Добірка наукової літератури з теми "Thermophysical model"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Thermophysical model".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Thermophysical model"
Markkanen, J., and J. Agarwal. "Thermophysical model for icy cometary dust particles." Astronomy & Astrophysics 643 (October 27, 2020): A16. http://dx.doi.org/10.1051/0004-6361/202039092.
Повний текст джерелаSOZONOV, Maxim V., Alexander N. BUSYGIN, Andrey N. BOBYLEV, and Anatolii A. KISLITSYN. "THERMOPHYSICAL MODEL OF A MEMRISTOR-DIODE MICROCHIP." Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy 7, no. 4 (2021): 62–78. http://dx.doi.org/10.21684/2411-7978-2021-7-4-62-78.
Повний текст джерелаSelivanova, Z. M., and K. V. Skomorokhov. "Identification of the Measuring Situation when Determining Thermal Properties of Solid Materials under Uncertainty." Vestnik Tambovskogo gosudarstvennogo tehnicheskogo universiteta 27, no. 4 (2021): 516–27. http://dx.doi.org/10.17277/vestnik.2021.04.pp.516-527.
Повний текст джерелаFranke, Martin M., Michael Hilbinger, Astrid Heckl, and Robert F. Singer. "Effect of Thermophysical Properties and Processing Conditions on Primary Dendrite Arm Spacing of Nickel-Base Superalloys – Numerical Approach." Advanced Materials Research 278 (July 2011): 156–61. http://dx.doi.org/10.4028/www.scientific.net/amr.278.156.
Повний текст джерелаParvizi, Negar, Falamarz Akbari, Mohammad Mehdi Alavianmehr, and Delara Mohammad-Aghaie. "Thermophysical properties of biodiesel fuels from modified perturbed hard trimer chain equation of state." High Temperatures-High Pressures 51, no. 1 (2022): 3–26. http://dx.doi.org/10.32908/hthp.v51.1099.
Повний текст джерелаSpencer, John R. "A rough-surface thermophysical model for airless planets." Icarus 83, no. 1 (January 1990): 27–38. http://dx.doi.org/10.1016/0019-1035(90)90004-s.
Повний текст джерелаZhang, Chunping, Mohammad Jahazi, and Paloma Isabel Gallego. "On the Impact of Microsegregation Model on the Thermophysical and Solidification Behaviors of a Large Size Steel Ingot." Metals 10, no. 1 (January 2, 2020): 74. http://dx.doi.org/10.3390/met10010074.
Повний текст джерелаMagri, Christopher, Ellen S. Howell, Ronald J. Vervack, Michael C. Nolan, Yanga R. Fernández, Sean E. Marshall, and Jenna L. Crowell. "SHERMAN, a shape-based thermophysical model. I. Model description and validation." Icarus 303 (March 2018): 203–19. http://dx.doi.org/10.1016/j.icarus.2017.11.025.
Повний текст джерелаOsokin, N. I., R. S. Samoylov, A. V. Sosnovskiy, S. A. Sokratov, and V. A. Zhidkov. "Model of the influence of snow cover on soil freezing." Annals of Glaciology 31 (2000): 417–21. http://dx.doi.org/10.3189/172756400781820282.
Повний текст джерелаBhardwaj, Purvee. "Structural and Thermophysical Properties of Cadmium Oxide." ISRN Thermodynamics 2012 (April 9, 2012): 1–4. http://dx.doi.org/10.5402/2012/798140.
Повний текст джерелаДисертації з теми "Thermophysical model"
Zhang, Ying. "Symbolic regression of thermophysical model using genetic programming." [Tampa, Fla.] : University of South Florida, 2004. http://purl.fcla.edu/fcla/etd/SFE0000308.
Повний текст джерелаHanesiak, John Michael. "Development of a one-dimensional electro-thermophysical model of the snow sea-ice system, arctic climate processes and microwave remote sensing applications." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2001. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/NQ62637.pdf.
Повний текст джерелаJokar, Ali. "An inverse method for estimating the electrochemical and the thermophysical parameters of lithium-ion batteries with different positive electrode materials." Thèse, Université de Sherbrooke, 2017. http://hdl.handle.net/11143/11799.
Повний текст джерелаAbstract : The safety of many electrical systems is strongly dependent on the reliable operation of their lithium-ion (Li-ion) battery packs. As a result, the battery packs must be monitored by a battery management system (BMS). The BMS interacts with all the components of the system so as to maintain the integrity of the batteries. The main part of a BMS is a Li-ion battery model that simulates and predicts its different operating points. In the electronics and in the automobile industries, the BMS usually rests on simple empirical models. They are however unable to predict the battery parameters as it ages. Furthermore, they are only applicable to a specific cell. Electrochemical-based models are, on the other hand, more sophisticated and more precise. These models are based on chemical/electrochemical kinetics and transport equations. They may be used to simulate the Li-ion battery characteristics and reactions. In order to run the electrochemical-based mathematical models, it is imperative to know the different electrochemical and thermophysical parameters of the battery. The significant variables of the Li-ion battery can be classified into three groups: geometric, material and operational parameters. The geometric and material parameters can be easily obtained from direct measurements or from the datasheets provided by the manufacturer. The operational properties are, on the other hand, not easily available. Furthermore, some of them may vary according to the measurement techniques or the battery age. Sometimes, the measurement of these parameters requires the dismantling of the battery itself, which is a risky and destructive procedure. Many investigations have been conducted to identify the operational parameters of Li-ion batteries. However, most of these studies focused on the estimation of limited parameters, or considered only one type of the positive electrode materials used in Li-ion batteries. Moreover, the coupling of the thermophysical parameters to the electrochemical variables is ignored in all of them. The main goal of this thesis is to develop a general method to simultaneously identify different electrochemical and thermophysical parameters and to predict the performance of Li-ion batteries with different positive electrode materials. To achieve this goal, an effective inverse method is introduced. Also, direct models representative of Li-ion batteries are developed, applicable for all of the positive electrode materials. A fast and accurate model is presented for simulating the performance of the Li-ion batteries with the LiMn2O4 and LiCoO2 positive electrodes. Moreover, two macro- and micro-based models are developed for predicting the performance of Li-ion battery with the LiFePO4 positive electrode, namely the Modified Mosaic (MM) and the mesoscopic-based models. The parameter estimation studies are then implemented by means of the developed direct models and experimental data provided by Hydro-Québec. All electrochemical and thermophysical parameters of the Li-ion batteries are simultaneously identified and applied for the prediction of the battery performance. Finally, a real-time technique resting on neural networks is used for the estimation of the Li-ion batteries intrinsic parameters.
Claudel, Dimitri. "Modélisation et identification de lois rhéologiques de polymères chargés : Application au procédé de moulage par injection de poudres de superalliages." Thesis, Besançon, 2016. http://www.theses.fr/2016BESA2069.
Повний текст джерелаThe works presented in this paper were realized in collaboration between the mechanical department of FEMTO-ST Institute and the company SAFRAN/SNECMA. A part of the works of this thesis focused the thermo-physical characterizations of loaded polymers that is mixtures based of thermoplastic binders and metallic powders suitable be shaped by powder injection molding process.For this work, three different loaded mixtures composed of superalloy powder were investigated.Two were supplied by SAFRAN/SNECMA used to repair (Rene80®/AmdryD15® and RBD61) and another is composed of Inconel 718 powder. Characterizations were to carry out to optimize the development of loaded polymers and to obtain homogenous materials with high solid fraction. Then, the data were used to identified parameters of usual rheological laws. The development of specific rheological models were realized by including different parameters related to the specific surface area, binder viscosities used in the formulation. The development of these models increasingly exhaustive allows the improvement of behavior laws and to better describe the rheological behavior of superalloy-loaded polymers. Finally, a simulation of the injection molding stage of a aeronautical component was realized in the Moldflow© software for the Rene80®/AmdryD15® loaded polymer
Iurzhenko, Maksym. "Electrical, thermomechanical and sorption properties of hybrid organic-inorganic systems based on urethane oligomers and silicates." Phd thesis, Université Claude Bernard - Lyon I, 2009. http://tel.archives-ouvertes.fr/tel-00689865.
Повний текст джерелаMonzon, Davila Lena Soledad. "Avaliação do congelamento de solução modelo por condutividade termica." [s.n.], 2007. http://repositorio.unicamp.br/jspui/handle/REPOSIP/255756.
Повний текст джерелаDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia de Alimentos
Made available in DSpace on 2018-08-08T21:44:28Z (GMT). No. of bitstreams: 1 MonzonDavila_LenaSoledad_M.pdf: 1297499 bytes, checksum: 0150b5616aa8630cf25a2830c9e27b00 (MD5) Previous issue date: 2007
Resumo: As propriedades termofisicas dos alimentos são requeridas para o cálculo de tempo de processamento em projetos de equipamentos para a indústria de alimentos. Os processos de congelamento exigem dados precisos das propriedades térmicas do produto, tais como condutividade térmica, fração de gelo, calor específico e entalpia. A necessidade do conhecimento do comportamento destas propriedades tem levado ao desenvolvimento de alguns modelos matemáticos para suas predições. A condutividade térmica dos alimentos é uma propriedade fortemente dependente da composição química e da temperatura do alimento. Neste trabalho compararam-se os resultados experimentais de condutividade térmica de soluções modelo congeladas em três diferentes velocidades de congelamento, utilizando o método da sonda linear de aquecimento, com os obtidos pelo modelo matemático ¿Maxwell-Eucken¿ ou disperso como função da fração de gelo contida nos alimentos. Foi obtida uma divergência com o modelo por não considerar a velocidade de congelamento. Determinou-se que a condutividade térmica é uma propriedade termofísica diretamente proporcional ao aumento da velocidade de congelamento Os valores de condutividade térmica das amostras foram calculados através da inclinação obtida da regressão linear determinada pelo perfil do logaritmo natural do tempo versus temperatura. Os resultados da condutividade térmica foram correlacionados com as velocidades de congelamento e com a fração de gelo, indicando sua dependência devido à dispersão do gelo no produto
Abstract: The thermophysical properties of foods are required to calculate freezing time in the equipments design for foods industry. Freezing process demand exacts data of product thermal properties, as thermal conductivity, ice fraction, specific heat and enthalpy. The necessity of knowledge of the behavior of these properties has led to development of some mathematical models for their prediction. Thermal conductivity of foods is a property strongly dependent of chemical composition and food temperature. In this work, the experimental thermal conductivity results of model solutions freezing in three different velocities using line source probe method have been compared with the results obtained by the Maxwell-Eucken mathematical model or disperse as a function of ice fraction contained in foods, getting a divergence of the model for not considerer freezing velocities. Model solutions were frozen in three different velocities of freezing. Was determined that the thermal conductivity is a thermophysical property directly proportional to the increase of the freezing velocity. The thermal conductivity values of samples were calculated by the angular coefficient obtained by the linear regression which was determinate by the time natural logarithmic profile versus temperature. The thermal conductivity results were correlated with freezing velocities and ice fraction, indicating its dependence due to ice dispersion in the product
Mestrado
Mestre em Engenharia de Alimentos
Мягкий, Олександр Валерійович. "Підвищення завадостійкості теплової дефектоскопії багатошарових конструкцій та трубопроводів". Thesis, Харківський національний університет радіоелектроніки, 2018. http://repository.kpi.kharkov.ua/handle/KhPI-Press/40779.
Повний текст джерелаThe dissertation on the receipt of scientific degree of candidate of engineering sciences on speciality 05.11.13 – devices and methods of testing and materials composition determination. Kharkiv National University of Radio Electronics, Kharkiv, 2019. The dissertation is devoted to the question of immunity to interference improvement in the thermal non-destructive testing of multilayered honeycomb constructions and pipelines, both by the monitoring mode selection with the criterion of maximum signal-to-interference ratio, and by the further computer processing of obtained experimental data. Thermophysical models of multilayered honeycomb constructions are proposed. The software package "TermoPro_TFH_Statistic" was worked out and number of experiments at the thermal flaw detection modes selection were performed on its basis. A number of full-size and laboratory-scale experiments were conducted to investigate the interference effect on thermal non-destructive testing. A number of filters have been worked out, as well as the sequence of their use to significantly reduce the interference level during the thermal flaw detection. Due to this, the sensitivity of thermal defectoscopy to detection of defects of the "non-adhesive" type in honeycomb structures increased – the size of the threshold defect was decreased from 6mm to 3mm, and the reliability of their detection increased by 17-20%.
Мягкий, Олександр Валерійович. "Підвищення завадостійкості теплової дефектоскопії багатошарових конструкцій та трубопроводів". Thesis, Національний технічний університет "Харківський політехнічний інститут", 2019. http://repository.kpi.kharkov.ua/handle/KhPI-Press/40777.
Повний текст джерелаThe dissertation on the receipt of scientific degree of candidate of engineering sciences on speciality 05.11.13 – devices and methods of testing and materials composition determination. Kharkiv National University of Radio Electronics, Kharkiv, 2019. The dissertation is devoted to the question of immunity to interference improvement in the thermal non-destructive testing of multilayered honeycomb constructions and pipelines, both by the monitoring mode selection with the criterion of maximum signal-to-interference ratio, and by the further computer processing of obtained experimental data. Thermophysical models of multilayered honeycomb constructions are proposed. The software package "TermoPro_TFH_Statistic" was worked out and number of experiments at the thermal flaw detection modes selection were performed on its basis. A number of full-size and laboratory-scale experiments were conducted to investigate the interference effect on thermal non-destructive testing. A number of filters have been worked out, as well as the sequence of their use to significantly reduce the interference level during the thermal flaw detection. Due to this, the sensitivity of thermal defectoscopy to detection of defects of the "non-adhesive" type in honeycomb structures increased – the size of the threshold defect was decreased from 6mm to 3mm, and the reliability of their detection increased by 17-20%.
Messerly, Richard Alma. "How a Systematic Approach to Uncertainty Quantification Renders Molecular Simulation a Quantitative Tool in Predicting the Critical Constants for Large n-Alkanes." BYU ScholarsArchive, 2016. https://scholarsarchive.byu.edu/etd/6598.
Повний текст джерелаMiehe, Anja. "Numerical investigation of horizontal twin-roll casting of the magnesium alloy AZ31." Doctoral thesis, Technische Universitaet Bergakademie Freiberg Universitaetsbibliothek "Georgius Agricola", 2014. http://nbn-resolving.de/urn:nbn:de:bsz:105-qucosa-149625.
Повний текст джерелаDas horizontales Gießwalzen ist eine energiesparende und kostengünstige Methode zur Erzeugung von Flachprodukten, die im Leichtbau verwendet werden. Um dieses Verfahren numerisch zu untersuchen wurde ein Programmcode in OpenFOAM entwickelt und die kommerzielle Software STAR-CCM+ verwendet, wobei beide mit dem Stefan Problem, dem Schmelzen von Gallium und Messdaten des Stranggusses von Magnesium AZ31 validiert wurden. Verschiedene Erstarrungsmodelle werden ebenso getestet wie Variationen des Simulationsbereiches und Feststoff-Temperatur-Verläufe. Vergleiche mit Temperaturmessdaten der Pilotanlage MgF GmbH Freiberg und der finalen Mikrostruktur zeigen gute Übereinstimmungen. Sensitivitätsanalysen werden durchgeführt, um die Einflüsse von thermophysikalischen Eigenschaften und Anlagenparametern abzuschätzen. Des Weiteren werden die Walzen in die Simulation mit einbezogen, um den Effekt eines lokal veränderlichen Wärmeübergangskoeffizienten zu beurteilen. Schließlich werden die Ergebnisse mit denen einer zweiten Pilotanlage am Helmholtz-Zentrum Geesthacht verglichen
Le laminage de coulée continue horizontal possède une faible consommation d’énergie et est bon marché pour la production des feuilles de métaux coulables utilisés dans la construction légère. Afin d’examiner ce processus numériquement, un code est généré dans OpenFOAM et le logiciel commercial STAR-CCM+ est utilisé, tous les deux sont validés en utilisant le problème de Stefan, la fusion du gallium et la coulée continue verticale de magnésium AZ31. Plusieurs modèles de solidification sont testés, ainsi que la variation du domaine de simulation, et des rélations entre la teneur en matière solide et la température. Des comparaisons avec des résultats de mesures de la température à l’installation pilote de MgF GmbH Freiberg ainsi que la microstructure donnent des bons résultats. Des analyses de sensibilité sont effectuées afin d’évaluer l’influence des propriétés thermophysiques et des paramètres de l’installation. De plus, les cylindres sont intégrés dans la simulation pour estimer l’impact du coefficient de transfert de chaleur dépendant du lieu. Finalement, les résultats sont comparés avec ceux du Helmholtz-Centre Geesthacht
Книги з теми "Thermophysical model"
Magee, Joseph W. Thermophysical properties measurements and models for rocket propellant RP-1: Phase I. Boulder, Colo: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 2007.
Знайти повний текст джерелаKudinov, Igor', Anton Eremin, Konstantin Trubicyn, Vitaliy Zhukov, and Vasiliy Tkachev. Vibrations of solids, liquids and gases taking into account local disequilibrium. ru: INFRA-M Academic Publishing LLC., 2022. http://dx.doi.org/10.12737/1859642.
Повний текст джерелаThermophysical Properties of Metallic Liquids Vol. 2: Predictive Models. Oxford University Press, 2015.
Знайти повний текст джерелаTransition and turbulence modeling for blunt-body wake flows: Abstract of paper proposed for the 32nd AIAA Thermophysics Conference, June 23-25, 1997, Atlanta, Georgia. [Washington, DC: National Aeronautics and Space Administration, 1997.
Знайти повний текст джерелаJ, Horvath Thomas, Hassan H. A, and United States. National Aeronautics and Space Administration., eds. Transition and turbulence modeling for blunt-body wake flows: Abstract of paper proposed for the 32nd AIAA Thermophysics Conference, June 23-25, 1997, Atlanta, Georgia. [Washington, DC: National Aeronautics and Space Administration, 1997.
Знайти повний текст джерелаЧастини книг з теми "Thermophysical model"
Raabe, Gabriele. "Molecular Models (Force Fields)." In Molecular Simulation Studies on Thermophysical Properties, 145–89. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-3545-6_6.
Повний текст джерелаUstjuzhanin, E. E., B. F. Reutov, V. F. Utenkov, and V. A. Rykov. "Combined models of thermophysical properties along the coexistence curve." In Soft Matter under Exogenic Impacts, 325–38. Dordrecht: Springer Netherlands, 2007. http://dx.doi.org/10.1007/978-1-4020-5872-1_21.
Повний текст джерелаCoutinho, João A. P., and Ramesh L. Gardas. "Predictive Group Contribution Models for the Thermophysical Properties of Ionic Liquids." In ACS Symposium Series, 385–401. Washington DC: American Chemical Society, 2009. http://dx.doi.org/10.1021/bk-2009-1030.ch025.
Повний текст джерела"Details of METALS model to calculate the thermophysical properties of alloys." In Recommended Values of Thermophysical Properties for Selected Commercial Alloys, 233–44. Elsevier, 2002. http://dx.doi.org/10.1016/b978-1-85573-569-9.50043-5.
Повний текст джерелаLeão Ferreira, Ivaldo, José Adilson de Castro, and Amauri Garcia. "On the Determination of Molar Heat Capacity of Transition Elements: From the Absolute Zero to the Melting Point." In Recent Advances on Numerical Simulations [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.96880.
Повний текст джерела"Activity Coefficient Models." In Thermophysical Properties of Fluids, 161–206. PUBLISHED BY IMPERIAL COLLEGE PRESS AND DISTRIBUTED BY WORLD SCIENTIFIC PUBLISHING CO., 1996. http://dx.doi.org/10.1142/9781848161054_0007.
Повний текст джерелаVaferi, Behzad. "Application of Artificial Neural Networks for Accurate Prediction of Thermal and Rheological Properties of Nanofluids." In Deterministic Artificial Intelligence. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.89101.
Повний текст джерелаIida, Takamichi, and Roderick I. L. Guthrie. "Predictive Models for Volume Expansivity." In The Thermophysical Properties of Metallic Liquids, 397–418. Oxford University Press, 2015. http://dx.doi.org/10.1093/acprof:oso/9780198729846.003.0012.
Повний текст джерелаHeldman, Dennis. "Prediction Models of Thermophysical Properties of Foods." In Food Science and Technology. CRC Press, 2001. http://dx.doi.org/10.1201/9780203908105.ch1.
Повний текст джерела"Gas/Surface Scatter Models for Satellite Applications." In Thermophysical Aspects of Re-Entry Flows, 97–119. New York: American Institute of Aeronautics and Astronautics, 1986. http://dx.doi.org/10.2514/5.9781600865770.0097.0119.
Повний текст джерелаТези доповідей конференцій з теми "Thermophysical model"
Loveday, D. L. "Thermophysical simulation for on-line model initialisation." In UKACC International Conference on Control (CONTROL '98). IEE, 1998. http://dx.doi.org/10.1049/cp:19980485.
Повний текст джерелаOrosco, Jeremy, and Carlos F. Coimbra. "Thermophysical Model for the Infrared Emissivity of Metals." In AIAA Scitech 2019 Forum. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2019. http://dx.doi.org/10.2514/6.2019-1280.
Повний текст джерелаGünay, S. D., B. Akgenç, Ü Akdere та Ç Taşseven. "Thermophysical properties of α−Pu2O3: A new potential model". У 3RD INTERNATIONAL ADVANCES IN APPLIED PHYSICS AND MATERIALS SCIENCE CONGRESS. AIP, 2013. http://dx.doi.org/10.1063/1.4849260.
Повний текст джерелаPopov, Stoyan, Rad Stanev, Silvia Baeva, and Nikolay Hinov. "Stochastic model for microgrid load forecasting." In THERMOPHYSICAL BASIS OF ENERGY TECHNOLOGIES (TBET 2020). AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0041882.
Повний текст джерелаStetina, Josef, Frantisek Kavicka, Bohumil Sekanina, and Jaromir Heger. "The Influence of Thermophysical Properties on a Numerical Model of Solidification." In ASME 2002 Pressure Vessels and Piping Conference. ASMEDC, 2002. http://dx.doi.org/10.1115/pvp2002-1202.
Повний текст джерелаLapina, Anna, and Natalia Smirnyagina. "Thermophysical Model of Electron Beam Boriding of Titanium Alloy VT-1." In 2020 7th International Congress on Energy Fluxes and Radiation Effects (EFRE). IEEE, 2020. http://dx.doi.org/10.1109/efre47760.2020.9241923.
Повний текст джерелаKrepel, Jiri. "Thermophysical Analysis of the ADS Systems." In 10th International Conference on Nuclear Engineering. ASMEDC, 2002. http://dx.doi.org/10.1115/icone10-22681.
Повний текст джерелаGilev, Bogdan, and Nikolay Hinov. "Model-based synthesis of control for power electronic converters." In THERMOPHYSICAL BASIS OF ENERGY TECHNOLOGIES (TBET 2020). AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0041944.
Повний текст джерелаBaeva, Silvia, Rad Stanev, Stoyan Popov, and Nikolay Hinov. "Stochastic model for prediction of microgrid photovoltaic power generation." In THERMOPHYSICAL BASIS OF ENERGY TECHNOLOGIES (TBET 2020). AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0041825.
Повний текст джерелаShvab, Alexander, and Vladimir Brendakov. "Mathematical model of the fluorination process of metallic tungsten." In THERMOPHYSICAL BASIS OF ENERGY TECHNOLOGIES (TBET 2020). AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0046625.
Повний текст джерелаЗвіти організацій з теми "Thermophysical model"
McKinnon, Mark, and Daniel Madryzkowski. Literature Review to Support the Development of a Database of Contemporary Material Properties for Fire Investigation Analysis. UL Firefighter Safety Research Institute, June 2020. http://dx.doi.org/10.54206/102376/wmah2173.
Повний текст джерелаMagee, Joseph W., Thomas J. Bruno, Daniel G. Friend, Marcia L. Huber, Arno Laesecke, Eric W. Lemmon, Mark O. McLinden, Richard A. Perkins, Jörg Baranski, and Jason A. Widegren. Thermophysical properties measurements and models for rocket propellant RP-1:. Gaithersburg, MD: National Institute of Standards and Technology, 2007. http://dx.doi.org/10.6028/nist.ir.6646.
Повний текст джерела