arrière des modules bifaciaux par les bilames. Les études expérimentales et numériques réalisées ont permis de valider le potentiel du concept pour l'amélioration de l'efficacité énergétique, surtout pour l'augmentation de la production d'électricité et la performance thermique en été
Climate change, growing energy demand and depletion of fuel resources have led to increasingly high energy and environmental ambitions. These ambitions aim for resilient, sustainable, zero carbon and positive energy buildings in the building sector. Radical innovation in building envelope technologies is paramount as it is a key element in building energy efficiency. Indeed, the envelope is often designed on the basis of static functionalities rather than an adaptive and multifunctional interface. However, in the latter case, it would interact with and benefit from the effects of its external environment to ensure a comfortable indoor environment and the production of the building operating energy.In this context, this thesis consists in the design of an adaptive facade with integrated photovoltaic (PV) components. The adaptive functionalities are developed to improve both the thermal performance of the facade and the electrical production of the PV modules. Designing such an envelope element often requires complex mechanical and control systems to implement dynamic and adaptive functionalities. For this reason, we have chosen to adopt a bioinspiration approach and use smart materials to achieve flexible and low-tech adaptation mechanisms.The methodology involves the analysis of the thermal and electrical behaviour of a standard photovoltaic facade. In our case, it comprises bifacial PV modules, a ventilated air gap and a multilayer wall. The principle is to identify the properties limiting that facade to static functionalities. From this step, biological mechanisms related to the identified properties, and that can overcome the limitations are explored. Afterwards, smart materials enabling to implement the bioinspired strategies are selected. Finally, the outline of the new concept is developed with the principles involved. The solution is validated through experimental studies on the samples of the selected materials and on a reduced-scale prototype of the facade. Numerical feasibility studies and energy performance analysis at the building scale are also carried out.The developed solution consists in the application of thermosensitive and reflective bilayer components on the wall behind the PV modules. Those components are thin rectangular slats applied opposite to the PV cells. When the temperature rises, they gradually bend. Their cyclic deformation allows the adjustment of the facade functionalities according to three principles. First, in summer, the PV facade is cooled by shading the wall and dissipating heat through the increased thermal surface exchange in the air gap. Second, in winter, solar thermal energy is harvested by closing the air gap or recovering preheated air. Finally, the bilayers enhance the PV power output because of their high reflection of the irradiance to the backside of the bifacial PV modules. The experimental and numerical studies have validated the potential of the design to improve building energy efficiency, especially for increasing yearly electricity production and thermal performance in summer
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Thermosensitive bilayer"

1

Far, Shima Khezri Azizi, Laila Kudsiova, and Dipak Sarker. "Hydrophobic Metals Nanoparticles Encapsulated In A Lipid Bilayer Of Thermosensitive-Liposome." In The 9th World Congress on New Technologies. Avestia Publishing, 2023. http://dx.doi.org/10.11159/icnfa23.127.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії