Добірка наукової літератури з теми "Thermal stability of insulation"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Thermal stability of insulation".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Thermal stability of insulation"

1

Lohtander, Tia, Reima Herrala, Päivi Laaksonen, Sami Franssila, and Monika Österberg. "Lightweight lignocellulosic foams for thermal insulation." Cellulose 29, no. 3 (January 6, 2022): 1855–71. http://dx.doi.org/10.1007/s10570-021-04385-6.

Повний текст джерела
Анотація:
AbstractFoams are mainly composed of dispersed gas trapped in a liquid or solid phase making them lightweight and thermally insulating materials. Additionally, they are applicable for large surfaces, which makes them attractive for thermal insulation. State-of-the-art thermally insulating foams are made of synthetic polymeric materials such as polystyrene. This work focuses on generating foam from surfactants and renewable lignocellulosic materials for thermally insulating stealth material. The effect of two surfactants (sodium dodecyl sulphate (SDS) and polysorbate (T80)), two cellulosic materials (bleached pulp and nanocellulose), and lignin on the foaming and stability of foam was investigated using experimental design and response surface methodology. The volume-optimized foams determined using experimental design were further studied with optical microscopy and infrared imaging. The results of experimental design, bubble structure of foams, and observations of their thermal conductivity showed that bleached pulp foam made using SDS as surfactant produced the highest foam volume, best stability, and good thermal insulation. Lignin did not improve the foaming or thermal insulation properties of the foam, but it was found to improve the structural stability of foam and brought natural brown color to the foam. Both wet and dry lignocellulosic foams provided thermal insulation comparable to dry polystyrene foam. Graphical abstract
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Liang, Ningchuan, Ruijin Liao, Min Xiang, Yang Mo, and Yuan Yuan. "Influence of Amine Compounds on the Thermal Stability of Paper-Oil Insulation." Polymers 10, no. 8 (August 9, 2018): 891. http://dx.doi.org/10.3390/polym10080891.

Повний текст джерела
Анотація:
Amine compounds can greatly enhance the thermal stability of the insulating paper used in paper-oil insulation. Many research documents focus on paper‘s excellent thermal stability, but less attention has been paid to the effect of oil on paper’s degradation. In this research paper, we study the influence of different amine compounds on the thermal stability of both paper and oil, and a mechanism for the influence on paper-oil insulation as well as an optimal formula are proposed. First, six groups of paper were modified with different proportions of dicyandiamide (DICY), melamine, and polyacrylamide (PAM). Then, an accelerated thermal aging test at 130 °C was conducted for 30 days and the thermal aging characteristics of the oil-modified paper insulation were measured. The results showed that the thermal stability of the insulation paper modified with the amine compounds was remarkably improved, and P2 (2.25 wt % melamine, 0.75 wt % DICY, and 0.2 wt % PAM) presented the best anti-aging properties. However, certain properties of oil were influenced, such as acid value, and it was found that the ammonia produced by the amine stabilizers increased the copper compound content, which led to the deterioration of the insulating oil. Moreover, using a front-line orbital energy analysis by molecule modeling, it was determined that melamine was the core thermal stabilizer for the paper among the three amine compounds used in P2.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Diban, Bassel, and Giovanni Mazzanti. "The Effect of Insulation Characteristics on Thermal Instability in HVDC Extruded Cables." Energies 14, no. 3 (January 21, 2021): 550. http://dx.doi.org/10.3390/en14030550.

Повний текст джерела
Анотація:
This paper aims at studying the effect of cable characteristics on the thermal instability of 320 kV and 500 kV Cross-Linked Polyethylene XLPE-insulated high voltage direct-current (HVDC) cables buried in soil for different values of the applied voltages, by the means of sensitivity analysis of the insulation losses to the electrical conductivity coefficients of temperature and electric field, a and b. It also finds the value of dielectric loss coefficient βd for DC cables, which allows an analytical calculation of the temperature rise as a function of insulation losses and thermal resistances. A Matlab code is used to iteratively solve Maxwell’s equations and find the electric field distribution, the insulation losses and the temperature rise inside the insulation due to insulation losses of the cable subjected to load cycles according to CIGRÉ Technical Brochure 496. Thermal stability diagrams are found to study the thermal instability and its relationship with the cable ampacity. The results show high dependency of the thermal stability on the electrical conductivity of cable insulating material, as expressed via the conductivity coefficients of temperature and electric field. The effect of insulation thickness on both the insulation losses and the thermal stability is also investigated.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Wang, Yipu, Zhengtao Tu, and Linyang Yuan. "Analysis of thermal energy storage optimization of thermal insulation material and thermal insulation structure of steam pipe-line." Thermal Science 24, no. 5 Part B (2020): 3249–57. http://dx.doi.org/10.2298/tsci191126116w.

Повний текст джерела
Анотація:
In order to improve the steam pipe insulation material joints, waterproof, and other shortcomings, and provide a good design scheme for the insulation structure optimization, a gel heat preservation material was prepared through hydration hardening theory. Firstly, the preparation of thermal insulation material for steam pipe and the optimal design of thermal insulation structure was introduced. Then the performance of the insulation material of the steam pipe was evaluated. Finally, the stability and energy benefit of the thermal insulation structure were evaluated. The results show that the new gel thermal insulation material prepared in this research has good thermal insulation effect and good waterproof performance. In the stability evaluation of the thermal insulation structure of the steam pipe, it can be concluded that hard thermal insulation materials should be selected in the selection of thermal insulation materials. Its insulation effect is better than soft insulation material. In the thermal energy storage optimization of the thermal insulation structure, when the inner layer of the thermal insulation structure adopts 10 mm aerogel and the outer layer adopts 50 mm gel thermal insulation material, it is the optimal thermal insulation structure. The study has a good guiding effect on the economic benefit of steam pipe insulation structure.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Shang, Lei, Yang Lyu, and Wenbo Han. "Microstructure and Thermal Insulation Property of Silica Composite Aerogel." Materials 12, no. 6 (March 26, 2019): 993. http://dx.doi.org/10.3390/ma12060993.

Повний текст джерела
Анотація:
Tetraethyl orthosilicate was selected as a matrix of heat insulating materials among three silanes, and an anti-infrared radiation fiber was chosen as a reinforcement for silica aerogel insulation composite. The silica aerogel was combined well and evenly distributed in the anti-infrared radiation fiber. The heat insulation effect was improved with the increase in thickness of the aerogel insulation material, as determined by the self-made aerospace insulation material insulation performance test equipment. The 15 mm and 30 mm thick thermal insulation material heated at 250 °C for 3 h, the temperatures at the cold surface were about 80 °C and 60 °C, respectively, and the temperatures at 150 mm above the cold surface were less than 60 °C and 50 °C, respectively. The silica aerogel composites with various thicknesses showed good thermal insulation stability. The silica insulation composite with a thickness of 15 mm exhibited good heat insulation performance, meets the thermal insulation requirements of general equipment compartments under low-temperature and long-term environmental conditions. The thermal conductivity of prepared silica aerogel composite was 0.0191 W·m−1·k−1 at room temperature and 0.0489 W·m−1·k−1 at 500 °C.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Lakatos, Ákos, and Attila Csík. "Multiscale Thermal Investigations of Graphite Doped Polystyrene Thermal Insulation." Polymers 14, no. 8 (April 14, 2022): 1606. http://dx.doi.org/10.3390/polym14081606.

Повний текст джерела
Анотація:
Nowadays, to improve quality of life, to have a more comfortable life, in internal spaces we try to maintain conditions that are free from external environmental influences. Thus, existing as well as newly built houses have adequate interiors maintaining their temperature, warming, or cooling due to the environment compensation. One way to create this is to reduce the heat loss in buildings. An option to achieve this is the application of thermal insulations. Nowadays, the use of super insulation materials such as aerogel and vacuum insulation panels and other nano-structured insulations, such as graphite doped expanded polystyrene, is becoming increasingly justified. These are relatively new materials, and we know only a little about them. This paper presents research results based on temperature-induced investigations of nanostructured graphite expanded polystyrene, to reveal its thermal stability after long-term and short-term thermal annealing, simulating the ageing of the material. Firstly, with a differential scanning calorimeter, we will explore the thermal stability profile of the specimens. After this, the paper will present temperature-induced changes in both the thermal properties and the structure of the samples. We will also present changes in the thermal conductivity, modifications in the surface, and compressive property variation induced by thermal annealing. The samples were thermal annealed at 70 °C for 6 weeks, at 100 and 110 °C for 1 h. Besides the thermal conductivity measurements with Netzsch 446 heat flow meter equipment, we will present specific heat capacity measurement results executed with the same equipment. Moreover, sorption isotherms of the as-received and annealed samples were registered and completed with hydrophobic experiments, too. Furthermore, from the measurements, we showed that temperature should affect a significant change in the thermal conductivity of materials. Moreover, the changes in the graphite expanded polystyrene before and after thermal annealing were investigated by Scanning Electron Microscopy, as well as optical microscopy. The structural changes were further followed by an X-ray diffractometer and the IR absorption capability was tested, too.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Vankov, Yuri, Elvira Bazukova, Dmitry Emelyanov, Alexander Fedyukhin, Olga Afanaseva, Irina Akhmetova, and Umberto Berardi. "Experimental Assessment of the Thermal Conductivity of Basalt Fibres at High Temperatures." Energies 15, no. 8 (April 11, 2022): 2784. http://dx.doi.org/10.3390/en15082784.

Повний текст джерела
Анотація:
This paper investigates fibrous thermal insulation materials of various densities to assess the change in their thermophysical properties at high temperatures. The thermal conductivity of fibrous thermal insulation materials is discussed as a function of the temperature in the range from 50 °C to 500 °C. It is shown that the thermal insulating properties depend not only on the physical properties of the material (e.g., density or diameter of fibres), but also on the geometric parameters of the structure and on the orientation of the fibres. The influence of high temperatures on the mass change of fibrous materials associated with the burnout of synthetic binders is shown. These features should be taken into account during the design of thermal insulation operating at high temperatures to provide the optimal selection of the material and to guarantee the stability of their thermal properties.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Vozhakov, R., and V. Kyrylenko. "THE INFLUENCE OF EXTRANEOUS SOURCES OF THERMAL ENERGY ON THERMAL STABILITY AND BREAKDOWN VOLTAGE OF ELECTRICAL INSULATION DURING ITS THERMAL BREAKDOWN." Tekhnichna Elektrodynamika 2021, no. 2 (February 23, 2021): 20–25. http://dx.doi.org/10.15407/techned2021.02.020.

Повний текст джерела
Анотація:
The article is devoted to the analysis of thermal breakdown of insulation of electrical and power equipment due to disturbance of its thermal balance. The analysis was performed within the simplest model of thermal breakdown while ignoring the temperature distribution in the insulation volume. Particular attention is paid to the influence of extraneous sources of thermal energy on the thermal stability and the breakdown voltage of the electrical insulation structure. From the heat balance equation and the condition of thermal balance disturbance between the total thermal power in the insulation and the heat transferred into the surroundings, have been found analytical expressions that take into account the influence of extraneous sources of thermal energy on the critical operating temperature and the breakdown voltage of the insulation. The influence of extraneous sources of thermal energy on the dependence of the breakdown voltage on the dielectric parameters and the cooling conditions was analyzed. It is shown that the breakdown voltage of the insulation decreases exponentially with the increase of the power of extraneous heat sources and the temperature coefficient of tgδ, as well as the deterioration of the heat transfer conditions. It is established that the critical dielectric losses in the insulation leading to the breakdown do not depend on the power of extraneous sources of thermal energy. It is proposed to increase the electrical insulation safety factor for breakdown strength relatived to its operating voltage, taking into account the extraneous sources of heat, to ensure the stability of insulation against thermal breakdown in the presence of extraneous sources of thermal energy. References 10, figures 3.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Zhang, Hua, Jun Lai, Yan Gao, Kan Lai, and Wei Shi. "The Influence of Different Fire Resistance Materials on the Thermal Protection Property of Firefighter Uniform." Advanced Materials Research 785-786 (September 2013): 729–34. http://dx.doi.org/10.4028/www.scientific.net/amr.785-786.729.

Повний текст джерела
Анотація:
Based on the thermal stability test on the different fire resistance materials, this article study the Thermal protection property (TPP) of the different materials composite structure and analyses the effect that the materials changes on the TPP of the composite structure products. The results indicate that the thermal insulation batts made by Aramid fiber materials have excellent thermal stability, adding a certain percentage of Aramid fiber 1414 into the thermal insulation batts makes for the batts having stably insulation function, and it only needs 10% around additive amount to satisfy this demand, compared with polyimide and PPS, Aramid fiber 1414 have better thermal stability when encountered fire.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Zhukov, Alexey, Tatiana Konoval’tseva, Ekaterina Bobrova, Ekaterina Zinovieva, and Kazbek Ivanov. "Thermal insulation: operational properties and methods of research." MATEC Web of Conferences 251 (2018): 01016. http://dx.doi.org/10.1051/matecconf/201825101016.

Повний текст джерела
Анотація:
Construction system consists of materials with different properties. The use of materials in the design should ensure maximum of its performance and its durability. The use of thermal insulation materials is an effective way to form the thermal envelope of a building, reducing energy costs and increasing the durability of building structures. The properties of materials are determined by their structure, which is formed in the process of technological influences. Formation of the insulating shell of oil and gas industry objects is possible only when considering the special features of the thermal insulation layer in the construction and the use of high-quality materials that retain their characteristics, both in the early stages of operation and throughout the calculation period. The first is achieved by competent design, the second the possibility of assessing the properties of thermal insulation (and predicting changes in these properties over time) directly in the construction site.The methodology for assessing the properties of insulating products includes two main components: testing facility and methodology for assessing operational stability. The methodology of conducting accelerated tests and prediction of durability is tested for mineral wool products of a layered, corrugated and volume-oriented structure. The test results give good convergence with the methods recommended by the building codes.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Thermal stability of insulation"

1

Acevedo, Nicole. "Effects of Scrotal Insulation on Spermatozoal Morphology and Chromatin Stability to Acid Denaturation in the Bovine." Thesis, Virginia Tech, 2001. http://hdl.handle.net/10919/31817.

Повний текст джерела
Анотація:
The sperm chromatin structure assay (SCSA), as developed by Evenson et al.(1980), utilizes flow cytometry to quantify the susceptibility of sperm chromatin to in situ acid denaturation via the metachromatic properties of acridine orange. SCSA is repeatable and has been used to distinguish between fertile and subfertile males in different species; however, it does not permit morphological evaluation of cells. In the present study, the SCSA was modified for the fluorescence/differential interference contrast (DIC) microscope to examine morphology and chromatin stability on the same cell. Semen from six Holstein bulls was collected twice weekly for six weeks. Semen was cryopreserved after collection. A 48-hr scrotal insulation was applied after the first three collections to exert a mild thermal insult to the testes; this induces specific spermatozoal morphological abnormalities to appear in a predictable chronological order, as determined by Vogler et al. (1993). Using DIC optics, sperm head morphology was classified as normal, slightly misshapen, pyriform, severely misshapen, or tailless. Vacuolization in the head region was scored separately as apical, diadem, or random. SCSA and modified-SCSA for fluorescence microscopy were used to assess chromatin instability in the samples. The SCSA parameter of 'cells outside the main population of alpha t' (%COMP alpha t) and the modified-SCSA parameter of '% cells shifted from green' were positively correlated (r=0.84; P<0.01). Both variables were positively correlated with the appearance of tailless, pyriform, severely misshapen, and randomly vacuolated cells (P< 0.01), but not with the appearance of diadems or apical vacuoles. Also, the fluorescence microscope detected a significant shift from green in normally shaped cells appearing in morphologically abnormal ejaculates (P<0.01). These results demonstrate that scrotal insulation-induced morphological abnormalities in spermatozoa signify a perturbation in chromatin structure, and that the chromatin perturbation extends into normally shaped cells in the same ejaculate.
Master of Science
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Condò, Marco. "Electrical characterization of innovative insulating materials for HVDC energy transmission cable systems." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019.

Знайти повний текст джерела
Анотація:
La tesi si è svolta nel corso di uno stage di quasi nove mesi all'interno del laboratorio elettrico di alta tensione del reparto R&D di Prysmian, leader mondiale dei sistemi elettrici in cavo. La tesi si è articolata nelle fasi seguenti: 1) analisi dei fondamenti teorici dei sistemi elettrici in cavo ad alta tensione in corrente continua (HVDC); 2) caratterizzazione elettrica di materiali isolanti innovativi per lo sviluppo di sistemi in cavo HVDC. Più in dettaglio tale caratterizzazione è consistita nelle fasi seguenti: a) progettazione e/o realizzazione dei set-up di prova; b) esecuzione delle prove di conducibilità elettrica su provini piani di materiale isolante costituiti da diverse mescole candidate per la realizzazione di cavi modello nella seconda parte della caratterizzazione (vedi seguito); c) elaborazione dei dati delle prove di cui al punto b) per ricavare i parametri σ0, α e β della conducibilità di ogni mescola isolante testata - e quindi l’andamento della conducibilità delle mescole in funzione della temperatura e del gradiente elettrico – così da selezionare le mescole migliori per la realizzazione dei cavi modello (cavi in scala ridotta con dimensioni standardizzate realizzati ai fini di prove di sviluppo); d) esecuzione delle prove di tenuta in AC sui cavi modello selezionati; e) esecuzione delle prove di rigidità ad impulso atmosferico su cavi modello; f) esecuzione delle prove di stabilità termica su cavi modello. I risultati di tutte le prove condotte hanno consentito di determinare quali fossero, tra tutte le mescole prese in esame, le più performanti dal punto di vista elettrico.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Read, L. "Soap based thermal insulation as an environmental alternative to petroleum based thermal insulation." Thesis, University of Salford, 2015. http://usir.salford.ac.uk/38535/.

Повний текст джерела
Анотація:
The aim of this doctorate is to investigate an alternative to petroleum based thermal insulations, by using natural and recycled materials. The methodology used is centered on the use of the basic ingredients of waste animal fats, waste oils and a potash derived lye mixture, combined to create a crude soap. This soap is aerated to produce a lightweight structure that is capable of preventing or reducing heat transfer between areas of differing temperatures. Experimental testing reveals that this non-toxic product can be strengthened, made waterproof, vermin proof and fire retardant, whilst the results from the thermal testing laboratory confirm that aerated soap insulation functions as a moderate performer. The step-by-step experimental methodology applied, alongside the thermal conductivity and resistance results contained within this thesis, can be used as a gauge for future potential improvements to build from. Currently there are gaps in knowledge and practice with regards to environmental thermal insulation. There are other environmental insulations, but more research needs to be initiated regarding recyclable, biodegradable, renewable and organic components and ingredients within the insulation make-up. Industry trends are to improve the better performing petroleum insulations, whilst seemingly unwilling to compromise on environmental problem relief. This doctorate provides suggestions on how to reduce some of the environmental problems by replacing or diluting the toxic elements of petroleum insulation. Soap insulation is unique and as such makes a significant contribution to knowledge. This uniqueness is evidenced through the literature review and the systematic investigation of the research topic. The awarding of a worldwide patent on soap insulation protects the manufacture of thermal insulation comprising of solid aerated soap panels, derived from animal fats and lye. This idea of combining basic soap ingredients, then aerating the mixture to create thermal insulation is new and as such contributes to new knowledge. The publishing of a journal paper titled “Can Soap be a Sustainable Alternative to Petroleum-Based Thermal Insulation?” in the journal of Structural Survey. (Read & Arayici, 2015) emphasize the contribution of this research. Read & Arayici, (2015) describes the ingredients used, the manufacturing process and the improvement measures taken to create the soap insulation. Publishing is one method of making this research known to the global community. Academics can then engage with fellow academics or collaborate with industry to further this research or to commercialise this knowledge. Aerated soap research can widen the understanding of possible new alternative thermal insulation ideas. This creates a small yet original and significant opportunity to reduce the associated carbon footprint and environmental costs accrued each time that petroleum insulation is produced.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Thorsell, Thomas. "Advances in Thermal Insulation : Vacuum Insulation Panels and Thermal Efficiency to Reduce Energy Usage in Buildings." Doctoral thesis, KTH, Byggnadsteknik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-90745.

Повний текст джерела
Анотація:
We are coming to realize that there is an urgent need to reduce energy usage in buildings and it has to be done in a sustainable way. This thesis focuses on the performance of the building envelope; more precisely thermal performance of walls and super insulation material in the form of vacuum insulation. However, the building envelope is just one part of the whole building system, and super insulators have one major flaw: they are easily adversely affected by other problems in the built environment.  Vacuum Insulation Panels are one fresh addition to the arsenal of insulation materials available to the building industry. They are composite material with a core and an enclosure which, as a composite, can reach thermal conductivities as low as 0.004 W/(mK). However, the exceptional performance relies on the barrier material preventing gas permeation, maintaining a near vacuum into the core and a minimized thermal bridge effect from the wrapping of barrier material round the edge of a panel. A serpentine edge is proposed to decrease the heat loss at the edge. Modeling and testing shows a reduction of 60% if a reasonable serpentine edge is used. A diffusion model of permeation through multilayered barrier films with metallization coatings was developed to predict ultimate service life. The model combines numerical calculations with analytical field theory allowing for more precise determination than current models. The results using the proposed model indicate that it is possible to manufacture panels with lifetimes exceeding 50 years with existing manufacturing. Switching from the component scale to the building scale; an approach of integrated testing and modeling is proposed. Four wall types have been tested in a large range of environments with the aim to assess the hygrothermal nature and significance of thermal bridges and air leakages. The test procedure was also examined as a means for a more representative performance indicator than R-value (in USA). The procedure incorporates specific steps exposing the wall to different climate conditions, ranging from cold and dry to hot and humid, with and without a pressure gradient. This study showed that air infiltration alone might decrease the thermal resistance of a residential wall by 15%, more for industrial walls. Results from the research underpin a discussion concerning the importance of a holistic approach to building design if we are to meet the challenge of energy savings and sustainability. Thermal insulation efficiency is a main concept used throughout, and since it measures utilization it is a partial measure of sustainability. It is therefore proposed as a necessary design parameter in addition to a performance indicator when designing building envelopes. The thermal insulation efficiency ranges from below 50% for a wood stud wall poorly designed with incorporated VIP, while an optimized design with VIP placed in an uninterrupted external layer shows an efficiency of 99%, almost perfect. Thermal insulation efficiency reflects the measured wall performance full scale test, thus indicating efficiency under varied environmental loads: heat, moisture and pressure. The building design must be as a system, integrating all the subsystems together to function in concert. New design methodologies must be created along with new, more reliable and comprehensive measuring, testing and integrating procedures. New super insulators are capable of reducing energy usage below zero energy in buildings. It would be a shame to waste them by not taking care of the rest of the system. This thesis details the steps that went into this study and shows how this can be done.
QC 20120228
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Sancak, Emirhan. "Green public procurement and thermal insulation." Thesis, Högskolan i Halmstad, Sektionen för ekonomi och teknik (SET), 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-19877.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Cohen, Ellann. "Thermal properties of advanced aerogel insulation." Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/67795.

Повний текст джерела
Анотація:
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2011.
Cataloged from PDF version of thesis.
Includes bibliographical references (p. 74-76).
Buildings consume too much energy. For example, 16.6% of all the energy used in the United States goes towards just the heating and cooling of buildings. Many governments, organizations, and companies are setting very ambitious goals to reduce their energy use over the next few years. Because the time periods for these goals are much less than the average lifetime of a building, existing buildings will need to be retrofitted. There are two different types of retrofitting: shallow and deep. Shallow retrofits involve the quickest and least expensive improvements often including reducing infiltration around windows, under doors, etc and blowing more insulation into the attic. Deep retrofits are those that involve costly renovation and typically include adding insulation to the walls and replacing windows. A new, easily installable, inexpensive, and thin insulation would move insulating the walls from the deep retrofit category to the shallow retrofit category and thus would revolutionize the process of retrofitting homes to make them more energy efficient. This thesis provides an overview of a concept for a new, easily installable, inexpensive, thin aerogel-based insulation and goes into detail on how the thermal properties of the aerogel were measured and validated. The transient hot-wire method for measuring the thermal conductivity of very low thermal conductivity silica aerogel (1 0mW/m K at 1 atm) along with a correction for end effects was validated with the NIST (National Institute of Standards and Technology) Standard Reference Material 1459, fumed silica board to within 1 mW/mK. Despite the translucence of the aerogel at certain wavelengths, radiation is not an issue through the aerogel during the hot-wire test but may be an issue in actual use as an insulation. The monolithic aerogel thermal conductivity drops significantly with slightly reduced pressure (3.2 mW/m K at 0.1atm). For the final composite insulation, the new silica aerogel formula is a great choice and it is recommended to reduce the pressure around the aerogel to 1 / 1 0 th. In the future, a prototype of an insulation panel combining a 3-D truss structure, monolithic or granular silica aerogel, and reduced pressure will be constructed and tested.
by Ellann Cohen.
S.M.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Humaish, Hussein Hafudh. "Thermal techniques for characterizing building insulation materials." Thesis, Amiens, 2016. http://www.theses.fr/2016AMIE0034/document.

Повний текст джерела
Анотація:
Cette thèse s'inscrit dans un objectif à long terme de déterminer in situ (et/ou en usage) les propriétés thermiques des matériaux isolants du bâtiment. Notre objectif est de réduire l'écart entre la mesure en laboratoire et la performance réelle des isolants dans les parois de bâtiments. Nous nous sommes fixés deux objectifs principaux au cours de cette étude: 1- Étudier la possibilité d'utiliser la sonde cylindre à choc thermique pour la mesure des caractéristiques thermiques des matériaux isolants du bâtiment. 2- Étudier le comportement thermique d'un isolant en usage en utilisant un montage basé sur le principe de la boite chaude gardée. Cet équipement permet d'effectuer des études dans des conditions climatiques en température et en humidité proches de situations réelles supportées par l'enveloppe d'un bâtiment. Ce travail a permis d'identifier des verrous lors de l'utilisation d'une sonde à choc thermique pour caractériser des matériaux isolants. Il a aussi montré l'intérêt de la boite chaude gardée pour effectuer des études dans des conditions réelles et pour étudier les transferts de chaleur et de masse dans les parois de bâtiments
This thesis is part of a long-term objective to determine in situ (and / or in use) the thermal properties of building insulation materials. We want to reduce the gap between the laboratory measurement and the actual performance of insulation in buildings walls. We have set two main objectives during this study: 1- To study the possibility of using a non-steady state hot probe for measuring thermal properties of insulants. 2- To study the thermal behaviour of insulation materials in use by using a guarded hot box. Climatic conditions in temperature and humidity close to real situations can be submitted supported by hot and cold cells. This work has shown the interest of using thermal probe to characterize insulating materials. Guarded hot box is also interesting for studies in real conditions and to followheat and mass transfer in buildings walls
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Мірчук, Ігор Анатолійович. "Підвищення експлуатаційних характеристик суднових кабелів за рахунок технологічних режимів охолодження та радіаційного опромінення електричної ізоляції". Thesis, Національний технічний університет "Харківський політехнічний інститут", 2020. http://repository.kpi.kharkov.ua/handle/KhPI-Press/49276.

Повний текст джерела
Анотація:
Дисертація на здобуття наукового ступеня кандидата технічних наук (доктора філософії) за спеціальністю 141 "Електроенергетика, електротехніка та електромеханіка" (14 – Електрична інженерія) – Національний технічний університет "Харківський політехнічний інститут", м. Харків, 2020 р. Дисертаційна робота присвячена підвищенню експлуатаційних характеристик суднових кабелів за рахунок технологічних режимів охолодження та радіаційного опромінення ізоляції і оболонки на основі сучасних, які не поширюють полум'я, безгалогенних полімерних композицій, що забезпечують необхідний комплекс електричних, фізико-механічних параметрів при відповідному контролі технологічних процесів. Для досягнення цієї мети були поставлені задачі: – довести доцільність поступового охолодження поліетиленової ізоляції високовольтних силових кабелів для забезпечення як експлуатаційних параметрів, так і стабільності характеристик в процесі експлуатації; – обґрунтувати застосування методу електротеплової аналогії для побудови математичної моделі охолодження ізольованої струмопровідної жили з урахуванням розподілу температури по товщині ізоляції в несталому тепловому режимі; – розробити методику розрахунку технологічних параметрів режиму охолодження силових кабелів, що ґрунтується на розрахунку нелінійної теплової схеми заміщення ізольованої струмопровідної жили в несталому тепловому режимі з урахуванням залежності від температури теплового опору і теплоємності ізоляції методами дискретних резистивних схем заміщення і вузлових потенціалів; – визначити вплив технологічних режимів охолодження на розподіл температури по товщині екструдованої ізоляції та обґрунтувати тривалість перехідного процесу, що відповідає досягненню однакової температури по всій товщині ізоляції силових кабелів різного конструктивного виконання в різні моменти часу в залежності від температури води, що охолоджує; – експериментально перевірити ефективність виявлення технологічних дефектів в конструкції силового суднового кабелю за характеристиками часткових розрядів; – створити методику оптимізації силового суднового кабелю коаксіальної конструкції для забезпечення максимального розсіювання потужності теплового потоку в навколишнє середовище, що обумовлює збільшення струмового навантаження, за умови теплової стійкості ізоляції; – довести ефективність застосування захисної полімерної оболонки з високими теплопровідними властивостями для підвищення струмового навантаження силових суднових кабелів; – визначити вплив енергії прискорених електронів на механічні та електричні характеристики суднових кабелів та встановити діапазон коефіцієнта опромінення ізоляції, що забезпечує підвищення експлуатаційних характеристик, на підставі кореляційного зв'язку між електричними та механічними характеристиками радіаційно-модифікованої високонаповненої антипіренами безгалогенної композиції на основі співполімеру етилен-вінілацетату; – перевірити ефективність розподілу поглиненої дози по периметру й довжині при радіаційному опроміненні суднових кабелів за результатами фізико-механічних та теплових випробувань безгалогенної, яка не поширює полум'я, полімерної захисної оболонки кабелю; – визначити на підставі прискореного теплового старіння теплову стійкість радіаційно-модифікованої безгалогенної, яка не поширює полум'я, полімерної захисної оболонки, для прогнозування строку служби суднових кабелів та обґрунтувати можливість роботи в умовах підвищеної вологості і високих робочих температур неекранованого кабелю на основі неекранованих кручених пар з термопластичними ізоляцією і захисною оболонкою. Об'єкт дослідження – технологічні режими охолодження та радіаційного опромінення електричної ізоляції суднових кабелів, виготовленої з наповненої антипіренами безгалогенної композиції на основі поліолефінів. Предмет дослідження – експлуатаційні електричні, фізико-механічні та теплові характеристики полімерної ізоляції і оболонки, на основі наповненої антипіренами безгалогенної композиції, суднових кабелів. Методи дослідження. Теоретичні та експериментальні дослідження базуються на використанні методів чисельного та фізичного моделювання технологічних режимів охолодження та радіаційного опромінення прискореними електронами електричної полімерної ізоляції та захисної оболонки суднових кабелів. Методи теорії нестаціонарної теплопровідності для розрахунку режиму охолодження полімерної ізоляції кабелю. Диференційні рівняння теплопровідності та електропровідності. Метод електротеплових аналогій для визначення розподілу температури по товщині ізоляції в різні моменти часу, в залежності від температури води, що охолоджує судновий силовий кабель. Нелінійні теплова та електрична схеми заміщення ізольованої струмопровідної жили в перехідному тепловому режимі. Неявний метод Ейлера та метод вузлових потенціалів для отримання розподілу температури по товщині ізоляції кабелю. Метод оптимізації конструкції силового кабелю за умови забезпечення охолодження в експлуатації для підвищення струмового навантаження. Рівняння теплового балансу для визначення теплової стійкості ізоляції в експлуатації. Теорія радіаційного зшивання для визначення оптимальної дози опромінення полімерної ізоляції. Теорія теплового старіння ізоляції для прогнозування строку служби суднових кабелів в експлуатації. Апроксимація експериментальних електричних, фізико-механічних й теплових характеристик радіаційно-модифікованої ізоляції суднових кабелів. Кореляційний та регресійний аналіз електричних, механічних й теплових характеристик в процесі радіаційного модифікування полімерної ізоляції та захисної оболонки суднових кабелів. Техніка реєстрації часткових розрядів у високовольтній твердій полімерній ізоляції для виявлення дефектів на технологічній стадії виготовлення силових суднових кабелів. В роботі отримані такі наукові результати. У дисертаційній роботі вирішено науково-практичну задачу з підвищення експлуатаційних характеристик суднових кабелів за рахунок технологічних режимів охолодження та опромінення електричної ізоляції на основі сучасних безгалогенних полімерних композицій, які не поширюють полум'я. Удосконалено математичну модель технологічного процесу охолодження ізольованої струмопровідної жили в несталому тепловому режимі шляхом урахування температурної залежності теплофізичних характеристик полімерної ізоляції підчас розрахунку розподілу температури по товщині поліетиленової ізоляції в різні моменти часу в залежності від температури води при поступовому охолодженні, що дозволило визначити умови для забезпечення стабільних характеристик суднового силового кабелю в експлуатації. Запропоновано критерій для визначення технологічних параметрів режиму охолодження силових суднових кабелів, який являє собою час перехідного процесу охолодження ізольованої струмопровідної жили для досягнення однакової температури по всій товщині полімерної ізоляції. Встановлено оптимальну товщину полімерної захисної оболонки за умови довготривалої теплової стійкості радіаційно-зшитої ізоляції на основі поліолефінів, що забезпечує підвищення на 30 % струмове навантаження силового суднового кабелю коаксіальної конструкції. Визначено діапазон коефіцієнта опромінення прискореними електронами безгалогенної, що не поширює полум'я ізоляції суднових кабелів, що гарантує підвищення електричного опору радіаційно-модифікованої полімерної ізоляції більш ніж в два рази, пробивної напруги на постійному струмі в 1,3 рази відносно неопроміненого стану. Встановлено кореляцію між механічними і електричними характеристиками радіаційно-модифікованої ізоляції з безгалогенної композиції на основі поліолефінів, в залежності від лінійної швидкості проходження кабелю під пучком електронів при незмінному струмі пучка електронів. Встановлено, в залежності від технологічних параметрів режиму опромінення суднових кабелів, розподіл поглиненої дози по периметру і довжині полімерної захисної оболонки з безгалогенної композиції, яка не поширює полум'я, що дозволяє визначити дозу опромінення кабелів, яка забезпечує підвищення стійкості захисної оболонки до дії агресивних хімічних речовин при збереженні високих фізико-механічних характеристик Експериментально, на підставі прискореного старіння неекранованого кабелю на основі неекранованих кручених пар, з термопластичної поліетиленової ізоляції в захисній оболонці на основі полівінілхлоридного пластикату за умови адекватного старіння в експлуатації, доведено стійкість конструкції до підвищеної температури та вологості, що дозволяє прогнозувати строк служби суднових кабелів в залежності від робочої температури. Розроблено методику розрахунку технологічних параметрів режиму охолодження силових кабелів, що ґрунтується на розрахунку нелінійної теплової схеми заміщення ізольованої поліетиленом струмопровідної жили в несталому тепловому режимі, з урахуванням залежності від температури теплового опору і теплоємності, методами дискретних резистивних схем заміщення і вузлових потенціалів. Запропонована методика та алгоритми можуть бути застосовані для визначення технологічних режимів охолодження полімерної ізоляції кабелів без застосування дороговартісних натурних експериментів, що особливо важливо при освоєнні нових матеріалів та конструкцій, а також при модернізації існуючого на кабельних підприємствах обладнання, для охолодження силових, симетричних, радіочастотних та оптичних кабелів. Доведено ефективність реєстрації часткових розрядів у високовольтній твердій ізоляції для виявлення дефектів на технологічній стадії виготовлення силових суднових кабелів, а також для налаштування технологічного процесу охолодження. Розроблено методику розрахунку теплопередачі в одножильному силовому кабелі коаксіальної конструкції на підставі критеріальних рівнянь природної конвекції, для оптимізації конструкції силового суднового кабелю, для забезпечення максимальної лінійної щільності теплового потоку, що розсіюється з поверхні кабелю. Показано ефективність застосування полімерних матеріалів на основі мікро- і нанокомпозитів з високими теплопровідними властивостями для захисної оболонки силових високовольтних суднових кабелів, що забезпечують збільшення розсіювання кабелем теплової потужності на 30 %. Встановлено, що енергія прискорених електронів на рівні 0,5 МеВ забезпечує більш високий ступінь зшивання полімерної безгалогенної ізоляції на основі високонаповненої антипіренами композиції в порівнянні з енергією 0,4 МеВ при однаковому коефіцієнті опромінення, струмі пучка і кількості проходів ізольованої жили під пучком електронів. Доведено підвищення механічної міцності при розтягуванні, електричного опору ізоляції та пробивної напруги на постійному струмі радіаційно-модифікованої полімерної безгалогенної ізоляції з коефіцієнтом опромінення 5–7 м/(мА∙хв) при сталому значенні відносного подовження при розриві ізоляції на рівні не менше 120 %, що забезпечує компроміс між еластичністю і жорсткістю суднового кабелю. Встановлено зростання в 1,5–2 рази часу досягнення критичного параметра – відносного подовження при розриві радіаційно-модифікованої полімерної захисної оболонки на основі безгалогенної композиції, в порівнянні з не модифікованою термопластичною оболонкою, що еквівалентно збільшенню строку експлуатації в 1,5–2 рази суднового контрольного кабелю в області максимальних робочих температур. Матеріали дисертаційної роботи використовуються в навчальному процесі на кафедрі електроізоляційної та кабельної техніки Національного технічного університету "Харківський політехнічний інститут" при підготовці бакалаврів та магістрів за спеціальністю "141 – електроенергетика, електротехніка та електромеханіка" спеціалізації "141.04 Електроізоляційна, кабельна та оптоволоконна техніка"; у ТОВ "Азовська кабельна компанія" (м. Бердянськ) при розробці і визначенні оптимальних технологічних параметрів режимів виготовлення безгалогенних суднових кабелів, що не розповсюджують горіння, асоціації "Укрелектрокабель", в ПАТ "Завод "Південкабель". Дисертаційна робота виконана в ПрАТ "Український науково-дослідний інститут кабельної промисловості" (м. Бердянськ) та на кафедрі електроізоляційної та кабельної техніки Національного технічного університету "Харківський політехнічний інститут" (м. Харків), згідно програм наукових досліджень ПрАТ "Український науково-дослідний інститут кабельної промисловості" (ПМ ЕИЮВ.505.564–2018 "Вивчення термічної стійкості оболонки кабелю марки СПОВЕнг-FRHF 12x2,5 до та після опромінення швидкими електронами", ПМ ЕИЮВ.505.584–2019 "Визначення величини та розподілу поглиненої дози при радіаційному модифікуванні оболонки суднових кабелів, що не розповсюджують полум'я"), де здобувач був одним з розробників і виконавців програм.
Ph.D. thesis undertaken in research specialization 141 "Electric Power Engineering, Electrical Engineering and Electric Mechanics" (14 – Electrical Engineering). – National Technical University "Kharkiv Polytechnic Institute", Ministry of Education and Science of Ukraine, Kharkiv, 2020. The dissertation is devoted to increasing of the operational properties of shipboard cables due to the technological modes of cooling and electron beam irradiation of insulation and sheath based on modern flame retardant halogen-free polymeric compounds, which provide the necessary complex of electrical, physical and mechanical properties with appropriate control of technological processes. To achieve this, the following tasks were set: – to prove the expediency of gradual cooling of polyethylene insulation of high-voltage power cables to ensure both operational parameters and stability of properties during operation; – to substantiate the application of the method of electro-thermal analogy for the construction of a mathematical model of cooling of insulated conductor taking into account the temperature distribution over the thickness of insulation in a non-constant thermal mode; – to develop a method of calculating the technological parameters of the cooling mode of power cable, based on the calculation of a nonlinear thermal equivalent circuit of insulated conductor in a non-constant thermal mode, taking into account dependence the thermal resistance and heat capacity of the insulation from the temperature by methods of discrete resistive equivalent circuits; – to determine the influence of technological cooling modes on the temperature distribution in the thickness of extruded in sulation and to justify the duration of the transition process, which corresponds to achievement of the same temperature over the entire thickness of power cables insulation various design at different time points, depending on the cooling water temperature; – to verify experimentally the efficiency of detecting technological defects in the design of the power shipboard cable by partial discharges values; – to create a methodology for optimizing the power shipboard cable with coaxial construction to ensure maximum heat flow power dissipation into the environment, which causes an increase in current load, if insulation thermal resistance provided; – to prove the efficiency of the use a protective polymer sheath with high thermal conductive properties to increase the current load of power shipboard cables; – to determine the effect of accelerated electron beam energy on the mechanical and electrical properties of shipboard cables and determine the irradiation coefficient range for insulation which provides an increase of operational characteristics, on the basis of correlation between the electrical and mechanical properties of filled with flame retardants halogen-free compound based on ethylene-vinyl acetate modified by electron beam; – to verify the efficiency of absorbed dose distribution along the perimeter and length of shipboard cables after irradiation according to obtained results of mechanical and thermal tests of polymeric halogen-free flame retardant protective sheath of cable; – to determine the thermal stability of the halogen-free flame-retardant polymeric protective sheath modified by irradiating, on basis of accelerated thermal aging, to predict the service life of shipboard cables and to substantiate the possibility of operation in conditions with high humidity and high operating temperatures for unscreened cable with unscreened twisted pairs and thermoplastic insulation and protective sheath. Object of research – technological modes of cooling and irradiation of electrical insulation of shipboard cables, based on halogen-free filled with flame retardants polyolefin compound. Subject of research – electrical, mechanical and thermal operational properties of the shipboard cables polymer insulation and sheath based on filled with flame retardants halogen-free compounds. Research methods. Theoretical and experimental studies are based on the use of methods of numerical and physical modeling of technological modes of cooling and electron beam irradiation of polymeric electrical insulation and protective sheath of shipboard cables. Methods of theory of non-stationary thermal conductivity to calculation of cooling mode of polymeric cable insulation. Differential equations of thermal conductivity and electrical conductivity. The method of electro-thermal analogies to determine the temperature distribution in the thickness of insulation at different time points, depending on the temperature of cooling water for shipboard power cable. Nonlinear thermal and electrical equivalent circuits of insulated conductor in transient thermal mode. Implicit Euler method and nodal potentials method for obtaining temperature distribution in thickness of cable insulation. A method of optimizing the design of the power cable provided cooling during operation to increase the current load. Thermal balance equation to determining the thermal resistance of insulation during operation. Irradiation crosslinking theory to determine the optimal irradiation dose of polymeric insulation. The theory of thermal aging of insulation to predict the service life of shipboard cables. Approximation of experimental electrical, mechanical and thermal properties of modified by irradiation insulation of shipboard cables. Correlation and regression analysis of electrical, mechanical and thermal properties after modification by irradiation of polymeric insulation and protective sheath of shipboard cables. Partial discharge detection technique in high voltage solid polymeric insulation for defect detection on technological stage of production power shipboard cable. The following scientific results are obtained in the work. The dissertation solves the scientific and practical problem of increasing the operational properties of shipboard cables due to the technological modes of cooling and irradiation of electrical insulation based on modern halogen-free flame retardant polymeric compounds. The mathematical model of technological process of cooling insulated conductor in unsteady thermal mode, by taking into account dependence of thermal and physical characteristics of polymeric insulation from the temperature, for determine the temperature distribution throughout the thickness of polyethylene insulation at different time points depending on water temperature under gradual cooling, has been improved. Mathematical model allows to determine the conditions for ensuring stable characteristics of the shipboard power cable during operation. The criterion for determination of technological parameters of the cooling mode of power shipboard cables, which is the time of the transitional process of cooling the insulated conductor to achieve an equal temperature throughout the thickness of the polymeric insulation, is proposed. The optimum thickness of the polymeric protective sheath on condition of long-term thermal stability of irradiated cross-linked based on polyolefin insulation has been established. It provides a 30 % increase current load of the coaxial design shipboard power cable. The range of irradiation coefficient for halogen free flame retardant insulation of shipboard cables when guarantees increasing electrical resistance of polymeric insulation modified by electron beam more than twice, the breakdown direct current voltage 1,3 times relative to the non-irradiated condition, is determined. The correlation between mechanical and electrical properties of halogen-free based on polyolefin insulation modified by electron beam, depending on the linear velocity of the cable under the electron beam and constant value of electron beam current. The distribution of the absorbed dose along the perimeter and length of the halogen-free flame retardant polymeric protective sheath depending on the technological parameters of the irradiation modes of shipboard cables, is established and allows to determine the irradiation dose for cables, when protective sheath provides increasing the resistance to aggressive chemicals while high physical and mechanical properties is still available. The stability of the cables structure to high temperature and humidity is experimentally proved on the basis of accelerated aging of unscreened cable with unscreened twisted pairs, with thermoplastic polyethylene insulation and protective polyvinylchloride sheath with adequate aging during operation. It allows predicting the service life of shipboard cables depending on the operating temperature. A technique for calculating the technological parameters of the power cable cooling mode by the methods of discrete resistive equivalent circuits has been developed. A technique based on the calculation of a nonlinear thermal scheme of substitution of conductor with polyethylene insulation in a non-constant thermal mode, taking into account the dependence of thermal resistance and heat capacity from the temperature. The proposed methodology and algorithms can be applied to determine the technological modes of cooling cable polymeric insulation without using expensive full-scale experiments, especially important for the new compounds development and cable constructions, as well as modernization available at cable factories equipment for cooling power cable, data cable with twisted pairs, radio frequency and optical cables. The efficiency of determining partial discharges in high-voltage solid insulation has been proved to detect defects at the technological stage of the producing of power shipboard cables, as well as to adjust the technological process of cooling. The methodology for heat transfer in a coaxial design single-core power cable based on criterial equations of natural convection has been developed to optimize the design of the power shipboard cable to ensure the maximum linear density of heat flow dissipated from the cable surface. The efficiency of application of polymeric materials based on micro- and nanocomposites with high thermal conductivity for sheath of high-voltage shipboard cables, providing a 30 % increase in thermal dissipating of power cable, is shown. It is established the energy of accelerated electrons 0.5 MeV provides a higher degree of crosslinking of polymeric halogen-free insulation based on filled with flame retardants compound compared to the energy of 0.4 MeV at the same irradiation coefficient, electron beam current and the number of wire passages under electron beam. It is established an increase of tensile strength, electrical insulation resistance and breakdown DC voltage of crosslinked polymeric halogen-free insulation with irradiation coefficient 5-7 m/(mА∙min) with constant value of elongation at break not less than 120 % which ensure a compromise between rigidity and flexibility of the shipboard cable. It is established an increase in 1,5–2 times the time of reaching the critical parameter – elongation at break of the modified by electron beam polymeric sheath based on a halogen-free compound compared to the same thermop lastic non-modifying sheath. It is an increase service life of the shipboard control cable at maximum operational temperatures in 1,5–2 times. The materials of the dissertation are used at the educational process Department of Electrical Insulating and Cable Technique of National Technical University "Kharkiv Polytechnic Institute" at education bachelors and masters in disciplines of specialty "141 – Electric Power Engineering, Electrical Engineering and Electric Mechanics" (specialization "141.04 Electrical Isolating, Cable and Fiber-Optic Technique"), at "Azov Cable Company" (Berdians'k) at development and determination of optimal technological parameters of production modes of halogen-free, flame retardant shipboard cables, Association "Ukrelectrocable", in PJSC "Yuzhkable Works". Dissertation work was performed at the PJSC "Ukrainian Scientific and Research Institute of Cable Industry" (Berdians'k) and Department of Electrical Insulating and Cable Technique of National Technical University "Kharkiv Polytechnic Institute" (Kharkiv) according to research programs of PJSC "Ukrainian Scientific and Research Institute of Cable Industry" (PM EIUV.505.564–2018 "The research of thermal stability of the sheath cable SPOVEng-FRHF 12x2,5 before and after exposure under electron beam", PM EIUV.505.584–2019 "Determination of the quantity and distribution of the absorbed dose after irradiation of the sheath of shipboard flame retardant cables") wherein the applicant was one of the program developers and executor of individual sections.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Keenan, Patrick Joseph. "Thermal insulation of wet shielded metal arc welds." Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/37182.

Повний текст джерела
Анотація:
Thesis (Nav. E.)--Massachusetts Institute of Technology, Dept. of Ocean Engineering, 1994, and Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Materials Sciences & Engineering, 1994.
Includes bibliographical references (leaf 55).
by Patrick Joseph Keenan.
M.S.
Nav.E.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Luangtriratana, Piyanuch. "Thermal insulation of polymeric composites using surface treatments." Thesis, University of Bolton, 2014. http://ubir.bolton.ac.uk/626/.

Повний текст джерела
Анотація:
Fibre-reinforced polymeric composites for structural applications are required to conform to specific fire performance requirements and to retain their mechanical integrity after exposure to heat/fire. Many polymeric composites will lose their structural integrity when exposed to temperatures close to the glass transition temperature of the resin matrix. The most effective technique of protecting these materials against heat and fire is the use of surface coatings, which can inhibit or reduce the heat transfer from the fire/heat source to the underlying structure. In this PhD, novel thermal barrier coatings and techniques of their application on the surface of glass fibre-reinforced epoxy (GRE) composites were developed. These include: (1) commercially available intumescent coatings applied by paint brush and roller (2) nanoclays, dispersed in a solvent and sprayed on plasma activated GRE laminate surfaces (3) ceramic nano/microparticles dispersed in a flame retardant resin, applied by painting or K-bar application and (4) chemical coating obtained by applying phosphorus containing monomers (vinyl phosphonic acid) on a GRE surface by paint brush and polymerisation using UV radiation. Surface characterisation was carried out on each coating by scanning electron microscopy (SEM) and a water drop test. These results showed that the application method used plays an important role in determining the uniformity of the coating. Plasma treatment increased the hydrophilicity of the GRE composite surface, while in the presence of a resin binder, the coating established a hydrophobic surface. The effect of these coatings on the flammability of the composites was studied by a cone calorimeter at different heat fluxes, and the thermal barrier effect of the coatings was measured by insertion of thermocouples into the laminate during the cone experiments and measuring the time for the back surface temperature to reach the glass transition temperature of the resin. Intumescent coatings, as expected, showed the best performance and were used to set a benchmark for the performance of the other coatings. The nanoparticle and micro-ceramic particle coatings can act as thermal barriers. However, their concentration on the surface of laminates was not high enough to provide effective thermal protection for an extended period of time. The chemical (poly (vinyl phosphonic acid)) coating provided the best thermal barrier of the coatings due to its ability to form an intumescent char. Three point blending flexural and impact tests were used to study the effect of the coatings on the mechanical properties of the laminates. The contribution of the coating to the impact and flexural modulus of the laminates is related to the thickness of the coating and its mechanical properties. Thus, thin coatings showed better results than thick coatings. Each coating had a minimal effect on the mechanical properties of the GRE composite, while they improve the retention of mechanical property after exposure to heat, with the chemically coated samples performing the best, due to the formation of a thick intumescent char. A tape pull was performed to study the adhesion of the coatings on the GRE surfaces. All coatings containing resin binder or polymerized on the GRE surfaces were durable and did not peel off. The durability to water was tested by a water soak test. The nano/micro particulate ceramic coatings showed the best performance, whereas the chemical coatings showed the worst behaviour due to the highly hydrophilic nature of the poly (vinyl phosphonic acid).
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Thermal stability of insulation"

1

MSI. Thermal insulation. Chester: Marketing Strategies for Industry, 2000.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Zold, Andras. Thermal insulation. Brisbane, Qld: Passive and Low Energy International, in association with the Department of Architecture, University of Brisbane, 1997.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Twiston-Davies, Julian. Thermal insulation. London: Architectural Press, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Knab, Lawrence I. Thermal insulation materials. Gaithersburg, MD: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Thermal and acoustic insulation. London: Butterworths, 1986.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Strother, Edwin F. Thermal insulation building guide. Malabar, Fla: R.E. Krieger Pub. Co., 1990.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Attey, G. Hydrocool vacuum panel thermal insulation. Perth, W.A: Minerals and Energy Research Institute of Western Australia, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Powell, FJ, and SL Matthews, eds. Thermal Insulation: Materials and Systems. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 1987. http://dx.doi.org/10.1520/stp922-eb.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Barreira, Eva, and Vasco Peixoto de Freitas. External Thermal Insulation Composite Systems (ETICS). Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-20382-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Pollock, WI, and JM Barnhart, eds. Corrosion of Metals Under Thermal Insulation. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 1985. http://dx.doi.org/10.1520/stp880-eb.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Thermal stability of insulation"

1

Luneng, Raymond, Søren N. Bertel, Jørgen Mikkelsen, Arne P. Ratvik, and Tor Grande. "Chemical Stability of Thermal Insulating Materials in Sodium Vapour Environment." In Light Metals 2017, 543–49. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-51541-0_68.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

McMullan, R. "Thermal Insulation." In Environmental Science in Building, 23–42. London: Macmillan Education UK, 1989. http://dx.doi.org/10.1007/978-1-349-19896-2_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

McMullan, R. "Thermal Insulation." In Environmental Science in Building, 31–55. London: Macmillan Education UK, 1992. http://dx.doi.org/10.1007/978-1-349-22169-1_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

McMullan, Randall. "Thermal Insulation." In Environmental Science in Building, 31–54. London: Macmillan Education UK, 1998. http://dx.doi.org/10.1007/978-1-349-14811-0_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Worthing, Derek, Nigel Dann, and Roger Heath. "Thermal insulation." In Marshall and Worthing’s The Construction of Houses, 59–84. 6th ed. Sixth edition. | Abingdon, Oxon; New York, NY: Routledge, 2021. | Revised edition of: The construction of houses / Duncan Marshall ... [et al.]. 5th ed. London; New York: Routledge, 2013.: Routledge, 2021. http://dx.doi.org/10.1201/9780429397820-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Herwig, Heinz. "Thermische Isolation (thermal insulation)." In Wärmeübertragung A-Z, 250–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-56940-1_56.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Caps, R., and J. Fricke. "Aerogels for Thermal Insulation." In Sol-Gel Technologies for Glass Producers and Users, 349–53. Boston, MA: Springer US, 2004. http://dx.doi.org/10.1007/978-0-387-88953-5_46.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Raychaudhuri, B. C. "Thermal Insulation in Solar Thermal Devices." In Solar Water Heating Systems, 133–51. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-5480-9_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Bisnovatyi-Kogan, Gennady S. "Thermal Stability." In Stellar Physics, 391–401. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14734-0_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Gooch, Jan W. "Thermal Stability." In Encyclopedic Dictionary of Polymers, 743. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_11765.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Thermal stability of insulation"

1

Loiselle, L., I. Fofana, J. C. Olivares-Galvan, and E. Campero. "Stability of environmental friendly fluids under electrical and thermal stresses." In 2012 IEEE International Symposium on Electrical Insulation (ISEI). IEEE, 2012. http://dx.doi.org/10.1109/elinsl.2012.6251515.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Chakradhar, C., and T. S. Ramu. "Thermal Stability in HVDC Cables: Whether it is Internal or External?" In 2008 IEEE International Symposium on Electrical Insulation. IEEE, 2008. http://dx.doi.org/10.1109/elinsl.2008.4570271.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Zhang, Yang, Yongbin Liu, Chao Tang, Ruifeng Yao, Yu Fan, Jinghui Gao, and Lisheng Zhong. "Enhanced thermal stability of electrical properties in PVDF/PMMA blend." In 2020 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP). IEEE, 2020. http://dx.doi.org/10.1109/ceidp49254.2020.9437384.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Song Zhang, Chao Tang, and Xu Li. "Analysis on the thermal stability of the amorphous region in insulation paper." In 2013 International Conference on Mechatronic Sciences, Electric Engineering and Computer (MEC). IEEE, 2013. http://dx.doi.org/10.1109/mec.2013.6885622.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Rychkov, Dmitry, Werner Wirges, Reimund Gerhard, and Andrey Rychkov. "Triboelectrification and thermal stability of positive charge on polytetrafluoroethylene electret films." In 2012 IEEE Conference on Electrical Insulation and Dielectric Phenomena - (CEIDP 2012). IEEE, 2012. http://dx.doi.org/10.1109/ceidp.2012.6378866.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Hou, Wei, Lijun Yang, Yang Mo, Tiantian Zou, Youyu Huang, and Xiaoling Zheng. "Estimating the Thermal Stability of Cellulose Insulation using MSD and Tg parameters by Molecular Dynamics Simulation." In 2019 IEEE Electrical Insulation Conference (EIC). IEEE, 2019. http://dx.doi.org/10.1109/eic43217.2019.9046567.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Li, Yaozhong, Can Chen, Zhidong Jia, and Wei'an Ye. "Thermal stability and organic component analysis of HTV silicone rubber composite insulator." In 2015 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP). IEEE, 2015. http://dx.doi.org/10.1109/ceidp.2015.7351993.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Wegener, M., W. Wirges, M. Paajanen, and R. Gerhard. "Charging behavior and thermal stability of porous and non-porous polytetrafluoroethylene (PTFE) electrets." In 2007 Annual Report - Conference on Electrical Insulation and Dielectric Phenomena. IEEE, 2007. http://dx.doi.org/10.1109/ceidp.2007.4451621.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Mungkung, N., S. Arunrungrusmi, and T. Yuji. "An analysis of the cathode thermal conductivity affecting on stability vacuum arc." In 2010 24th International Symposium on Discharges and Electrical Insulation in Vacuum (ISDEIV). IEEE, 2010. http://dx.doi.org/10.1109/deiv.2010.5625761.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Tyschenko, Ida. "NANOMETER THICKNESS SILICON-ON-INSULATOR FILMS THERMAL STABILITY." In International Forum “Microelectronics – 2020”. Joung Scientists Scholarship “Microelectronics – 2020”. XIII International conference «Silicon – 2020». XII young scientists scholarship for silicon nanostructures and devices physics, material science, process and analysis. LLC MAKS Press, 2020. http://dx.doi.org/10.29003/m1573.silicon-2020/114-117.

Повний текст джерела
Анотація:
Thermal stability of 2.2 and 4.7 nm thick silicon-oninsulator films was studied within anneal temperature range of 800-1100оС. It was found that at the higher temperatures film thickness decreases and stoichiometric composition changes with increasing the proportion of the amorphous phase. Mechanisms of structural stability dependence upon film thickness is discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Thermal stability of insulation"

1

Knab, Lawrence I. National voluntary laboratory accreditation program: thermal insulation materials: thermal insulation materials. Gaithersburg, MD: National Institute of Standards and Technology, 1995. http://dx.doi.org/10.6028/nist.hb.150-15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Rasinski, Timothy. NVLAP Thermal Insulation Materials. National Institute of Standards and Technology, May 2020. http://dx.doi.org/10.6028/nist.hb.150-15-2020.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Courville, G., and P. Childs. Measurement of thermal drift in foam insulation. Office of Scientific and Technical Information (OSTI), October 1989. http://dx.doi.org/10.2172/5377636.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Flynn, Daniel R., David J. Evans, and Thomas W. Bartel. An acoustical technique for evaluation of thermal insulation. Gaithersburg, MD: National Institute of Standards and Technology, 1989. http://dx.doi.org/10.6028/nist.ir.88-3882.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Hemrick, James Gordon, Edgar Lara-Curzio, and James King. Characterization of Min-K TE-1400 Thermal Insulation. Office of Scientific and Technical Information (OSTI), July 2008. http://dx.doi.org/10.2172/935368.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Eser, S., J. Perison, R. Copenhaver, and H. Schobert. Thermal stability of jet fuel. Office of Scientific and Technical Information (OSTI), January 1989. http://dx.doi.org/10.2172/5568036.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Eser, S., J. Perison, R. Copenhaver, and H. Schobert. Thermal stability of jet fuel. Office of Scientific and Technical Information (OSTI), January 1989. http://dx.doi.org/10.2172/5454598.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

ANDREWS, J. W. THERMAL REGAIN FROM DISPLACEMENT OF DUCT LEAKAGE WITHIN INSULATION. Office of Scientific and Technical Information (OSTI), May 2002. http://dx.doi.org/10.2172/806193.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Hemrick, James Gordon, and James King. Additional Characterization of Min-K TE-1400 Thermal Insulation. Office of Scientific and Technical Information (OSTI), January 2011. http://dx.doi.org/10.2172/1004443.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Fleszar, Mark F. Thermal Stability of Epoxy Composite Materials. Fort Belvoir, VA: Defense Technical Information Center, December 1995. http://dx.doi.org/10.21236/ada306485.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії