Добірка наукової літератури з теми "Thermal stability of insulation"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Thermal stability of insulation".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Thermal stability of insulation"
Lohtander, Tia, Reima Herrala, Päivi Laaksonen, Sami Franssila, and Monika Österberg. "Lightweight lignocellulosic foams for thermal insulation." Cellulose 29, no. 3 (January 6, 2022): 1855–71. http://dx.doi.org/10.1007/s10570-021-04385-6.
Повний текст джерелаLiang, Ningchuan, Ruijin Liao, Min Xiang, Yang Mo, and Yuan Yuan. "Influence of Amine Compounds on the Thermal Stability of Paper-Oil Insulation." Polymers 10, no. 8 (August 9, 2018): 891. http://dx.doi.org/10.3390/polym10080891.
Повний текст джерелаDiban, Bassel, and Giovanni Mazzanti. "The Effect of Insulation Characteristics on Thermal Instability in HVDC Extruded Cables." Energies 14, no. 3 (January 21, 2021): 550. http://dx.doi.org/10.3390/en14030550.
Повний текст джерелаWang, Yipu, Zhengtao Tu, and Linyang Yuan. "Analysis of thermal energy storage optimization of thermal insulation material and thermal insulation structure of steam pipe-line." Thermal Science 24, no. 5 Part B (2020): 3249–57. http://dx.doi.org/10.2298/tsci191126116w.
Повний текст джерелаShang, Lei, Yang Lyu, and Wenbo Han. "Microstructure and Thermal Insulation Property of Silica Composite Aerogel." Materials 12, no. 6 (March 26, 2019): 993. http://dx.doi.org/10.3390/ma12060993.
Повний текст джерелаLakatos, Ákos, and Attila Csík. "Multiscale Thermal Investigations of Graphite Doped Polystyrene Thermal Insulation." Polymers 14, no. 8 (April 14, 2022): 1606. http://dx.doi.org/10.3390/polym14081606.
Повний текст джерелаVankov, Yuri, Elvira Bazukova, Dmitry Emelyanov, Alexander Fedyukhin, Olga Afanaseva, Irina Akhmetova, and Umberto Berardi. "Experimental Assessment of the Thermal Conductivity of Basalt Fibres at High Temperatures." Energies 15, no. 8 (April 11, 2022): 2784. http://dx.doi.org/10.3390/en15082784.
Повний текст джерелаVozhakov, R., and V. Kyrylenko. "THE INFLUENCE OF EXTRANEOUS SOURCES OF THERMAL ENERGY ON THERMAL STABILITY AND BREAKDOWN VOLTAGE OF ELECTRICAL INSULATION DURING ITS THERMAL BREAKDOWN." Tekhnichna Elektrodynamika 2021, no. 2 (February 23, 2021): 20–25. http://dx.doi.org/10.15407/techned2021.02.020.
Повний текст джерелаZhang, Hua, Jun Lai, Yan Gao, Kan Lai, and Wei Shi. "The Influence of Different Fire Resistance Materials on the Thermal Protection Property of Firefighter Uniform." Advanced Materials Research 785-786 (September 2013): 729–34. http://dx.doi.org/10.4028/www.scientific.net/amr.785-786.729.
Повний текст джерелаZhukov, Alexey, Tatiana Konoval’tseva, Ekaterina Bobrova, Ekaterina Zinovieva, and Kazbek Ivanov. "Thermal insulation: operational properties and methods of research." MATEC Web of Conferences 251 (2018): 01016. http://dx.doi.org/10.1051/matecconf/201825101016.
Повний текст джерелаДисертації з теми "Thermal stability of insulation"
Acevedo, Nicole. "Effects of Scrotal Insulation on Spermatozoal Morphology and Chromatin Stability to Acid Denaturation in the Bovine." Thesis, Virginia Tech, 2001. http://hdl.handle.net/10919/31817.
Повний текст джерелаMaster of Science
Condò, Marco. "Electrical characterization of innovative insulating materials for HVDC energy transmission cable systems." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019.
Знайти повний текст джерелаRead, L. "Soap based thermal insulation as an environmental alternative to petroleum based thermal insulation." Thesis, University of Salford, 2015. http://usir.salford.ac.uk/38535/.
Повний текст джерелаThorsell, Thomas. "Advances in Thermal Insulation : Vacuum Insulation Panels and Thermal Efficiency to Reduce Energy Usage in Buildings." Doctoral thesis, KTH, Byggnadsteknik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-90745.
Повний текст джерелаQC 20120228
Sancak, Emirhan. "Green public procurement and thermal insulation." Thesis, Högskolan i Halmstad, Sektionen för ekonomi och teknik (SET), 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-19877.
Повний текст джерелаCohen, Ellann. "Thermal properties of advanced aerogel insulation." Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/67795.
Повний текст джерелаCataloged from PDF version of thesis.
Includes bibliographical references (p. 74-76).
Buildings consume too much energy. For example, 16.6% of all the energy used in the United States goes towards just the heating and cooling of buildings. Many governments, organizations, and companies are setting very ambitious goals to reduce their energy use over the next few years. Because the time periods for these goals are much less than the average lifetime of a building, existing buildings will need to be retrofitted. There are two different types of retrofitting: shallow and deep. Shallow retrofits involve the quickest and least expensive improvements often including reducing infiltration around windows, under doors, etc and blowing more insulation into the attic. Deep retrofits are those that involve costly renovation and typically include adding insulation to the walls and replacing windows. A new, easily installable, inexpensive, and thin insulation would move insulating the walls from the deep retrofit category to the shallow retrofit category and thus would revolutionize the process of retrofitting homes to make them more energy efficient. This thesis provides an overview of a concept for a new, easily installable, inexpensive, thin aerogel-based insulation and goes into detail on how the thermal properties of the aerogel were measured and validated. The transient hot-wire method for measuring the thermal conductivity of very low thermal conductivity silica aerogel (1 0mW/m K at 1 atm) along with a correction for end effects was validated with the NIST (National Institute of Standards and Technology) Standard Reference Material 1459, fumed silica board to within 1 mW/mK. Despite the translucence of the aerogel at certain wavelengths, radiation is not an issue through the aerogel during the hot-wire test but may be an issue in actual use as an insulation. The monolithic aerogel thermal conductivity drops significantly with slightly reduced pressure (3.2 mW/m K at 0.1atm). For the final composite insulation, the new silica aerogel formula is a great choice and it is recommended to reduce the pressure around the aerogel to 1 / 1 0 th. In the future, a prototype of an insulation panel combining a 3-D truss structure, monolithic or granular silica aerogel, and reduced pressure will be constructed and tested.
by Ellann Cohen.
S.M.
Humaish, Hussein Hafudh. "Thermal techniques for characterizing building insulation materials." Thesis, Amiens, 2016. http://www.theses.fr/2016AMIE0034/document.
Повний текст джерелаThis thesis is part of a long-term objective to determine in situ (and / or in use) the thermal properties of building insulation materials. We want to reduce the gap between the laboratory measurement and the actual performance of insulation in buildings walls. We have set two main objectives during this study: 1- To study the possibility of using a non-steady state hot probe for measuring thermal properties of insulants. 2- To study the thermal behaviour of insulation materials in use by using a guarded hot box. Climatic conditions in temperature and humidity close to real situations can be submitted supported by hot and cold cells. This work has shown the interest of using thermal probe to characterize insulating materials. Guarded hot box is also interesting for studies in real conditions and to followheat and mass transfer in buildings walls
Мірчук, Ігор Анатолійович. "Підвищення експлуатаційних характеристик суднових кабелів за рахунок технологічних режимів охолодження та радіаційного опромінення електричної ізоляції". Thesis, Національний технічний університет "Харківський політехнічний інститут", 2020. http://repository.kpi.kharkov.ua/handle/KhPI-Press/49276.
Повний текст джерелаPh.D. thesis undertaken in research specialization 141 "Electric Power Engineering, Electrical Engineering and Electric Mechanics" (14 – Electrical Engineering). – National Technical University "Kharkiv Polytechnic Institute", Ministry of Education and Science of Ukraine, Kharkiv, 2020. The dissertation is devoted to increasing of the operational properties of shipboard cables due to the technological modes of cooling and electron beam irradiation of insulation and sheath based on modern flame retardant halogen-free polymeric compounds, which provide the necessary complex of electrical, physical and mechanical properties with appropriate control of technological processes. To achieve this, the following tasks were set: – to prove the expediency of gradual cooling of polyethylene insulation of high-voltage power cables to ensure both operational parameters and stability of properties during operation; – to substantiate the application of the method of electro-thermal analogy for the construction of a mathematical model of cooling of insulated conductor taking into account the temperature distribution over the thickness of insulation in a non-constant thermal mode; – to develop a method of calculating the technological parameters of the cooling mode of power cable, based on the calculation of a nonlinear thermal equivalent circuit of insulated conductor in a non-constant thermal mode, taking into account dependence the thermal resistance and heat capacity of the insulation from the temperature by methods of discrete resistive equivalent circuits; – to determine the influence of technological cooling modes on the temperature distribution in the thickness of extruded in sulation and to justify the duration of the transition process, which corresponds to achievement of the same temperature over the entire thickness of power cables insulation various design at different time points, depending on the cooling water temperature; – to verify experimentally the efficiency of detecting technological defects in the design of the power shipboard cable by partial discharges values; – to create a methodology for optimizing the power shipboard cable with coaxial construction to ensure maximum heat flow power dissipation into the environment, which causes an increase in current load, if insulation thermal resistance provided; – to prove the efficiency of the use a protective polymer sheath with high thermal conductive properties to increase the current load of power shipboard cables; – to determine the effect of accelerated electron beam energy on the mechanical and electrical properties of shipboard cables and determine the irradiation coefficient range for insulation which provides an increase of operational characteristics, on the basis of correlation between the electrical and mechanical properties of filled with flame retardants halogen-free compound based on ethylene-vinyl acetate modified by electron beam; – to verify the efficiency of absorbed dose distribution along the perimeter and length of shipboard cables after irradiation according to obtained results of mechanical and thermal tests of polymeric halogen-free flame retardant protective sheath of cable; – to determine the thermal stability of the halogen-free flame-retardant polymeric protective sheath modified by irradiating, on basis of accelerated thermal aging, to predict the service life of shipboard cables and to substantiate the possibility of operation in conditions with high humidity and high operating temperatures for unscreened cable with unscreened twisted pairs and thermoplastic insulation and protective sheath. Object of research – technological modes of cooling and irradiation of electrical insulation of shipboard cables, based on halogen-free filled with flame retardants polyolefin compound. Subject of research – electrical, mechanical and thermal operational properties of the shipboard cables polymer insulation and sheath based on filled with flame retardants halogen-free compounds. Research methods. Theoretical and experimental studies are based on the use of methods of numerical and physical modeling of technological modes of cooling and electron beam irradiation of polymeric electrical insulation and protective sheath of shipboard cables. Methods of theory of non-stationary thermal conductivity to calculation of cooling mode of polymeric cable insulation. Differential equations of thermal conductivity and electrical conductivity. The method of electro-thermal analogies to determine the temperature distribution in the thickness of insulation at different time points, depending on the temperature of cooling water for shipboard power cable. Nonlinear thermal and electrical equivalent circuits of insulated conductor in transient thermal mode. Implicit Euler method and nodal potentials method for obtaining temperature distribution in thickness of cable insulation. A method of optimizing the design of the power cable provided cooling during operation to increase the current load. Thermal balance equation to determining the thermal resistance of insulation during operation. Irradiation crosslinking theory to determine the optimal irradiation dose of polymeric insulation. The theory of thermal aging of insulation to predict the service life of shipboard cables. Approximation of experimental electrical, mechanical and thermal properties of modified by irradiation insulation of shipboard cables. Correlation and regression analysis of electrical, mechanical and thermal properties after modification by irradiation of polymeric insulation and protective sheath of shipboard cables. Partial discharge detection technique in high voltage solid polymeric insulation for defect detection on technological stage of production power shipboard cable. The following scientific results are obtained in the work. The dissertation solves the scientific and practical problem of increasing the operational properties of shipboard cables due to the technological modes of cooling and irradiation of electrical insulation based on modern halogen-free flame retardant polymeric compounds. The mathematical model of technological process of cooling insulated conductor in unsteady thermal mode, by taking into account dependence of thermal and physical characteristics of polymeric insulation from the temperature, for determine the temperature distribution throughout the thickness of polyethylene insulation at different time points depending on water temperature under gradual cooling, has been improved. Mathematical model allows to determine the conditions for ensuring stable characteristics of the shipboard power cable during operation. The criterion for determination of technological parameters of the cooling mode of power shipboard cables, which is the time of the transitional process of cooling the insulated conductor to achieve an equal temperature throughout the thickness of the polymeric insulation, is proposed. The optimum thickness of the polymeric protective sheath on condition of long-term thermal stability of irradiated cross-linked based on polyolefin insulation has been established. It provides a 30 % increase current load of the coaxial design shipboard power cable. The range of irradiation coefficient for halogen free flame retardant insulation of shipboard cables when guarantees increasing electrical resistance of polymeric insulation modified by electron beam more than twice, the breakdown direct current voltage 1,3 times relative to the non-irradiated condition, is determined. The correlation between mechanical and electrical properties of halogen-free based on polyolefin insulation modified by electron beam, depending on the linear velocity of the cable under the electron beam and constant value of electron beam current. The distribution of the absorbed dose along the perimeter and length of the halogen-free flame retardant polymeric protective sheath depending on the technological parameters of the irradiation modes of shipboard cables, is established and allows to determine the irradiation dose for cables, when protective sheath provides increasing the resistance to aggressive chemicals while high physical and mechanical properties is still available. The stability of the cables structure to high temperature and humidity is experimentally proved on the basis of accelerated aging of unscreened cable with unscreened twisted pairs, with thermoplastic polyethylene insulation and protective polyvinylchloride sheath with adequate aging during operation. It allows predicting the service life of shipboard cables depending on the operating temperature. A technique for calculating the technological parameters of the power cable cooling mode by the methods of discrete resistive equivalent circuits has been developed. A technique based on the calculation of a nonlinear thermal scheme of substitution of conductor with polyethylene insulation in a non-constant thermal mode, taking into account the dependence of thermal resistance and heat capacity from the temperature. The proposed methodology and algorithms can be applied to determine the technological modes of cooling cable polymeric insulation without using expensive full-scale experiments, especially important for the new compounds development and cable constructions, as well as modernization available at cable factories equipment for cooling power cable, data cable with twisted pairs, radio frequency and optical cables. The efficiency of determining partial discharges in high-voltage solid insulation has been proved to detect defects at the technological stage of the producing of power shipboard cables, as well as to adjust the technological process of cooling. The methodology for heat transfer in a coaxial design single-core power cable based on criterial equations of natural convection has been developed to optimize the design of the power shipboard cable to ensure the maximum linear density of heat flow dissipated from the cable surface. The efficiency of application of polymeric materials based on micro- and nanocomposites with high thermal conductivity for sheath of high-voltage shipboard cables, providing a 30 % increase in thermal dissipating of power cable, is shown. It is established the energy of accelerated electrons 0.5 MeV provides a higher degree of crosslinking of polymeric halogen-free insulation based on filled with flame retardants compound compared to the energy of 0.4 MeV at the same irradiation coefficient, electron beam current and the number of wire passages under electron beam. It is established an increase of tensile strength, electrical insulation resistance and breakdown DC voltage of crosslinked polymeric halogen-free insulation with irradiation coefficient 5-7 m/(mА∙min) with constant value of elongation at break not less than 120 % which ensure a compromise between rigidity and flexibility of the shipboard cable. It is established an increase in 1,5–2 times the time of reaching the critical parameter – elongation at break of the modified by electron beam polymeric sheath based on a halogen-free compound compared to the same thermop lastic non-modifying sheath. It is an increase service life of the shipboard control cable at maximum operational temperatures in 1,5–2 times. The materials of the dissertation are used at the educational process Department of Electrical Insulating and Cable Technique of National Technical University "Kharkiv Polytechnic Institute" at education bachelors and masters in disciplines of specialty "141 – Electric Power Engineering, Electrical Engineering and Electric Mechanics" (specialization "141.04 Electrical Isolating, Cable and Fiber-Optic Technique"), at "Azov Cable Company" (Berdians'k) at development and determination of optimal technological parameters of production modes of halogen-free, flame retardant shipboard cables, Association "Ukrelectrocable", in PJSC "Yuzhkable Works". Dissertation work was performed at the PJSC "Ukrainian Scientific and Research Institute of Cable Industry" (Berdians'k) and Department of Electrical Insulating and Cable Technique of National Technical University "Kharkiv Polytechnic Institute" (Kharkiv) according to research programs of PJSC "Ukrainian Scientific and Research Institute of Cable Industry" (PM EIUV.505.564–2018 "The research of thermal stability of the sheath cable SPOVEng-FRHF 12x2,5 before and after exposure under electron beam", PM EIUV.505.584–2019 "Determination of the quantity and distribution of the absorbed dose after irradiation of the sheath of shipboard flame retardant cables") wherein the applicant was one of the program developers and executor of individual sections.
Keenan, Patrick Joseph. "Thermal insulation of wet shielded metal arc welds." Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/37182.
Повний текст джерелаIncludes bibliographical references (leaf 55).
by Patrick Joseph Keenan.
M.S.
Nav.E.
Luangtriratana, Piyanuch. "Thermal insulation of polymeric composites using surface treatments." Thesis, University of Bolton, 2014. http://ubir.bolton.ac.uk/626/.
Повний текст джерелаКниги з теми "Thermal stability of insulation"
MSI. Thermal insulation. Chester: Marketing Strategies for Industry, 2000.
Знайти повний текст джерелаZold, Andras. Thermal insulation. Brisbane, Qld: Passive and Low Energy International, in association with the Department of Architecture, University of Brisbane, 1997.
Знайти повний текст джерелаTwiston-Davies, Julian. Thermal insulation. London: Architectural Press, 1986.
Знайти повний текст джерелаKnab, Lawrence I. Thermal insulation materials. Gaithersburg, MD: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 1995.
Знайти повний текст джерелаThermal and acoustic insulation. London: Butterworths, 1986.
Знайти повний текст джерелаStrother, Edwin F. Thermal insulation building guide. Malabar, Fla: R.E. Krieger Pub. Co., 1990.
Знайти повний текст джерелаAttey, G. Hydrocool vacuum panel thermal insulation. Perth, W.A: Minerals and Energy Research Institute of Western Australia, 1994.
Знайти повний текст джерелаPowell, FJ, and SL Matthews, eds. Thermal Insulation: Materials and Systems. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 1987. http://dx.doi.org/10.1520/stp922-eb.
Повний текст джерелаBarreira, Eva, and Vasco Peixoto de Freitas. External Thermal Insulation Composite Systems (ETICS). Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-20382-9.
Повний текст джерелаPollock, WI, and JM Barnhart, eds. Corrosion of Metals Under Thermal Insulation. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 1985. http://dx.doi.org/10.1520/stp880-eb.
Повний текст джерелаЧастини книг з теми "Thermal stability of insulation"
Luneng, Raymond, Søren N. Bertel, Jørgen Mikkelsen, Arne P. Ratvik, and Tor Grande. "Chemical Stability of Thermal Insulating Materials in Sodium Vapour Environment." In Light Metals 2017, 543–49. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-51541-0_68.
Повний текст джерелаMcMullan, R. "Thermal Insulation." In Environmental Science in Building, 23–42. London: Macmillan Education UK, 1989. http://dx.doi.org/10.1007/978-1-349-19896-2_3.
Повний текст джерелаMcMullan, R. "Thermal Insulation." In Environmental Science in Building, 31–55. London: Macmillan Education UK, 1992. http://dx.doi.org/10.1007/978-1-349-22169-1_3.
Повний текст джерелаMcMullan, Randall. "Thermal Insulation." In Environmental Science in Building, 31–54. London: Macmillan Education UK, 1998. http://dx.doi.org/10.1007/978-1-349-14811-0_3.
Повний текст джерелаWorthing, Derek, Nigel Dann, and Roger Heath. "Thermal insulation." In Marshall and Worthing’s The Construction of Houses, 59–84. 6th ed. Sixth edition. | Abingdon, Oxon; New York, NY: Routledge, 2021. | Revised edition of: The construction of houses / Duncan Marshall ... [et al.]. 5th ed. London; New York: Routledge, 2013.: Routledge, 2021. http://dx.doi.org/10.1201/9780429397820-5.
Повний текст джерелаHerwig, Heinz. "Thermische Isolation (thermal insulation)." In Wärmeübertragung A-Z, 250–54. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-56940-1_56.
Повний текст джерелаCaps, R., and J. Fricke. "Aerogels for Thermal Insulation." In Sol-Gel Technologies for Glass Producers and Users, 349–53. Boston, MA: Springer US, 2004. http://dx.doi.org/10.1007/978-0-387-88953-5_46.
Повний текст джерелаRaychaudhuri, B. C. "Thermal Insulation in Solar Thermal Devices." In Solar Water Heating Systems, 133–51. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-5480-9_11.
Повний текст джерелаBisnovatyi-Kogan, Gennady S. "Thermal Stability." In Stellar Physics, 391–401. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14734-0_7.
Повний текст джерелаGooch, Jan W. "Thermal Stability." In Encyclopedic Dictionary of Polymers, 743. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_11765.
Повний текст джерелаТези доповідей конференцій з теми "Thermal stability of insulation"
Loiselle, L., I. Fofana, J. C. Olivares-Galvan, and E. Campero. "Stability of environmental friendly fluids under electrical and thermal stresses." In 2012 IEEE International Symposium on Electrical Insulation (ISEI). IEEE, 2012. http://dx.doi.org/10.1109/elinsl.2012.6251515.
Повний текст джерелаChakradhar, C., and T. S. Ramu. "Thermal Stability in HVDC Cables: Whether it is Internal or External?" In 2008 IEEE International Symposium on Electrical Insulation. IEEE, 2008. http://dx.doi.org/10.1109/elinsl.2008.4570271.
Повний текст джерелаZhang, Yang, Yongbin Liu, Chao Tang, Ruifeng Yao, Yu Fan, Jinghui Gao, and Lisheng Zhong. "Enhanced thermal stability of electrical properties in PVDF/PMMA blend." In 2020 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP). IEEE, 2020. http://dx.doi.org/10.1109/ceidp49254.2020.9437384.
Повний текст джерелаSong Zhang, Chao Tang, and Xu Li. "Analysis on the thermal stability of the amorphous region in insulation paper." In 2013 International Conference on Mechatronic Sciences, Electric Engineering and Computer (MEC). IEEE, 2013. http://dx.doi.org/10.1109/mec.2013.6885622.
Повний текст джерелаRychkov, Dmitry, Werner Wirges, Reimund Gerhard, and Andrey Rychkov. "Triboelectrification and thermal stability of positive charge on polytetrafluoroethylene electret films." In 2012 IEEE Conference on Electrical Insulation and Dielectric Phenomena - (CEIDP 2012). IEEE, 2012. http://dx.doi.org/10.1109/ceidp.2012.6378866.
Повний текст джерелаHou, Wei, Lijun Yang, Yang Mo, Tiantian Zou, Youyu Huang, and Xiaoling Zheng. "Estimating the Thermal Stability of Cellulose Insulation using MSD and Tg parameters by Molecular Dynamics Simulation." In 2019 IEEE Electrical Insulation Conference (EIC). IEEE, 2019. http://dx.doi.org/10.1109/eic43217.2019.9046567.
Повний текст джерелаLi, Yaozhong, Can Chen, Zhidong Jia, and Wei'an Ye. "Thermal stability and organic component analysis of HTV silicone rubber composite insulator." In 2015 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP). IEEE, 2015. http://dx.doi.org/10.1109/ceidp.2015.7351993.
Повний текст джерелаWegener, M., W. Wirges, M. Paajanen, and R. Gerhard. "Charging behavior and thermal stability of porous and non-porous polytetrafluoroethylene (PTFE) electrets." In 2007 Annual Report - Conference on Electrical Insulation and Dielectric Phenomena. IEEE, 2007. http://dx.doi.org/10.1109/ceidp.2007.4451621.
Повний текст джерелаMungkung, N., S. Arunrungrusmi, and T. Yuji. "An analysis of the cathode thermal conductivity affecting on stability vacuum arc." In 2010 24th International Symposium on Discharges and Electrical Insulation in Vacuum (ISDEIV). IEEE, 2010. http://dx.doi.org/10.1109/deiv.2010.5625761.
Повний текст джерелаTyschenko, Ida. "NANOMETER THICKNESS SILICON-ON-INSULATOR FILMS THERMAL STABILITY." In International Forum “Microelectronics – 2020”. Joung Scientists Scholarship “Microelectronics – 2020”. XIII International conference «Silicon – 2020». XII young scientists scholarship for silicon nanostructures and devices physics, material science, process and analysis. LLC MAKS Press, 2020. http://dx.doi.org/10.29003/m1573.silicon-2020/114-117.
Повний текст джерелаЗвіти організацій з теми "Thermal stability of insulation"
Knab, Lawrence I. National voluntary laboratory accreditation program: thermal insulation materials: thermal insulation materials. Gaithersburg, MD: National Institute of Standards and Technology, 1995. http://dx.doi.org/10.6028/nist.hb.150-15.
Повний текст джерелаRasinski, Timothy. NVLAP Thermal Insulation Materials. National Institute of Standards and Technology, May 2020. http://dx.doi.org/10.6028/nist.hb.150-15-2020.
Повний текст джерелаCourville, G., and P. Childs. Measurement of thermal drift in foam insulation. Office of Scientific and Technical Information (OSTI), October 1989. http://dx.doi.org/10.2172/5377636.
Повний текст джерелаFlynn, Daniel R., David J. Evans, and Thomas W. Bartel. An acoustical technique for evaluation of thermal insulation. Gaithersburg, MD: National Institute of Standards and Technology, 1989. http://dx.doi.org/10.6028/nist.ir.88-3882.
Повний текст джерелаHemrick, James Gordon, Edgar Lara-Curzio, and James King. Characterization of Min-K TE-1400 Thermal Insulation. Office of Scientific and Technical Information (OSTI), July 2008. http://dx.doi.org/10.2172/935368.
Повний текст джерелаEser, S., J. Perison, R. Copenhaver, and H. Schobert. Thermal stability of jet fuel. Office of Scientific and Technical Information (OSTI), January 1989. http://dx.doi.org/10.2172/5568036.
Повний текст джерелаEser, S., J. Perison, R. Copenhaver, and H. Schobert. Thermal stability of jet fuel. Office of Scientific and Technical Information (OSTI), January 1989. http://dx.doi.org/10.2172/5454598.
Повний текст джерелаANDREWS, J. W. THERMAL REGAIN FROM DISPLACEMENT OF DUCT LEAKAGE WITHIN INSULATION. Office of Scientific and Technical Information (OSTI), May 2002. http://dx.doi.org/10.2172/806193.
Повний текст джерелаHemrick, James Gordon, and James King. Additional Characterization of Min-K TE-1400 Thermal Insulation. Office of Scientific and Technical Information (OSTI), January 2011. http://dx.doi.org/10.2172/1004443.
Повний текст джерелаFleszar, Mark F. Thermal Stability of Epoxy Composite Materials. Fort Belvoir, VA: Defense Technical Information Center, December 1995. http://dx.doi.org/10.21236/ada306485.
Повний текст джерела