Дисертації з теми "Thermoelectric, Cu2SnS3, thermoelectric generators"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-50 дисертацій для дослідження на тему "Thermoelectric, Cu2SnS3, thermoelectric generators".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Lohani, Ketan. "Development of Cu2SnS3 based thermoelectric materials and devices." Doctoral thesis, Università degli studi di Trento, 2022. http://hdl.handle.net/11572/344345.
Повний текст джерелаAlothman, Abdulmohsen Abdulrahman. "Modeling and Applications of Thermoelectric Generators." Diss., Virginia Tech, 2016. http://hdl.handle.net/10919/79846.
Повний текст джерелаPh. D.
Glatz, Wulf. "Development of flexible micro thermoelectric generators." Tönning Lübeck Marburg Der Andere Verl, 2008. http://d-nb.info/989530639/04.
Повний текст джерелаTwaha, Ssennoga. "Regulation of power generated from thermoelectric generators." Thesis, University of Nottingham, 2018. http://eprints.nottingham.ac.uk/49544/.
Повний текст джерелаMontecucco, Andrea. "Efficiently maximising power generation from thermoelectric generators." Thesis, University of Glasgow, 2014. http://theses.gla.ac.uk/5213/.
Повний текст джерелаNaylor, Andrew J. "Towards highly-efficient thermoelectric power harvesting generators." Thesis, University of Southampton, 2014. https://eprints.soton.ac.uk/366984/.
Повний текст джерелаSmith, Kevin D. "An investigation into the viability of heat sources for thermoelectric power generation systems /." Online version of thesis, 2009. http://hdl.handle.net/1850/8266.
Повний текст джерелаWeinstein, Lee A. (Lee Adragon). "Improvements to solar thermoelectric generators through device design." Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/85471.
Повний текст джерелаCataloged from PDF version of thesis.
Includes bibliographical references (pages 145-150).
A solar thermoelectric generator (STEG) is a device which converts sunlight into electricity through the thermoelectric effect. A STEG is nominally formed when a thermoelectric generator (TEG), a type of solid state heat engine, is placed between a solar absorber and a heat sink. When the solar absorber is illuminated by sunlight, it heats up and the TEG is subjected to a temperature gradient. Heat flows through the TEG, some of which is converted to electricity. Recent advancements have improved STEG efficiency considerably, however more work is required before STEGs will be able to compete commercially with other solar to electricity conversion technologies. This thesis explores two device level improvements to STEG systems. First, thin-film STEGs are explored as a method to potentially reduce the manufacturing costs of STEG systems. It is shown through modeling that thin-film STEGs have only a slight degradation in performance compared to bulk STEGs when identical materials properties are used. Two parameters are found which can guide device design for thin-film STEGs regardless of system size. Second, an optical cavity is investigated which can improve opto-thermal efficiency for STEGs or any other solar-thermal system. The cavity improves performance by specularly reflecting radiation from the absorber back to itself, reducing radiative losses. It is shown through modeling and with some preliminary experimental results that such a cavity has the potential to significantly improve the opto-thermal efficiency of solar-thermal systems and operate efficiently at high absorber temperatures without the use of extremely high optical concentration ratios.
by Lee A. Weinstein.
S.M.
Sandoz-Rosado, Emil Jose. "Investigation and development of advanced models of thermoelectric generators for power generation applications /." Online version of thesis, 2009. http://hdl.handle.net/1850/10795.
Повний текст джерелаMcEnaney, Kenneth. "Modeling of solar thermal selective surfaces and thermoelectric generators." Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/65308.
Повний текст джерелаCataloged from PDF version of thesis.
Includes bibliographical references (p. 101-107).
A thermoelectric generator is a solid-state device that converts a heat flux into electrical power via the Seebeck effect. When a thermoelectric generator is inserted between a solar-absorbing surface and a heat sink, a solar thermoelectric generator is created which converts sunlight into electrical power. This thesis describes the design and optimization of solar thermoelectric generators, with a focus on systems with high optical concentration which utilize multiple material systems to maximize efficiency over a large temperature difference. Both single-stage and cascaded (multi-stage) generators are considered, over an optical concentration range of 0.1 to 1000X. It is shown that for high-concentration Bi₂Te₃/skutterudite solar thermoelectric generators, conversion efficiencies of 13% are possible with current thermoelectric materials and selective surfaces. Better selective surfaces are needed to improve the efficiency of solar thermoelectric generators. In this thesis, ideal selective surfaces for solar thermoelectric generators are characterized. Non-ideal selective surfaces are also characterized, with emphasis on how the non-idealities affect the solar thernoelectric gencrator performance. Finally. the efficiency limit for solar thermoclectric generators with non-directional absorbers is presented.
by Kenneth McEnaney.
S.M.
de, Leon Maria Theresa. "Efficiency improvement in MEMS thermoelectric generators employing solar concentration." Thesis, University of Southampton, 2014. https://eprints.soton.ac.uk/368249/.
Повний текст джерелаRahman, Mahmudur. "The application of thermoelectric generators as remote power sources." Thesis, University of Manchester, 1993. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.645193.
Повний текст джерелаSivapurapu, Sai Vinay Kumar Plummer Mitty Charles. "Preliminary design of a cryogenic thermoelectric generator." [Denton, Tex.] : University of North Texas, 2007. http://digital.library.unt.edu/permalink/meta-dc-3612.
Повний текст джерелаGadea, Gerard. "Integration of Si/Si-Ge nanostructures in micro-thermoelectric generators." Doctoral thesis, Universitat de Barcelona, 2017. http://hdl.handle.net/10803/459243.
Повний текст джерелаLos materiales termoeléctricos permiten la conversión de calor a electricidad y viceversa. Esto permite explotar el efecto termoeléctrico en generadores termoeléctricos, capaces de extraer energía térmica de fuentes calientes y convertirla a electricidad útil. Estos generadores presentan grandes ventajas, como su falta de piezas móviles – y por ende necesidad de mantenimiento alguna – y su total escalabilidad, que permite cambiar su tamaño sin afectar su rendimiento. Esto los hace obvios candidatos para la alimentación y carga de dispositivos portátiles y situados lugares de difícil acceso. A pesar de ello, su uso no está muy extendido debido a que su relación eficiencia-coste es baja en comparación a otros métodos capaces de suplir las funciones de alimentación – como la sustitución periódica de baterías – o de conversión térmica-eléctrica – como las turbinas de vapor. Los materiales termoeléctricos suelen ser o eficientes y caros (como el Bi2Te3 usado en los módulos comerciales) o ineficientes y de bajo coste (como el silicio, barato por su abundancia ya que supone un 28% de la corteza terrestre). En este trabajo se han crecido nanostructuras de silicio y silicio-germano, con dimensiones en el orden de los 100 nm. Los nanomateriales presentan propiedades termoeléctricas mejoradas respecto a sus contrapartes macroscópicas. Gracias a la nanoestructuración pues, se ha abordado del problema de eficiencia-coste por dos vertientes: • En el caso del silicio – normalmente un mal termoeléctrico debido a su alta conductividad térmica – se ha habilitado su uso como termoeléctrico al crecerlo en forma de nanohilos cristalinos y nanotubos de silicio policristalino. • En el caso de silicio-germano – que ya es un buen termoeléctrico para uso en altas temperaturas – se ha aumentado su eficiencia aún más, creciéndolo en forma de nanohilos. Yendo más allá de la síntesis, los nanohilos de silicio/silicio-germano se han optimizado, caracterizado en integrado en gran número micro-generadores termoeléctricos de 1 mm2 de superficie, pensados para la alimentación de pequeños dispositivos y circuitos integrados. Respecto a los nanotubos de Si, estos se han obtenido en densas fibras macroscópicas aptas para su aplicación directa como generadores termoeléctricos de gran área. Cabe mencionar que ambos nanomateriales – así como los microgeneradores basados en nanohilos – fueron obtenidos mediante técnicas actualmente utilizadas para la fabricación de circuitos integrados, pensando en la escalabilidad del proceso para su aplicación. El trabajo presentado en esta tesis consiste en el crecimiento, optimización, estudio e integración de nanostructuras de Si/Si-Ge para su aplicación en generación termoeléctrica. En los Capítulos 1 y 2 se pone un marco a los materiales tratados y su aplicación y se describen los métodos utilizados, respectivamente. Los resultados se han dividido en cuatro capítulos. En los Capítulos 3, 4 y 5 se tratan los nanohilos abordando su crecimiento, caracterización y aplicación en microgeneradores, respectivamente. En el Capítulo 6 se tratan las fibras de nanotubos, integrando todo el estudio en el mismo capítulo. Finalmente en el Capítulo 7 se muestran las conclusiones, resumiendo los resultados e indicando la relevancia del trabajo.
Rostek, Raimar [Verfasser], and Peter [Akademischer Betreuer] Woias. "Electrochemical deposition as a fabrication method for micro thermoelectric generators." Freiburg : Universität, 2016. http://d-nb.info/1122647638/34.
Повний текст джерелаLi, Xinjie. "Concentrated Solar Thermoelectric Generators Based on V-shaped Metallic Couples." University of Cincinnati / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1613752123514427.
Повний текст джерелаFransson, Erik, and Daniel Olsson. "Thermoelectric Generators : A comparison of electrical power outputs depending on temperature." Thesis, Högskolan Dalarna, Institutionen för information och teknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:du-38031.
Повний текст джерелаSivapurapu, Sai Vinay Kumar. "Preliminary design of a cryogenic thermoelectric generator." Thesis, University of North Texas, 2007. https://digital.library.unt.edu/ark:/67531/metadc3612/.
Повний текст джерелаIsotta, Eleonora. "Nanostructured thermoelectric kesterite Cu2ZnSnS4." Doctoral thesis, Università degli studi di Trento, 2021. http://hdl.handle.net/11572/315174.
Повний текст джерелаIsotta, Eleonora. "Nanostructured thermoelectric kesterite Cu2ZnSnS4." Doctoral thesis, Università degli studi di Trento, 2021. http://hdl.handle.net/11572/315174.
Повний текст джерелаMirando, Francesco. "Micro-fabrication and characterization of highly doped silicon-germanium based thermoelectric generators." Thesis, University of Glasgow, 2018. http://theses.gla.ac.uk/30596/.
Повний текст джерелаDavenport, Bradley P. "Advanced thermophotovoltaic cells modeling, optimized for use in rRadioisotope Thermoelectric Generators (RTGS) for Mars and deep space missions /." Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2004. http://library.nps.navy.mil/uhtbin/hyperion/04Jun%5FDavenport.pdf.
Повний текст джерелаHausgen, Paul E. "A thermal analysis of an alkali metal thermal to electric converter with geometrically designed interior surfaces exhibiting directionally dependent radiative properties." Diss., Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/16701.
Повний текст джерелаComamala, Laguna Martí. "Development and characterization of thermoelectric generators for thermal energy recovery from reciprocating internal combustion engines." Doctoral thesis, Universitat de Girona, 2019. http://hdl.handle.net/10803/668142.
Повний текст джерелаL’aprofitament energètic de la calor residual dels gasos d’escapament és una fita perseguida per molts fabricants i investigadors en el camp de l’automoció. Aquesta recerca s’ha intensificat en els últims anys motivada per les conseqüències del canvi climàtic, i sobretot, per la pressió de les administracions sobre els fabricants d’automoció pel que fa a la disminució de les emissions contaminants, especialment del CO2. El sistema proposat en aquesta tesi utilitza els avantatges que pot proporcionar la termoelectricitat, considerant que un generador termoelèctric pot satisfer els requisits esmentats anteriorment. Aquesta tesi doctoral aborda aspectes que fins ara havien estat molt poc explorats pels investigadors : (i) els efectes sobre el comportament del motor quan s’introdueix un sistema nou a la línia d’escapament, (ii) la utilització de software suficientment potent per simular la integració del generador termoelèctric en un vehicle complet, i (iii) la quantificació experimental de l’estalvi de consum quan s’incorporen generadors termoelèctrics
Edvinsson, Nils. "Energy harvesting power supply for wireless sensor networks : Investigation of piezo- and thermoelectric micro generators." Thesis, Uppsala universitet, Institutionen för teknikvetenskaper, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-210429.
Повний текст джерелаDavenport, Bradley P. "Advanced thermophotovoltaic cells modeling, optimized for use in radioisotope thermoelectric generators (RTGS) for Mars and deep space missions." Thesis, Monterey California. Naval Postgraduate School, 2004. http://hdl.handle.net/10945/1170.
Повний текст джерелаThermophotovoltaic cells are a good candidate for use in high efficiency radioisotope thermoelectric generator (RTG) power devices for deep space missions. This thesis examines the use of Silvaco Virtual Wafer Fabrication Software as a tool for designing and optimizing TPV cells for different possible spectra. It gives results for GaSb and InGaAs cells optimized to the AM0 spectrum which closely match published data as well as hypothetical cells optimized to the spectrum of a 1300K blackbody.
Ensign, United States Navy
Deshpande, Samruddhi Aniruddha. "Numerical Investigation of Various Heat Transfer Performance Enhancement Configurations for Energy Harvesting Applications." Thesis, Virginia Tech, 2016. http://hdl.handle.net/10919/72129.
Повний текст джерелаMaster of Science
Brogan, Quinn Lynn. "Low Power IC Design with Regulated Output Voltage and Maximum Power Point Tracking for Body Heat Energy Harvesting." Thesis, Virginia Tech, 2016. http://hdl.handle.net/10919/81549.
Повний текст джерелаMaster of Science
Heghmanns, Alexander, and Michael Beitelschmidt. "Mehrkriterielle Parameteroptimierung eines Thermoelektrischen Generators." Universitätsbibliothek Chemnitz, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-142372.
Повний текст джерелаPalu, Ivo. "Impact of wind parks on power system containing thermal power plants = Tuuleparkide mõju soojuselektrijaamadega energiasüsteemile /." Tallinn : TUI Press, 2009. http://digi.lib.ttu.ee/i/?443.
Повний текст джерелаPandit, Jaideep. "Numerical and Experimental Design of High Performance Heat Exchanger System for A Thermoelectric Power Generator for Implementation in Automobile Exhaust Gas Waste Heat Recovery." Diss., Virginia Tech, 2014. http://hdl.handle.net/10919/47919.
Повний текст джерелаPh. D.
Sadler, Zachary James. "Design and Analysis of Compressed Air Power Harvesting Systems." BYU ScholarsArchive, 2017. https://scholarsarchive.byu.edu/etd/7052.
Повний текст джерелаHodges, Amelia Lynn. "Investigation of antennas and energy harvesting methods for use with a UHF microtransceiver in a biosensor network." Thesis, Kansas State University, 2013. http://hdl.handle.net/2097/16218.
Повний текст джерелаDepartment of Electrical and Computer Engineering
William B. Kuhn
This work was a part of NASA EPSCoR Project NNX11AM05A: Biosensor Networks and Telecommunication Subsystems for Long Duration Missions, EVA Suits, and Robotic Precursor Scout Missions. The project’s main goal is the development of a wireless sensor network inside an astronaut’s spacesuit. Antennas are essential components in a wireless network. Since this antenna will be used inside the spacesuit it is important to consider both the physical size limitations and the desired antenna polarization. After exploring the WWVB radio station antenna which provides the preferred vertical polarization and has a suitable aspect ratio, the top hat antenna seemed promising for intrasuit communication. The design of a top hat antenna is outlined. Then, the antennas were tested using 433 MHz radios in a full scale model spacesuit. This spacesuit was designed specifically to model the behavior of aluminized mylar in the real suit. Test results support the feasibility of an intrasuit wireless network. If a gateway radio is placed on the chest or back, a sensor could be placed anywhere on the body and provide an adequate signal. These initial tests did not include a matching network, but the additional link-margin afforded by a matching network, even an imperfect match, is considered. Energy harvesting is explored as an alternative to batteries powering the intrasuit radio. In the oxygen rich environment of a spacesuit, even the smallest spark can be catastrophic. A variety of energy harvesting options are explored with a focus on thermal energy harvesting. The temperature difference between the human skin and the astronaut’s Liquid Cooling and Ventilation Garment can be used to produce a small voltage. To increase the voltage a step-up converter is implemented. Final integration of the two systems with a biosensor is left for on-going work in the three year NASA project.
Faghani, Farshad. "Thermal conductivity Measurement of PEDOT:PSS by 3-omega Technique." Thesis, Linköpings universitet, Fysik och elektroteknik, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-63317.
Повний текст джерелаCarstens, Jan Hendrik Hermann [Verfasser], Clemens [Akademischer Betreuer] Gühmann, Clemens [Gutachter] Gühmann, Hans-Christian [Gutachter] Reuss, and Thomas [Gutachter] Schauer. "Control and optimization of a DC-DC converter for thermoelectric generators / Jan Hendrik Hermann Carstens ; Gutachter: Clemens Gühmann, Hans-Christian Reuss, Thomas Schauer ; Betreuer: Clemens Gühmann." Berlin : Technische Universität Berlin, 2016. http://d-nb.info/1156179971/34.
Повний текст джерелаSklar, Akiva A. "A Numerical Investigation of a Thermodielectric Power Generation System." Diss., Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/14020.
Повний текст джерелаNamakian, Mohsen. "Mild Hybrid System in Combination with Waste Heat Recovery for Commercial Vehicles." Thesis, Linköpings universitet, Maskinkonstruktion, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-93997.
Повний текст джерелаVéras, Júlio Cezar de Cerqueira. "Análise experimental dos efeitos termoelétricos em geradores termoelétricos." Universidade Federal da Paraíba, 2014. http://tede.biblioteca.ufpb.br:8080/handle/tede/5303.
Повний текст джерелаCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
A thermoelectric generator is a solid-state temperature dependent device that provide power generation on thermoelectric conversion. For that, the thermoelectric modules needs a temperature difference to ensure the thermoelectric conversion process. However, being subject to temperature variations may compromise the thermoelectric generator lifetime. Thus, in order to evaluate the temperature variation (thermal cycling) that the thermoelectric generators are exposed, this work has proposed an experimental platform that submits the thermoelectric generators modules to thermal cycling. With the experimental platform proposed the parameters of the thermoelectric generators may be to investigate properly. To evaluate the degradation effects on TEG the parameters were evaluated before the thermal cycling and then the parameters were evaluated after the thermal cycling process. At the research end, the parameters are presented by a comparative table with parameters evaluation before the thermal cycling and parameters evaluation after thermal cycling which brings to the experimental platform reliability.
Objetivo: Os geradores termoelétricos são dispositivos de estado sólido que utilizam a diferença de temperatura para a conversão em energia elétrica. No entanto, submeter os geradores termoelétricos a variações de temperatura pode comprometer o tempo de vida desses dispositivos. Assim, com o objetivo de investigar a possível influência das variações de temperatura ciclos térmicos a que os módulos geradores termoelétricos (TEGs) estão expostos, este trabalho desenvolveu uma plataforma experimental capaz de submeter TEGs à influência de ciclos térmicos, permitindo assim que os TEGs possam ser avaliados. Para constatar os efeitos na degradação do TEG, alguns parâmetros foram avaliados antes da aplicação dos ciclos térmicos e após uma sequência de ciclos térmicos. Ao fim da pesquisa, as avaliações feitas nos parâmetros são apresentadas em uma tabela comparativa, em que são apresentados os valores obtidos antes da aplicação dos ciclos térmicos e os valores dos parâmetros após a aplicação dos ciclos térmicos.
Maas, Mathieu. "Structuration de générateurs thermoélectriques sur échangeur de type radiateur par électrodéposition." Thesis, Université de Lorraine, 2015. http://www.theses.fr/2015LORR0338/document.
Повний текст джерелаIn order to face the rarefaction of fossil fuels, the automotive industry has to find new ways to reduce their vehicle consumption. One of the possible ideas is to recover the energy that is lost as heating by using thermoelectricity. The aim of this work is to set-up thermoelectric generators into the radiator in order to recover this lost heat in a frame of research project financially supported by Valéo Systèmes Thermiques and ADEME. The radiator design requires thermoelectric materials thicknesses up to hundred micrometers in order to optimize the available space. Electroplating seems to be the best way to synthesize those materials directly onto the radiator fins. This study focuses on the electroplating of the best thermoelectric materials adapted to the operating temperatures of the heat exchanger: bismuth chalcogenides (Bi2Te3 and Bi0,5Sb1,5Te3). Firstly, a study has been carried out in order to synthesize thick layers above 100 µm of those two materials. Stoichiometry and thermoelectric properties were also determined. The original use of a soluble anode permitted to obtain 400 µm thick Bi2Te3 films. For the ternary compound, the synthesis consisting in a succession of thin layers of Bi0,25Sb0,75 and Te0, before their interdiffusion by annealing, is also presented. Finally, the last part covers the study carried out on the realization of the thermoelectric generators. The multiple stages of lithography and electrochemical syntheses were studied in order to obtain a module adapted to the heat exchanger. The first characterizations evidence high internal resistances and different ways to improve them are also presented
Ayachi, Sahar [Verfasser], and Boor Johannes [Akademischer Betreuer] de. "Developing contacting solutions for Mg2(Si,Sn)-based thermoelectric generators : evaluating Cu and Ni45Cu55 as candidates for contacting electrodes, and establishing the importance of charged point defects in the contacting process / Sahar Ayachi ; Betreuer: Johannes de Boor." Duisburg, 2021. http://d-nb.info/1241963169/34.
Повний текст джерелаEl, Oualid Soufiane. "Contribution à la modélisation et à la caractérisation de générateurs thermoélectriques." Thesis, Université de Lorraine, 2019. http://www.theses.fr/2019LORR0104.
Повний текст джерелаThe Internet of Thing (IoT) is currently being intensively explored in the electronic industry. IoT is an extension of Internet connectivity into physical end everyday-life objects which will be able to communicate and interact with each other’s. Most of these connected objects are powered by batteries that need to be regularly switched or recharged. Faced with a strong announced growth of their number in coming years, the search for novel alternative, autonomous power supplies that convert surrounding available energy into electricity becomes essential. Among energy harvesting technologies, thermoelectricity is advantageous due to its simplicity, reliability, the absence of moving parts and greenhouse gas emissions. All these favorable characteristics make thermoelectric converters possible candidates for powering or recharging batteries of connected objects. In this context, my PhD work was done within the frame of the European project EnSO («Energy for Smart Objects»). Numerical studies with the software Comsol Multiphysics were performed on innovative planar micro-generators developed by the Mahle company, one of the partners of this project. The main objective of this work was to achieve a better understanding of the influence of numerous parameters (geometry, boundary conditions in terms of temperature and flux, electrical and thermal properties of the active materials) on their thermoelectric performances (output power and efficiency). In particular, we have underlined the critical role played by the electrical and thermal contact resistances on the output power. A second part of this study has been devoted to the experimental development of miniaturized thermoelectric generators capable of delivering high output power density through the integration of skutterudite materials. Several brazes have been tested during the assembly operations of the thermoelectric modules. The characterization of the module performances (25-500°C) combined with numerical calculations have been used as a guidance for optimizing the fabrication process. This work culminated in the successful fabrication of a thermoelectric module with a record-breaking power density of 3,3 W/cm2 achieved under a temperature difference of 450 K
Доброжан, Олександр Анатолійович, Александр Анатольевич Доброжан, Oleksandr Anatoliiovych Dobrozhan, Анна Олександрівна Салогуб, Анна Александровна Салогуб, Anna Oleksandrivna Salohub, Ярослав Володимирович Знаменщиков, et al. "3D printing of nanoinks based on the metal and semiconductor nanoparticles." Thesis, Sumy State University, 2017. http://essuir.sumdu.edu.ua/handle/123456789/66532.
Повний текст джерелаAbi, Sejaan Georgina. "Energy harvesting and storage in multi-stable micro-actuator systems." Electronic Thesis or Diss., Compiègne, 2022. http://www.theses.fr/2022COMP2698.
Повний текст джерелаThe principle of energy harvesting is applied in this thesis to a wireless bistable micro-actuator system, developed in the Roberval laboratory. The bistable micro-actuator is made up of an antagonistic pre-shaped double beams, two shape memory alloy (SMA) elements and a laser source. The laser beam is used as a contactless energy transfer source to actuate the SMA elements. At their turn, SMA elements are the transitional components to activate the bistable beams among its two stable positions. From this context, the aim of this thesis is to harvest different types of unused available energies in this system. To start with, optical energy is harvested using the photovoltaic effect transforming optical energy into electrical energy. Moreover, due to the environment heating, the difference in temperature is harvested using thermoelectric effect transforming this difference in temperature into a voltage difference. The overall objective is to create two different playgrounds of energy harvesting in the system. The first one relies on harvesting only the optical energy. This design will be used when the micro-actuator requires an additional electrical energy without requiring high speed of actuation. However, when the speed represents a priority comparing to the electrical energy in demand, the micro-actuator switches to operate in the second playground where optical and thermal energies are harvested while the speed of actuation of the micro-actuator is higher than the first design
Lin, Jia-Zhag, and 林嘉哲. "Fabrication of PDMS Flexible Thermoelectric Generators." Thesis, 2015. http://ndltd.ncl.edu.tw/handle/75051200841153710668.
Повний текст джерела國立中興大學
機械工程學系所
103
This study develops the fabrication of PDMS (Polydimethylsiloxane) flexible thermoelectric generators. The thermoelectric structure is composed of 24 pairs thermocouple that is made of P-type thermoelectric material 〖"Bi" 〗_"2" 〖"Te" 〗_"3" and N-type thermoelectric material 〖"Sb" 〗_"2" 〖"Te" 〗_"3" . Each thermocouple is 4 mm wide, 1.5 mm long and 2 mm high, the space between thermocouples is 0.7 mm, and the surface area is 50×50 〖"cm" 〗^"2" . The flexible thermoelectric generators is designed by Solidworks and AutoCAD, and then assembled by turning over the mold. In order to achieve more flexible, perfused PDMS is used to manufacture the supporting base and package the thermoelectric generators. When the hot part temperature is 373 k and cold part temperature 293 k, the practical effect of the thermoelectric generators temperature difference between internal 55 K. The experimental results show The generators have an output voltage 3.37 V and a output power of 25.81 "μW" at temperature difference of 55 K. The voltage factor of the thermoelectric generators is 2.45 mV/" c" "m" ^"2" K, and the power factor is "1.38×" 〖"10" 〗^"-2" "μW/" 〖"cm" 〗^"2" "K" ^"2" .
Sevilla, Galo T. "Flexible Thermoelectric Generators on Silicon Fabric." Thesis, 2012. http://hdl.handle.net/10754/253713.
Повний текст джерелаChen, Yu-Wei, and 陳佑維. "Fabrication of Thermoelectric Micro Generators with Carbon Nanocapsules." Thesis, 2017. http://ndltd.ncl.edu.tw/handle/69785822575083200401.
Повний текст джерела國立中興大學
機械工程學系所
105
In this study, we present a thermoelectric microgenerator fabricated using the standard 0.18 μm CMOS (complementary metal oxide semiconductor) process are investigated. The thermoelectric microgenerator consists of 129 thermocouples in series, and the thermocouples are composed of p-type and n-type polysilicons. The output power of microgenerator relies on the temperature difference between the hot and cold parts of thermocouples. To increase the temperature difference of thermocouples, the hot part of thermocouples is designed as the suspended structure. Then, the hot part of the thermocouples is coated by CNCs (Carbon nanocapsules) that increasing absorb radiant heat source. The cold part of thermocouples is formed on the silicon substrate, and covered by silicon oxide that provides low thermal conductivity and thermal isolation. The FEM (finite element method) software of ANSYS Workbench is employed to simulate the temperature distribution and temperature difference of the thermoelectric microgenerator, and analyzed the optimal geometry of the thermocouples. The experimental results showed that the output voltage and output power of the microgenerator without CNCs film were 4.426 mV, and 224.65 pW, respectively, at the temperature difference of 3.6 K. The output voltage and output power of the microgenerator with CNCs film were 5.845 mV and 391.789 pW, respectively, at the temperature difference of 4.3 K. The microgenerator had the voltage factor of 0.882 mV/k/mm2 and the power factor of 13.686 pW/K2/mm2.
Cheng, Huei-Min, and 鄭慧敏. "Performance of Metal Foam applied in Thermoelectric generators." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/81197303575568956663.
Повний текст джерела國立交通大學
機械工程系所
101
Thermoelectric generation has received higher attentions in recent year. This research aims to improve the Thermoelectric generation efficiency by changing operating conditions and hot side heat exchanger, including copper plate, metal foam, blackbody plate and carbon foam. The results present by high heater temperature, high ambient temperature and approaching the heater will get larger heat transfer rate. And it leads to higher efficiency. Fixed 10PPI change porosity, even though it get more heat transfer rate because of high surface area, it also caused temperature gradient. At the same high 5mm, 50PPI metal foam enhance natural convection heat transfer rate by larger surface area. But larger surface area also leads to lower hot side temperature. The efficiency decrease 24.2~35.9%. Besides, higher emissivity and carbon foam enhances more radiative heat transfer and lead to higher efficiency. After painting blackbody, the plane efficiency raise 1.16~3 times, 10PPI metal foam enhance 2.4~5.6 time. And carbon foam at heater temperature 350℃ and 10mm away from heater get the highest efficiency.
Rosmaninho, Miguel Mota Prego. "Electrodeposition of Bi 2 Te3 Nanomaterials for Thermoelectric generators." Master's thesis, 2014. https://repositorio-aberto.up.pt/handle/10216/78197.
Повний текст джерелаRosmaninho, Miguel Mota Prego. "Electrodeposition of Bi 2 Te3 Nanomaterials for Thermoelectric generators." Dissertação, 2014. https://repositorio-aberto.up.pt/handle/10216/78197.
Повний текст джерелаYeh, Chun-Chia, and 葉峻嘉. "Fabrication and Characterization of Thermoelectric Micro Generators with Carbon Nanotube." Thesis, 2013. http://ndltd.ncl.edu.tw/handle/68260636366833524023.
Повний текст джерела國立中興大學
機械工程學系所
101
This study presents a micro thermoelectric power generator fabricated by the standard 0.18 μm 1P6M (one polysilicon and six metals) CMOS (complementary metal oxide semiconductor) process. The micro thermoelectric power generator is composed of 370 thermocouples in series, and the thermocouples are formed by p-type and n-type polysilicon. The efficiency of the micro generator depends on the temperature difference between hot and cold parts of thermocouples. In order to achieve the best generation efficiency, the reactive ion etching (RIE) is used to release the hot part of thermocouples. Then, the hot part of the thermocouples is coated by MCNTs (Multi-walled carbon nanotubes). The cold part of the thermocouples is covered by silicon oxide that provides low thermal conductivity and thermal isolation. ANSYS Workbench is used to simulate the temperature distribution and the temperature gradient of the micro generator. The experimental results showed that the output voltage of thermoelectric generator without MCNTs film was 0.899 mV and the output power was 1.72 pW when temperature was 400 K. The output voltage and output power of the generator with MCNTs film were 1.56 mV and 5.16 pW, respectively, at the temperature of 400 K. The micro generator with the MCNTs film had a voltage factor of 0.225 mV/K/mm2 and a power factor of 0.745 pW/K2/mm2. Finally, the charging circuit is designed to carry out the storage of output power, and the power can be apply in the low power electronic component.