Добірка наукової літератури з теми "Thermoresponsivity"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Thermoresponsivity".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Thermoresponsivity"

1

Pineda-Contreras, Beatriz A., Holger Schmalz, and Seema Agarwal. "pH dependent thermoresponsive behavior of acrylamide–acrylonitrile UCST-type copolymers in aqueous media." Polymer Chemistry 7, no. 10 (2016): 1979–86. http://dx.doi.org/10.1039/c6py00162a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Li, Yinwen, Huilong Guo, Yunfei Zhang, Jian Zheng, Jianqun Gan, Xiaoxiao Guan, and Mangeng Lu. "Pseudo-graft polymer based on adamantyl-terminated poly(oligo(ethylene glycol) methacrylate) and homopolymer with cyclodextrin as pendant: its thermoresponsivity through polymeric self-assembly and host–guest inclusion complexation." RSC Adv. 4, no. 34 (2014): 17768–79. http://dx.doi.org/10.1039/c3ra47861k.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Amemori, Shogo, Kazuya Iseda, Shizuka Anan, Toshikazu Ono, Kenta Kokado, and Kazuki Sada. "Thermoresponsivity of polymer solution derived from a self-attractive urea unit and a self-repulsive lipophilic ion unit." Polymer Chemistry 8, no. 26 (2017): 3921–25. http://dx.doi.org/10.1039/c7py00591a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Zhang, Hongcan, Jian Zhang, Wenxue Dai, and Youliang Zhao. "Facile synthesis of thermo-, pH-, CO2- and oxidation-responsive poly(amido thioether)s with tunable LCST and UCST behaviors." Polymer Chemistry 8, no. 37 (2017): 5749–60. http://dx.doi.org/10.1039/c7py01351e.

Повний текст джерела
Анотація:
Multi-responsive N-substituted poly(amido thioether) copolymers synthesized by one-pot amine–thiol–acrylate polyaddition could exhibit composition-dependent and stimuli-triggered single or double thermoresponsivity.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Fischer, Thorsten, Dan E. Demco, Radu Fechete, Martin Möller, and Smriti Singh. "Poly(vinylamine-co-N-isopropylacrylamide) linear polymer and hydrogels with tuned thermoresponsivity." Soft Matter 16, no. 28 (2020): 6549–62. http://dx.doi.org/10.1039/d0sm00408a.

Повний текст джерела
Анотація:
Poly(vinylamine-co-N-isopropylacrylamide) linear polymers and hydrogels with tuned thermoresponsivity have been synthetized. They morphology and chain dynamics where investigated by rheology and 1H NMR spectroscopy, relaxometry and diffusometry.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Cazares-Cortes, Esther, Benjamin C. Baker, Kana Nishimori, Makoto Ouchi, and François Tournilhac. "Polymethacrylic Acid Shows Thermoresponsivity in an Organic Solvent." Macromolecules 52, no. 15 (August 2019): 5995–6004. http://dx.doi.org/10.1021/acs.macromol.9b00412.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Liu, Fangyao, and Seema Agarwal. "Thermoresponsive Gold Nanoparticles with Positive UCST-Type Thermoresponsivity." Macromolecular Chemistry and Physics 216, no. 4 (December 18, 2014): 460–65. http://dx.doi.org/10.1002/macp.201400497.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Marsili, Lorenzo, Michele Dal Bo, Federico Berti, and Giuseppe Toffoli. "Chitosan-Based Biocompatible Copolymers for Thermoresponsive Drug Delivery Systems: On the Development of a Standardization System." Pharmaceutics 13, no. 11 (November 5, 2021): 1876. http://dx.doi.org/10.3390/pharmaceutics13111876.

Повний текст джерела
Анотація:
Chitosan is a natural polysaccharide that is considered to be biocompatible, biodegradable and non-toxic. The polymer has been used in drug delivery applications for its positive charge, which allows for adhesion with and recognition of biological tissues via non-covalent interactions. In recent times, chitosan has been used for the preparation of graft copolymers with thermoresponsive polymers such as poly-N-vinylcaprolactam (PNVCL) and poly-N-isopropylamide (PNIPAM), allowing the combination of the biodegradability of the natural polymer with the ability to respond to changes in temperature. Due to the growing interest in the utilization of thermoresponsive polymers in the biological context, it is necessary to increase the knowledge of the key principles of thermoresponsivity in order to obtain comparable results between different studies or applications. In the present review, we provide an overview of the basic principles of thermoresponsivity, as well as a description of the main polysaccharides and thermoresponsive materials, with a special focus on chitosan and poly-N-Vinyl caprolactam (PNVCL) and their biomedical applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Burova, Tatiana V., Valerij Y. Grinberg, Natalia V. Grinberg, Alexander S. Dubovik, Alexander P. Moskalets, Vladimir S. Papkov, and Alexei R. Khokhlov. "Salt-Induced Thermoresponsivity of a Cationic Phosphazene Polymer in Aqueous Solutions." Macromolecules 51, no. 20 (October 2, 2018): 7964–73. http://dx.doi.org/10.1021/acs.macromol.8b01621.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ghosh, Partha S., and Andrew D. Hamilton. "Supramolecular Dendrimers: Convenient Synthesis by Programmed Self-Assembly and Tunable Thermoresponsivity." Chemistry - A European Journal 18, no. 8 (January 20, 2012): 2361–65. http://dx.doi.org/10.1002/chem.201103051.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Thermoresponsivity"

1

Glassman, Matthew James. "Synthesis, nanostructure, and mechanics of thermoresponsively tough biomaterials from artificial polypeptides." Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/101505.

Повний текст джерела
Анотація:
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Chemical Engineering, 2015.
Cataloged from PDF version of thesis.
Includes bibliographical references.
Artificial protein hydrogels have attracted interest as injectable fillers and scaffolds for tissue engineering and regeneration, but the same features that enable minimally-invasive implantation of these biomaterials typically make them susceptible to mechanical degradation in the tissue environment. Achieving a rapid and sufficiently large increase in gel toughness post-injection is a crucial challenge for developing load-bearing injectable implants that persist for the needed lifetime of the implant. To address these complex goals, the objective of this thesis has been to engineer physical hydrogels that shear-thin at low temperatures but responsively assemble into a nanostructured, reinforced state at body temperature. For this purpose, the thermoresponsive aggregation of poly(N-isopropylacrylamide) (PNIPAM) and elastin-like polypeptides (ELPs) was leveraged to assemble nanostructured hydrogels from dual-associative block copolymers. Hybrid protein-polymers or protein fusions were formed by fusing PNIPAM or ELPs to the termini of a soluble artificial polypeptide decorated with self-associating [alpha]-helical domains. In cold solutions, these polypeptide block copolymers formed weak, injectable gels due to helix-associations alone; upon heating to physiological temperatures, the endblocks aggregated to form a reinforcing network of close-packed micelles throughout the gel, leading to over a 10-fold increase in elastic modulus and over 10³-fold increase in the longest stress relaxation time. Micelle packing and morphology could be tuned by endblock chemistry and block architecture, allowing for orthogonal control of gel viscoelasticity over timescales separated by four orders of magnitude. Furthermore, through the discovery of a new gelation mechanism for ELPs, simple but tough hydrogels were engineered and explored as biocompatible substrates for tissue engineering. Unlike solutions of other ELPs that have been studied extensively for decades, ELPs that have an alanine mutation in the third position of the repeat unit (i.e. VPAVG) were found to undergo arrested phase separation upon heating when formulated above a critical concentration. Solidification resulted in a bicontinuous, nanoscale network that could be manipulated by ELP design. Critically, this reversible mechanism produced extremely stiff physical gels with a relaxation time greater than 10³ seconds and shear moduli almost 10 MPa, nearly that of natural rubber despite consisting of 70% water. These ELPs were chain-extended via reversible coupling of terminal cysteine residues, leading to oxidatively-responsive increases in gel extensibility and overall toughness. Biofunctionalized gels maintained the viability of mesenchymal stem cells and chondrocytes in 2D and 3D, respectively, making these simple gel formulations a promising platform for biomedical applications. Ultimately, through controlled macromolecular synthesis and functionalization, combined with a fundamental understanding of the structure and mechanics of these new materials, this thesis has led to the development of responsively tough biomaterials that are promising for long-term performance under physiological conditions.
by Matthew James Glassman.
Ph. D.
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Thermoresponsivity"

1

Iwasaki, Yasuhiko. "Modern Synthesis and Thermoresponsivity of Polyphosphoesters." In Biomedical Engineering - Frontiers and Challenges. InTech, 2011. http://dx.doi.org/10.5772/18538.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії