Дисертації з теми "Thermal losse"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Thermal losse.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 дисертацій для дослідження на тему "Thermal losse".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Gretarsson, Andri Marcus. "Thermal noise in low loss flexures." Related electronic resource: Current Research at SU : database of SU dissertations, recent titles available full text, 2002. http://wwwlib.umi.com/cr/syr/main.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Scheck, Christopher G. "Thermal Hysteresis loss in gas springs." Ohio University / OhioLINK, 1988. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1182870415.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Bousbaine, Amar. "An investigation into the thermal modelling of induction motors." Thesis, University of Sheffield, 1993. http://etheses.whiterose.ac.uk/1824/.

Повний текст джерела
Анотація:
Electric motors are the ubiquitous workhorses of the industry, working a in wide range of conditions and applications. Modern motors, designed to exact ratings using new materials improved manufacturing techniques, are now much smaller but have higher loadings. They are being operated much nearer to the point of overload then ever before. To ensure a satisfactory life span for the motor, temperature rise must be limited to safe values. A lumped parameter thermal model has been developed, which allows rapid and accurate estimation of the temperature distribution in a machine. The lumped parameter thermal model depends on the accurate knowledge of the thermal coefficients and more importantly the loss distribution. Hence the temperature time technique was implemented to investigate the iron loss density distribution. Experimental results are discussed and loss density information throughout the volume of the machine was generated. A novel method of determining the thermal coefficients employed in the heat flow equation was investigated, using the thermal lumped parameter model of a machine. Finally a 2-D finite element method was used to corroborate, or otherwise, the use of the lumped thermal network model.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Šumić, Mersiha. "Thermal Performance of a Solarus CPC-Thermal Collector." Thesis, Högskolan Dalarna, Energi och miljöteknik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:du-14526.

Повний текст джерела
Анотація:
The  aim  of  this  master  thesis  is  an  investigation  of  the  thermal  performance  of  a  thermal compound parabolic concentrating (CPC) collector from Solarus. The collector consists of two troughs with absorbers which are coated with different types of paint with  unknown  properties.  The  lower  and  upper  trough  of  the  collector  have  been  tested individually. In  order  to  accomplish  the  performance  of  the  two  collectors,  a  thorough  literature  study  in  the  fields  of  CPC  technology,  various  test  methods,  test  standards  for  solar thermal  collectors  as  well  as  the  latest  articles  relating  on  the  subject  were  carried  out. In addition, the set‐up of the thermal test rig was part of the thesis as well. The thermal  performance  was  tested  according  to  the  steady  state  test  method  as  described in the European standard 12975‐2. Furthermore, the thermal performance of  a  conventional  flat  plate  collector  was  carried  out  for  verification  of  the  test  method. The  CPC‐Thermal  collector  from  Solarus  was  tested  in  2013  and  the  results  showed  four  times  higher  values  of  the  heat  loss  coefficient  UL (8.4  W/m²K)  than  what  has been reported for a commercial collector from Solarus. This value was assumed to be too large and it was assumed that the large value was a result of the test method used that time. Therefore, another aim was the comparison of the results achieved in this work with the results from the tests performed in 2013. The results of the thermal performance showed that the optical efficiency of the lower trough of the CPC‐T collector is 77±5% and the corresponding heat loss coefficient UL 4.84±0.20  W/m²K.  The  upper  trough  achieved  an  optical  efficiency  of  75±6  %  and  a  heat loss coefficient UL of 6.45±0.27 W/m²K. The results of the heat loss coefficients  are  valid  for  temperature  intervals  between  20°C  and  80°C.  The  different  absorber paintings have a significant impact on the results, the lower trough performs overall better.  The  results  achieved  in  this  thesis  show  lower  heat  loss  coefficients UL and higher optical efficiencies compared to the results from 2013.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Oberdorf, Michael Craig. "Power losses and thermal modeling of a voltage source inverter." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2006. http://library.nps.navy.mil/uhtbin/hyperion/06Mar%5FOberdorf.pdf.

Повний текст джерела
Анотація:
Thesis (M.S. in Electrical Engineering)--Naval Postgraduate School, March 2006.
Thesis Advisor(s): Alexander Julian. "March 2006." Includes bibliographical references (p. 103-104). Also available online.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Cavallucci, Lorenzo <1989&gt. "Thermal Stability and AC Losses in High-Field Superconducting Magnets." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amsdottorato.unibo.it/8683/1/PhD_Thesis_Cavallucci.pdf.

Повний текст джерела
Анотація:
The study and the analysis of quench initiation and propagation is of paramount importance in the design of any superconducting magnets. Several disturbances such as ac losses, failures of the cryogenics or heat load may induce the quench initiation on a magnet and determine its irreversible transition to the normal state. Since the early days of magnet construction, the scientific community has devoted significant efforts in the study of quench. In the present work, numerical methodologies are presented and discussed for the analysis of electro-thermal stability, quench propagation and temperature margin on superconducting cables and coils. The proposed models are applied to the analysis of several superconducting magnets under development in different research groups in Europe (EU) and United States (US). The comparison of the numerical results with the experimental tests or with different computational approaches make the author confident about the applicability and reliability of the proposed modelling techniques.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Khalifa, Abdul-Jabbar N. "Heat transfer processes in buildings." Thesis, Cardiff University, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.254459.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kolbe, Isobel. "pQCD energy loss and thermal field theory in small systems." Doctoral thesis, Faculty of Science, 2019. http://hdl.handle.net/11427/30385.

Повний текст джерела
Анотація:
In recent years, experiments at the Large Hadron Collider and the Relativistic Heavy Ion Collider have discovered that many of the signatures that are traditionally ascribed to the presence of a quark-gluon plasma (QGP) in central heavy-ion collisions also manifest in certain classes of peripheral heavy-ion collisions as well as in smaller colliding systems. The glaring exception to this list of observations of QGP signatures in small systems is the partonic energy loss. However, current theoretical descriptions of partonic energy loss are ill-adapted to small systems. This thesis first presents a numerical analysis of an analytical small system extension of a standard energy loss formula, and finds that major inconsistencies in the description of small system energy loss persist, motivating a need for a first principles calculation of the properties of a small droplet of QGP. Thereafter, a first step toward such a calculation is presented by considering a single, massless, scalar field that has been geometrically confined by means of Dirichlet boundary conditions. This toy model reveals, via thermal field theoretic techniques, that quantum fields are very sensitive to the presence of a boundary, presenting significant deviations from the Stefan-Boltzmann limit and revealing a geometrically driven phase transition at the scale of the medium.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Zammit, Jean-Paul. "Managing engine thermal state to reduce friction losses during warm-up." Thesis, University of Nottingham, 2013. http://eprints.nottingham.ac.uk/13180/.

Повний текст джерела
Анотація:
The thermal behaviour of a 2.4 l direct injection diesel engine has been investigated to identify how the fuel consumption penalty associated with operation during warm–up can be minimised. A version of PROMETS (Programme for Modelling Engine Thermal Systems) was developed to support the investigations. The developments improved the representation of thermal-friction conditions in the oil circuit, extended the piston heat transfer sub-model to account for the effects of piston cooling jets and introduced a main bearing thermal-friction model to predict friction and oil film temperatures. Computational studies were complemented by an experimental investigation of the effectiveness of pre-heating the oil feed to the bearings. Results show that heat transfer from the oil film to the bearings shells and crankshaft journal reduces the benefit in friction savings. Other measures considered were exhaust gas heat recovery, repositioning of the oil main gallery within the block, thermal energy storage, reductions in engine thermal capacity and a novel split-EGR cooler able to cool the EGR gases and heat either the coolant or oil streams. All of the above measures were investigated in isolation, but where appropriate different measures were adopted in conjunction to achieve even greater fuel savings. During warm-up the energy available to raise fluid temperatures is small. As a result, over the New European Drive Cycle, thermal energy storage showed the greatest benefits. Given an available source of thermal energy which can be transferred to the oil over a chosen time, simulations indicate that a higher power input over a shorter period is most beneficial. This reflects the increased sensitivity of oil viscosity to temperature changes at colder temperatures which in turn means that the potential to reduce friction is highest in the first minutes after engine start up but drops rapidly hereafter. Results also show how the balance of energy transfers out of the oil changes as the engine warms up and point to the importance of oil interaction with components in the lower parts of the engine which have a large thermal capacity, such as elements supporting the main bearings, the crankshaft and the lower liner which limit the rate of temperature rise of the oil. A combination of supplementary heat introduction into the oil circuit from a thermal store and an elimination of heat losses from the oil to the lower parts of the engine resulted in a fuel consumption saving close to that achieved by starting the engine fully warm, which equates to around 6% improvement.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Addison, James Edward. "The benefits of thermal management to reduce friction losses in engines." Thesis, University of Nottingham, 2015. http://eprints.nottingham.ac.uk/29002/.

Повний текст джерела
Анотація:
The research reported in the thesis addresses questions of how engine fuel consumption and carbon dioxide emissions are can be reduced through improvements in thermal management, lubricant design, and energy recovery. The investigations are based on simulation studies using computational models and sub-models developed or revised during the work, and results provided by complementary experimental studies carried out by collaborating investigators. The brake thermal efficiency of the internal combustion engines (ICE) used in cars and light duty commercial vehicles is reduced by frictional losses. These losses vary with engine design, lubricant formulation and thermal state. They are most significant when the engine is running cold or partially warm. Over the New European Drive Cycle (NEDC), engine friction losses raise vehicle fuel consumption by several percentage points. A version of the computational model, PROMETS, has been developed and applied in studies of thermal behaviour, friction and engine lubricant to investigate the performance of a 2.0l, I4 GTDI spark ignition engine and in particular, how these influence fuel consumption over the NEDC. Core parts of PROMETS include a physics-based, empirically calibrated friction model, a cycle averaged description of gas-to-structure heat transfer and a lumped capacity description of thermal behaviour of the engine block and cylinder head. In the thesis, revisions to the description of friction and interactions between friction, local thermal conditions and lubricant are reported. It is shown that the bulk temperature of coolant rather than oil has the stronger influence on friction at the piston-liner interface, whilst bulk oil temperature more strongly influences friction in crankshaft bearings and other lower engine components. However, local oil film temperatures have a direct influence on local friction contribution. To account for this, local values of oil temperature and viscosity are used in describing local friction contributions. Implementation required an oil system model to be developed; an iterative model of the frictional dissipation within the main bearings, and a prediction of piston cooling jet heat transfer coefficients have been added to the oil circuit. Simulations of a range of scenarios and design changes are presented and analysed in the thesis. The size of the fuel savings that could potentially be made through improved thermal management has been demonstrated to be 4.5% for the engine being simulated. Model results show that of the friction contributing surfaces, the piston group is responsible for the highest levels of friction, and also exhibits the largest absolute reduction in friction as the temperature of the engine rises. The relatively low warm-up rate of the lower engine structure gives a correspondingly slow reduction in friction in crankshaft bearings from their cold start values. Measures to accelerate this reduction by raising oil temperature have limited effect unless the strong thermal links between the oil and the surrounding metal are broken. When additional heating is applied to the engine oil, only around 30% is retained to raise the oil temperature due to these thermal links.
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Olsson, Martin. "Thermal Shape Factor : The impact of the building shape and thermal properties on the heating energy demand in Swedish climates." Thesis, Umeå universitet, Institutionen för tillämpad fysik och elektronik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-125076.

Повний текст джерела
Анотація:
In the year 2006, the energy performance directive 2002/91/EG was passed by the European Union, according to this directive the Swedish building code was supplemented by a key measure of energy use intensity (EUI). The implemented EUI equals some energy use within a building divided by its floor area and must be calculated in new housing estate and shown when renting or selling housing property. In order to improve the EUI, energy efficiency refurbishments could be implemented. Building energy simulation tools enables a virtual view a building model and can estimate the energy use before implementing any refurbishments. They are a powerful resource when determine the impact of the refurbishment measure. In order to obtain a correct model which corresponds to the actual energy use, some adjustments of the model are often needed. This process refers to as calibration. The used EUI has been criticized and thus, the first objective in this work was to suggest an alternative key measure of a buildings performance. The results showed that the currently used EUI is disfavoring some districts in Sweden. New housing estate in the far north must take more refined actions in order to fulfill the regulation demand, given that the users are behaving identical regardless where the house is located. Further, the suggested measure is less sensitive to the users’ behavior than the presently used EUI. It also has a significance meaning in building design as it relating the building shape and thermal properties and stating that extreme building shapes must undergo a stricter thermal construction rather than buildings that are more compact. Thus, the suggested key measure also creates a communication link between architects and the consultant constructors. The second objective of this thesis has been to investigate a concept of calibration using the data normally provided by energy bills, i.e. some monthly aggregated data. A case study serves to answer this objective, by using the building energy simulation tool IDA ICE 4.7 and a building located in Umeå, Sweden. The findings showed that the used calibration approach yielded a model considered as calibrated in eleven of twelve months. Furthermore, the method gives a closer agreement to the actual heat demand rather than using templates and standardized values. The major explanation of the deviation was influence of the users, but also that the case study building burden with large heat losses by domestic hot water circulation and thus, more buildings should be subjected to this calibration approach.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Rajput, Mihir N. "Thermal modeling of permanent magnet synchronous motor and inverter." Thesis, Georgia Institute of Technology, 2016. http://hdl.handle.net/1853/55053.

Повний текст джерела
Анотація:
The purpose of my thesis is to establish a simple thermal model for a Parker GVM 210-150P motor and a SEVCON Gen4 Size8 inverter. These models give temperature variations of critical components in the motor and the inverter. My thesis will help Georgia Tech's EcoCAR-3 team in understanding the physics behind thermal modeling and why thermal study is necessary. This work is a prerequisite for Software in the Loop (SIL) simulations or Hardware in the Loop (HIL) simulations for a hybrid electric vehicle.
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Kuznetsova, O. O. "Reduction of thermal bridge effects caused by junctions between external walls and balcony slabs." Thesis, Київський національний університет технологій та дизайну, 2018. https://er.knutd.edu.ua/handle/123456789/9733.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Roberts, Andrew P. "The prevention of thermal losses from automotive lubricants to improve cold start efficiency." Thesis, University of Nottingham, 2015. http://eprints.nottingham.ac.uk/29357/.

Повний текст джерела
Анотація:
The internal combustion (I.C.) engine remains unrivalled as the primary means of road vehicle propulsion. The frequency of re-fuelling stations, combined with the high energy density of both gasoline and diesel fuel provide users with unrivalled flexibility and vehicle range. However a range of environmental and health concerns exist surrounding I.C. engine emissions; in particular carbon dioxide (CO2), nitrous oxides (NOx), hydrocarbons (HC) and carbon monoxide (CO). There is therefore increasing pressure on vehicle OEMs to reduce vehicle emissions through tightened emission standards and regulations. A significant challenge in meeting these tightened regulations is the reduced efficiency of the I.C. engine during cold-start which reduces from typical values of 40% when fully warm to values as low as 10% when cold. Increased friction in the engine caused by overly viscous lubricants providing sub-optimal lubrication during cold starts is a primary cause of this reduction in efficiency during cold-start. This is despite the advancements in lubricant technology made that has reduced the sensitivity of lubricant viscosity to temperature variation. It is therefore desirable to increase the rate of lubricant heating during engine warm-up so that optimal lubrication conditions are reached sooner and frictional losses are reduced. The reduction in frictional losses therefore reduces fuel consumption and hence emissions. In this thesis, the merits of insulating engine oilways are investigated as a means to reduce thermal losses from the lubricant and thus accelerate warm-up rates using a bespoke oil flow rig and simulation model. Through this work, it has been found that, using insulating inserts, it is possible to reduce the thermal losses from the lubricant to the surrounding wall structure by up to 58%. Such reductions have been achieved by installing an insulating insert into the oilway (also commonly referred to as a gallery in I.C. engines) that combines a low thermal conductivity material but also introduces a contact resistance between the insert and the surrounding metal. It has been found that the contact resistance is a highly significant and beneficial feature and, using special inserts designed to enhance the contact resistance, reductions in thermal losses of up to 40% can be achieved using the contact resistance alone without using low thermal conductivity materials. A computational finite difference model has been developed to simulate heat transfer between flowing engine lubricant and the gallery walls. The model has been correlated with experimental data from the oil flow rig and is capable of simulating the effects of changing the materials properties (density, specific heat capacity and thermal conductivity) of both insulating inserts and the surrounding metal structure. The model is also capable of investigating the effect of changing contact heat transfer coefficients and changing flow geometry and velocity. Through computational experiments with this model, it has been found that the optimum strategy to achieving reduced thermal losses from the lubricant through the gallery walls is to ensure that the thermal conductivity of the insulating insert and that the thermal mass of the surrounding structure are minimised. Computational experiments have also highlighted the need to consider the flow geometry of different regions of the engine with the variation in bore diameter affecting both the heat transfer surface area and the convective heat transfer coefficient through the Reynolds’ effect. It has been found that increasing the lubricant flow velocity for a given bore diameter increases thermal losses to the gallery walls as a result of the Reynolds effect. If the bore diameter is increased, the thermal losses from the lubricant reduce in uninsulated galleries owing to a reduction in the Reynolds number but the reverse happens in insulated galleries owing to the increase in heat transfer area. The change in trend is a result of the interactions between the changing convective heat transfer area, heat transfer coefficient and the temperature differential between the lubricant and gallery wall. In addition, implementation of the insulation into a running engine needs careful consideration to ensure that the insulation does not isolate the lubricant from a potential heat source (such as the cylinder head). The optimum locations will vary between engines but investigations suggest that the return galleries from the head to the sump represent a positive opportunity to reduce thermal losses from the lubricant with a clear reduction in lubricant temperature observed as the lubricant moves down the gallery.
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Häggström, Martin. "Thermal modelling of a truck gearbox." Thesis, Luleå tekniska universitet, Institutionen för teknikvetenskap och matematik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-63753.

Повний текст джерела
Анотація:
The thermal regime of a gearbox is of considerable importance to its performance. Several significant gearbox parameters, such as the efficiency and fatigue life of its components, are temperature dependent. It is thus important to be able to determine the temperatures of the gearbox components during operation, but they are difficult to measure experimentally. A simulation model capable of predicting these temperatures would therefore be a valuable tool. The objective of this master’s thesis was to create a model capable of simulating the thermal regime of a truck gearbox during operation. To do this, mechanical losses in the gearbox, heat exchange with the surroundings, as well as heat transfer between components had to be accounted for. The model was created using the 1D simulation software LMS Imagine.Lab Amesim 14.0, and is based on a combination of mechanical and thermal networks. Details of the mechanical and thermal interactions between components are calculated using empirical and analytical formulas for mechanical losses and heat transfer. The result of the thesis is a model which can be used to simulate either real or idealised load cases, from which temperatures of gear wheels, shafts, bearings, housing and gearbox oil may be studied, as well as gearbox losses and heat transfer. Comparisons between simulated and measured gearbox efficiencies show good correlation. It is also shown that the model can predict oil temperatures which agree with in-vehicle measurements. Due to a lack of measurement data, most simulated component temperatures cannot be compared to measured values. However, temperature measurements performed for one of the gear wheels indicate that the model can be used to predict their temperature. In order to demonstrate the capabilities of the model, example results from both real and idealised load cases are presented.
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Curtis, John. "Experimental Verification for Microwave Processing of Materials in a Single Mode Rectangular Resonant Cavity." Thesis, Virginia Tech, 1999. http://hdl.handle.net/10919/34627.

Повний текст джерела
Анотація:
The benefits of applying microwave energy to material processing techniques have been well documented and studied. The potential benefits over conventional oven heating include faster processing times, more uniform heating, more consistent product quality, and the possibility of precise control. The actual implementation of microwave technology has been lacking and the benefits have gone largely unrealized. This is due in part to the temperature dependence of the dielectric loss of many industrial materials such as ceramics and polymers. These materials absorb more microwave energy as they heat, creating uncontrollable heating, often called 'thermal runaway'. The focus of this research is to address this challenge. The work described here is an experimental program for the microwave processing of specific ceramic rods and polymer tows. The objective of the program is to study the thermal runaway effect, and to provide data which will be used to verify numerical models. Accurate test data are essential to the development of precise, comprehensive models that can be used in applicator design and heating control strategies for thermal runaway materials. The experimental program explores the difficulties of microwave heating and offers solutions to more efficient systems. Successful measurements of power loss and control of thermal runaway are detailed for mullite, alumina, and nylon.
Master of Science
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Lohse, Ekkehard [Verfasser]. "Design of Regularly Structured Composite Latent Heat Storages for Thermal Management Applications / Ekkehard Lohse." München : Verlag Dr. Hut, 2013. http://d-nb.info/104598910X/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Zou, Jiwei. "Predicting convective heat transfer from Computational Thermal Manikin in urban outdoor environments." Thesis, University of Sydney, 2021. https://hdl.handle.net/2123/24516.

Повний текст джерела
Анотація:
Urban residents are increasingly encouraged to go outside for recreation and relaxation purposes, which may improve personal health and reduce building energy consumption. It is important to understand the thermal conditions of human body in urban outdoor environments. However, the urban wind conditions at the pedestrian level and their impact on the thermal comfort of people have not been thoroughly investigated to date. This study aims to predict the convective heat loss from human body subject to urban outdoor wind environments. Onsite wind measurements are carried out at 0.6 m, 1.2 m, and 1.8 m above the ground on three representative green lands in the coastal city of Sydney in Australia. Meanwhile, the effects of the wind velocity and turbulent conditions on the convective heat loss from human body are investigated using a computational thermal manikin (CTM) model, which is validated against published experimental data. Along with empirical equations derived from the CTM simulation, the wind data collected from onsite measurements is used for predicting the convective heat loss from human body in the outdoor wind environments. In total six groups of wind measurements have been carried out at each measurement sites over a period of four months (from March 2019 to June 2019). The time duration of each measurement is one hour and the sampling frequency is set to 20 Hz. Compared with the local meteorological data recorded at the seaside airport of Sydney, the wind speed in the city is at least 50% lower. To calculate the turbulence characteristics of the wind environment, we use a 1-min averaging period to generate the vertical wind profile of turbulent intensity and turbulence length scale. The correlations between the wind speed and wind turbulence characteristics at different measuring sites are examined. The turbulence intensity measured in this study matches with the reference range given in existing guidelines, while the measured turbulence length scale is much smaller than the value given in the guidelines. It is found that the empirical Von-Karman Spectra can be used to describe the frequency distribution of the turbulence at the pedestrian level in urban open space. The insight of this study regarding the vertical wind profile, turbulence intensity and turbulence length scale at the pedestrian height is beneficial for outdoor thermal comfort assessment. The results of the present CTM simulation show that the convective heat loss of most body segments increases with increasing wind velocity and turbulent intensity and decreasing turbulence length scale. Empirical correlations for predicting convective heat transfer coefficients as a function of the wind velocity, turbulent intensity and turbulence length scale are derived based on simple-geometry assumptions. It is found that, at a given wind velocity and over the ranges of the turbulence conditions from the field measurements, the variations between the high and low values of the convective heat transfer coefficients can be up to 67%. The results of the CTM simulation demonstrate the significance of capturing the turbulent wind conditions for accurately predicting the heat loss from human body for outdoor thermal comfort studies.
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Souza, Silas Candido Principe. "Differential effects of water loss and temperature increase in the physiology of fiddler crabs from distinct habitats." Botucatu, 2017. http://hdl.handle.net/11449/151743.

Повний текст джерела
Анотація:
Orientador: Tânia Marcia Costa
Resumo: A temperatura é uma das principais restrições ambientais à distribuição dos organismos, afetando a fisiologia e sobrevivência. Organismos que habitam a zona do entremarés estão constantemente expostos à variação da temperatura e, com as mudanças climáticas, esses organismos devem enfrentar condições diferentes, que incluem temperaturas mais elevadas, levando a maiores taxas de perda de água por evaporação e, consequentemente, redução do desempenho ou mortalidade. Neste estudo, testamos os efeitos da dessecação em duas espécies de caranguejos violinistas (Leptuca thayeri e Minuca rapax) que ocupam habitats distintos em relação à cobertura da vegetação e posição no entremarés e, portanto, podem responder de forma diferente ao estresse por dessecação e ao aumento da temperatura. Leptuca thayeri, que é restrita à zona intermediária do entremarés, é mais sensível à dessecação do que M. rapax, uma espécie generalista, com maiores taxas de dessecação e mortalidade quando expostas à dessecação por 120 minutos. Além disso, em comparação com M. rapax, L. thayeri possui uma carapaça mais permeável. Também avaliamos se o aumento de temperatura pode causar alterações fisiológicas na espécie mais restrita L. thayeri, tendo acesso a alimento e à água. Uma elevação de temperatura de 10 ° C e 20 ° C durante 72 h não causou mortalidade em L. thayeri nem mudanças na concentração de glicose e proteína na hemolinfa. No entanto, as temperaturas mais altas aumentaram os níveis de lactato desidrogen... (Resumo completo, clicar acesso eletrônico abaixo)
Mestre
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Gagatsos, Christos N., Boulat A. Bash, Saikat Guha, and Animesh Datta. "Bounding the quantum limits of precision for phase estimation with loss and thermal noise." AMER PHYSICAL SOC, 2017. http://hdl.handle.net/10150/626465.

Повний текст джерела
Анотація:
We consider the problem of estimating an unknown but constant carrier phase modulation theta using a general, possibly entangled, n-mode optical probe through n independent and identical uses of a lossy bosonic channel with additive thermal noise. We find an upper bound to the quantum Fisher information (QFI) of estimating theta as a function of n, the mean and variance of the total number of photons N-s in the n-mode probe, the transmissivity eta, and mean thermal photon number per mode (n)over-bar(B) of the bosonic channel. Since the inverse of QFI provides a lower bound to the mean-square error (MSE) of an unbiased estimator (theta)over-tilde of theta, our upper bound to the QFI provides a lower bound to the MSE. It already has found use in proving fundamental limits of covert sensing and could find other applications requiring bounding the fundamental limits of sensing an unknown parameter embedded in a correlated field.
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Kamboj, Brij Kumar. "Modeling of once-through steam generator thermal-hydraulics during a loss of coolant accident." Diss., Georgia Institute of Technology, 1993. http://hdl.handle.net/1853/16660.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Nyhlen, Anna. "Experimental Investigation of the Thermal Performance and Pressure Loss in Additively Manufactured mini-channels." Thesis, Luleå tekniska universitet, Institutionen för system- och rymdteknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-86277.

Повний текст джерела
Анотація:
Industrial gas turbines reach temperatures of 1500-2000K at high rotational velocities which means that much effort is spent on the design of an efficient cooling system. With the recent advances of the additive manufacturing (AM) industry, new design opportunities have open up for many industries and applications, including the design of cooling systems. However, a significant surface roughness will be present in AM components compared to traditionally manufactured components. An increased surface roughness inside a channel will affect both the heat transfer and pressure loss. The performance of AM channels are therefore not fully known and needs to be examined experimentally on the actual material to fully capture the effects of the increased surface roughness. The aim with this project is to experimentally investigate the thermal performance and pressure losses experienced in AM channels due to surface roughness. This was done by using a Steady State Heat Transfer rig which was assembled and verified. AM and aluminium test channels were mounted in a copper block which was insulated and heated up by electrical heaters. The test channels were then subjected to an air flow of constant mass flow. Temperature and pressure measurements were made at the inlet and outlet together with mass flow measurements and copper block temperature measurements. The Nusselt number and Darcy friction factor were used to evaluate the heat transfer and pressure losses experienced in the channels. The results showed that the heat transfer and friction factor increased significantly for the AM channels compared to smooth channels. Both the heat transfer and friction factor increased when the relative roughness of the channels increased. This project was executed at Siemens Energy in Finspång at the Fluid Dynamic Laboratory and is a part of the work of obtaining thermal performance data for mini-channels manufactured by AM.
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Hegde, Shashikant G. "Investigation of optical loss changes in siloxane polymer waveguides during thermal curing and aging." Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/22531.

Повний текст джерела
Анотація:
Thesis (Ph. D.)--Mechanical Engineering, Georgia Institute of Technology, 2008.
Committee Chair: Sitaraman, Suresh; Committee Member: Chang, Gee-Kung; Committee Member: Colton, Jonathan; Committee Member: Joshi, Yogendra; Committee Member: Swaminathan, Madhavan; Committee Member: Thompson, Patrick.
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Shields, Shawn. "Dynamic thermal response of the data center to cooling loss during facility power failure." Thesis, Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/29725.

Повний текст джерела
Анотація:
Thesis (M. S.)--Mechanical Engineering, Georgia Institute of Technology, 2010.
Committee Chair: Yogendra K. Joshi; Committee Member: Mostafa Ghiaasiaan; Committee Member: Sheldon Jeter. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Acharya, Ananta R. "Indium Nitride Surface Structure, Desorption Kinetics and Thermal Stability." Digital Archive @ GSU, 2013. http://digitalarchive.gsu.edu/phy_astr_diss/62.

Повний текст джерела
Анотація:
Unique physical properties such as small effective mass, high electron drift velocities, high electron mobility and small band gap energy make InN a candidate for applications in high-speed microelectronic and optoelectronic devices. The aim of this research is to understand the surface properties, desorption kinetics and thermal stability of InN epilayers that affect the growth processes and determine film quality as well as device performance and life time. We have investigated the structural properties, the surface desorption kinetics, and the thermal stability using Auger electron spectroscopy (AES), x-ray diffraction (XRD), Raman spectroscopy, atomic force microscopy (AFM), high resolution electron energy loss spectroscopy (HREELS), and temperature programmed desorption (TPD). Investigations on high pressure chemical vapor deposition (HPCVD)-grown InN samples revealed the presence of tilted crystallites, which were attributed to high group V/III flux ratio and lattice mismatch. A study of the thermal stability of HPCVD-grown InN epilayers revealed that the activation energy for nitrogen desorption was 1.6±0.2 eV, independent of the group V/III flux ratio. Initial investigations on the ternary alloy In0.96Ga0.04N showed single-phase, N-polar epilayers using XRD and HREELS, while a thermal desorption study revealed an activation energy for nitrogen desorption of 1.14 ± 0.06 eV. HREELS investigations of atomic layer epitaxy (ALE)-grown InN revealed vibrational modes assigned to N-N vibrations. The atomic hydrogen cleaned InN surface also exhibited modes assigned to surface N-H without showing In-H species, which indicated N-polar InN. Complete desorption of hydrogen from the InN surface was best described by the first-order desorption kinetics with an activation energy of 0.88 ± 0.06 eV and pre-exponential factor of (1.5 ± 0.5) ×105 s-1. Overall, we have used a number of techniques to characterize the structure, surface bonding configuration, thermal stability and hydrogen desorption kinetics of InN and In0.96Ga0.04N epilayers grown by HPCVD and ALE. High group V/III precursors ratio and lattice mismatch have a crucial influence on the film orientation. The effects of hydrogen on the decomposition add to the wide variation in the activation energy of nitrogen desorption. Presence of surface defects lowers the activation energy for hydrogen desorption from the surface.
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Hurley, Joshua Daniel. "AN EXPERIMENTAL INVESTIGATION OF THERMAL BEHAVIOR OF AN AUTOMOTIVE REAR AXLE." The Ohio State University, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=osu1244483779.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Marchi, Neto Ismael de. "Levantamento de coeficientes de desempenho de refrigeradores domésticos associados a armazenador térmico /." Bauru : [s.l.], 2007. http://hdl.handle.net/11449/136747.

Повний текст джерела
Анотація:
Orientador: Alcides Padilha
Banca: Celso Luiz da Silva
Banca: Marcos Pinotti Barbosa
Resumo: Devido à extrema necessidade de se diversificar as fontes de energia renováveis, torna-se necessário a busca por métodos de reciclagem de energia pela utilização de rejeitos térmicos de equipamentos. Assim, o aproveitamento desses rejeitos pode ser utilizado, como uma nova fonte de energia, para o aquecimento de água e armazenamento da mesma em reservatório para uso doméstico. Devido a isso, é proposta a construção de um aparato experimental de um reservatório de armazenamento térmico cilíndrico, onde o objetivo da pesquisa será o levantamento dos coeficientes de desempenho relativo aos refrigeradores convencional e modificado, além de realizar uma análise da armazenagem da água quente, através da técnica da estratificação térmica utilizando um refrigerador com condensador modificado. O rejeito térmico coletado, através do princípio do termosifão, será armazenado na forma de energia térmica. Os resultados mostraram que os coeficientes de desempenho dos sistemas, calculados pelas técnicas relativas às perdas térmicas teóricas e experimentais, apresentaram grande diferença. Observou-se o comportamento dinâmico das termoclinas, através do efeito da estratificação térmica e a evolução das temperaturas em função do tempo, mostrando maior viabilidade do refrigerador modificado, gerando assim maior conforto térmico aos usuários além de produzir água quente para uso doméstico.
Abstract: Due to the extreme necessity to diversify renewable energy sources, the search for energy recycling methods through the utilization of thermal losses from equipment has become fundamental. Thus, these losses can be used as new source of energy for water heating and storage in Domestic Hot Water Storage Tanks (DHWST). For this reason, the construction of an experimental apparatus with a cylindrical thermal storage tank is proposed, in which the objective of the study will be a survey of the Coefficient of Performance concerning conventional and modified refrigerators, as well as to perform an analysis of hot water, through the thermal stratification technique using a refrigerator with a modified condenser. The collected thermal loss, as per the thermosiphon principle, will be stored as thermal energy. The results showed that the coefficient of performance for the systems, calculated using techniques for theoretical and experimental thermal losses, presented great differences. The dynamic behavior of the thermal distribution was observed through the thermal stratification effect and temperature evolution in terms of time, showing greater variability of the modified refrigerator generating more thermal comfort to users in addition to providing domestic hot water.
Mestre
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Wong, Kevan. "Studies of the quality of the intraosseous dental implant bed and of thermal effects in implant pathology." Thesis, University College London (University of London), 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.481679.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Donnier-Valentin, Guillaume. "Contributions à l'étude des transformateurs supraconducteurs et pertes AC." Grenoble INPG, 2001. https://theses.hal.science/tel-00597717.

Повний текст джерела
Анотація:
La découverte des supraconducteurs à Haute Température Critique en 1986 relance l'intérêt porté à la supraconductivité. Ces matériaux sont arrivés à un stade où leur utilisation dans des dispositifs électrotechniques est envisageable. Néanmoins, il est primordial de connaître leurs pertes AC précisément pour dimensionner correctement les dispositifs. C'est pourquoi nous avons étudié dans un premier temps ces pertes AC dans un supraconducteur. Un modèle analytique applicable à une géométrie cylindrique (bobinages) a été ainsi développé et comparé à un modèle numérique. Nous avons réalisé des mesures expérimentales afin de comparer ces différents modèles. Dans le cadre du projet Européen READY, un transformateur supraconducteur monophasé HTC de 41 kVA a été entièrement dimensionné sur les plans électromagnétiques, thermiques et mécaniques. Ce transformateur, entièrement froid, pourra fonctionner dans l'azote liquide jusque vers 65 K ou l'hélium gazeux pour atteindre des températures inférieures. H sera refroidi par un tube puisé. De nombreuses expériences ont été faites pour valider nos choix et nous apporter certaines données expérimentales indispensables comme les pertes fer à froid où la résistance thermique de contact. Enfin, une étude très préliminaire sur différents transformateurs supraconducteurs d'une puissance de 30 MVA a permis de montrer l'intérêt de la technologie supraconductrice sur ces dispositifs
The discovery of High Critical Température superconductors in 1986 restarts the interest put on superconductivjty. Thèse materials arrived at a stage where their use in electrotechnical devices is possible. Nevertheless, it is essentia! to know precisely their AC losses in order to correctly design the devices. This is why we initially studied the AC losses in a superconductor. An analytical model applicable to a cylindrical geometry (windings) was developed and compared with a numerical model. We carried out expérimental measurements in order to compare thèse various models. For the European project READY, a single-phase 41 kVA HTC superconducting transformer was ernireiy designed on the electromagnetic. Thermal and mechanical levels. This transformer, entirely cold. Will be able to operate either in liquid nitrogen until around 65 K or in gas hélium if lower températures are needed. A pulsed tube will cool it. Many experiments were made to validate our choices and also to bring essential expérimental data like the cold iron losses or the thermal résistance contact. Finallv a ver. ' preliminary stud> on various 30 MVA superconducting transformers shows the superconducting technology interest on thèse devices
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Nandamuru, Venkateswara Himavanth. "Assessing the average Thermal Losses in Indian Households : A study for the city of Hyderabad, AP, India." Thesis, Uppsala universitet, Institutionen för geovetenskaper, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-179743.

Повний текст джерела
Анотація:
A Thermal loss occurs when energy is consumed and work is done by a system. The use of ElectricalAppliances in households consumes energy and causes Thermal loss which gets dissipated to itssurrounding surfaces. Harnessing these losses by using principles like Cogeneration or CombinedHeat and Power (CHP) would result in the development of new energy techniques and provide asecure and decentralized supply of Energy to the Built Environment. This study aimed at assessing theaverage Thermal losses occurring from the use of Electrical appliances in Indian households. For thepurposes of this study, a middle-class neighborhood in the capital city of Hyderabad, in the southernstate of Andhra Pradesh, India was chosen where there is an increased demand and usage ofElectricity. The method for this study was centered on a systems based approach and made use of theFourier’s Law of Conduction. As a primary step towards this study, a survey was conducted among100 dwellings with the objective of determining the, average number of people living in thehousehold, their age, total area of the household, common materials used in construction, type ofappliances which consume electricity and the average monthly consumption of electricity. As asecondary step, the data obtained from the survey was used to construct a computer based simulationmodel using PowerSim and the Fourier’s Law of Heat conduction. This computer model emulated thesystems based approach by considering the surrounding Wall & Ceiling surfaces, Floors, Window &Door surfaces as detached systems. The study revealed that of the 175kW of electricity consumed per month, 32% was dissipated tosurrounding surfaces as Thermal energy which could be harnessed for other forms of RenewableEnergy like Electricity. This would contribute to India’s efforts towards Sustainable Development andmake the households of the country a part of an energy-inclusive society by mitigating CO2 emissions.
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Bjervås, Jens. "Simulation of dry matter loss in biomass storage." Thesis, KTH, Skolan för kemi, bioteknologi och hälsa (CBH), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-261200.

Повний текст джерела
Анотація:
Material degradation and a decrease of fuel quality are common phenomena when storing biomass. A magnitude of 7.8% has been reported to degrade over five months when storing spruce wood chips in the winter in Central Europe. This thesis presents a theoretical study of biomass storage. It includes investigations of bio-chemical, chemical and physical processes that occur during storage of chipped woody biomass. These processes lead to degradation caused by micro-activity, chemical oxidation reactions and physical transformation of water. Micro-activity was modeled with Monod kinetics which are Michaelis-Menten type of expressions. The rate expressions were complemented with dependency functions describing the impact of oxygen, moisture and temperature. The woody biomass was divided into three fractions. These fractions represent how hard different components of the wood are to degrade by microorganisms. Chemical oxidation was modeled as a first order rate expression with respect to the active components of the wood. Two different cases have been simulated during the project. Firstly, an isolated system with an initial oxygen concentration of air was considered. This case displayed a temperature increase of approximately 2˚C and a material degradation less than 1%. The second case considered an isolated system with an endless depot of oxygen. This case resulted in degradation losses around 0.45-0.95% in the temperature range between 65-80˚C during approximately 300 days of storage. The temperature increased slowly due to chemical oxidation.
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Öberg, Andreas. "Nytt Värmesystem till en skola : Beräkning av transmissions- och ventilationsförluster." Thesis, Mittuniversitetet, Institutionen för kemiteknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-39316.

Повний текст джерела
Анотація:
Med hjälp av Boverkets byggregler och de ISO-standarder som föreskrivs fastställs värmeeffektbehovet för Kyrkbackskolan, Ljusnarsbergs kommunala skola. Ur effektbehovet har sedan ett teoretiskt värmesystem dimensionerats. Resultaten visar att de olika byggnaderna som skolan består av har olika behov beroende på deras utformning. Över trehundra radiatorer och över trehundrafyrtio kilowatt värmeeffekt behövs för att värma skolan enligt de utförda beräkningarna för transmissionsförluster, ventilationsförluster och köldbryggor. Den största osäkerheten finns i köldbryggorna då dessa är baserade på tabellvärden. En rumslista visar vad varje rum i hela skolan har för effektbehov och kan användas vid både installation och injustering.
Using ”Boverkets byggregler” and the ISO-standards that are stipulated in it are the heating requirements determined for “Kyrkbackskolan”, the only school in the municipality of Ljusnarsberg. A theoretical heating system has been designed based on the calculations. The results show that the three different buildings that make up the school have different requirements depending on their layout. Over three hundred radiators and over three hundred forty kilowatts of heating power are required to heat the school according to the calculations of transmission losses, ventilation losses and thermal bridges. The largest insecurity is in the thermal bridges since they are determined using tables. A list shows all the rooms and their heating requirements which can be used when installing or tuning the heating system.
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Romero, Hamers Adolfo. "STUDY OF THE THERMAL STRATIFICATION IN PWR REACTORS AND THE PTS (PRESSURIZED THERMAL SHOCK) PHENOMENON." Doctoral thesis, Editorial Universitat Politècnica de València, 2014. http://hdl.handle.net/10251/36536.

Повний текст джерела
Анотація:
In the event of hypothetical accident scenarios in PWR, emergency strategies have to be mapped out, in order to guarantee the reliable removal of decay heat from the reactor core, also in case of component breakdown. One essential passive heat removal mechanism is the reflux condensation cooling mode. This mode can appear for instance during a small break loss-of-coolant-accident (LOCA) or because of loss of residual heat removal (RHR) system during mid loop operation at plant outage after the reactor shutdown. In the scenario of a loss-of-coolant-accident (LOCA), which is caused by the leakage at any location in the primary circuit, it is considered that the reactor will be depressurized and vaporization will take place, thereby creating steam in the PWR primary side. Should this lead to ¿reflux condensation¿, which may be a favorable event progression, the generated steam will flow to the steam generator through the hot leg. This steam will condense in the steam generator and the condensate will flow back through the hot leg to the reactor, resulting in counter-current steam/water flow. In some scenarios, the success of core cooling depends on the behaviour of this counter-current flow. Over several decades, a number of experimental and theoretical studies of counter-current gas¿liquid two-phase flow have been carried out to understand the fundamental aspect of the flooding mechanism and to prove practical knowledge for the safety design of nuclear reactors. Starting from the pioneering paper of Wallis (1961), extensive CCFL data have been accumulated from experimental studies dealing with a diverse array of conditions A one-dimensional two field model was developed in order to predict the counter-current steam and liquid flow that results under certain conditions in the cold leg of a PWR when a SBLOCA (small break loss of coolant accident) in the hot leg is produced. The counter-current model that has been developed can predict the pressure, temperature, velocity profiles for both phases, also by taking into account the HPI injection system in the cold leg under a counter-current flow scenario in the cold leg. This computer code predicts this scenario by solving the mass, momentum and energy conservation equations for the liquid and for the steam separately, and linking them by using the interfacial and at the steam wall condensation and heat transfer, and the interfacial friction as the closure relations. The convective terms which appear in the discretization of the mass and energy conservation equations, were evaluated using the ULTIMATE-SOU (second order upwinding) method. For the momentum equation convective terms the ULTIMATE-QUICKEST method was used. The steam-water counter-current developed code has been validated using some experimental data extracted from some previously published articles about the direct condensation phenomenon for stratified two-phase flow and experimental data from the LAOKOON experimental facility at the Technical University of Munich.
Romero Hamers, A. (2014). STUDY OF THE THERMAL STRATIFICATION IN PWR REACTORS AND THE PTS (PRESSURIZED THERMAL SHOCK) PHENOMENON [Tesis doctoral]. Editorial Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/36536
Alfresco
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Breijder, Paul. "Analysis of Advanced Fuel Behaviour during Loss of Coolant Accident in Swedish Boiling Water Reactor." Thesis, KTH, Kärnkraftsäkerhet, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-44484.

Повний текст джерела
Анотація:
In accident analysis regarding nuclear power plants, it is very common to use thermal hydraulic system codes, such as TRACE, developed by U.S. NRC. In the case of licensing a power plant, this is one of the necessities. TRACE is a relatively new thermal hydraulic system code and a lot of knowledge is needed to implement it in a correct way, especially in accident analysis, where it is a requirement that the rules and statements in Appendix-K, dealing with criteria for ECCS-models, are modelled. In this thesis an improved model of a Swedish Boiling Water Reactor within TRACE is realized and tested. Afterwards, once a working and representative model has been obtained, a sensitivity study in conducted in order to investigate the sensitivity of TRACE for a couple of thermal hydraulic parameters. The sensitivity study is focussing on the eect of the peak cladding temperature, as well as the coolability of the nuclear fuel in terms of quenching and quench-front velocities. It is found to be hard to say unilaterally what the eect of changing a certain number of parameters on the reactor behaviour is. As it turns out to be, although strongly related, the peak cladding temperatures and the quench phenomena can behave dierently
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Sharma, Bed Prasad. "Effect of sonication on thermal, mechanical, and thermomechanical properties of epoxy resin." OpenSIUC, 2009. https://opensiuc.lib.siu.edu/theses/113.

Повний текст джерела
Анотація:
Epoxy resin is an important engineering material in many industries such as electronics, automotive, aerospace, etc not only because it is an excellent adhesive but also because the materials based on it provide outstanding mechanical, thermal, and electrical properties. Epoxy resin has been proved to be an excellent matrix material for the nanocomposites when including another phase such as inorganic nanofillers. The properties of a nanocomposite material, in general, are a hybrid between the properties of matrix material and the nanofillers. In this sense, the thermal, mechanical, and electrical properties of a nanocomposite may be affected by the corresponding properties of matrix material. When the sonication is used to disperse the nanofillers in the polymer matrix, with the dispersal of the nanofillers, there comes some modification in the matrix as well and it finally affects the properties of nanocomposites. In this regard, we attempted to study the thermal, mechanical, and dynamic properties of EPON 862 epoxy resin where ultrasonic processing was taken as the effect causing variable. Uncured epoxy was subjected to thermal behavior studies before and after ultrasonic treatment and the cured epoxies with amine hardener EPICURE 3223 (diethylenetriamine) after sonications were tested for mechanical and dynamic properties. We monitored the ultrasonic processing effect in fictive temperature, enthalpy, and specific heat capacity using differential scanning calorimetry. Fictive temperature decreased whereas enthalpy and specific heat capacity were found to increase with the increased ultrasonic processing time. Cured epoxy rectangular solid strips were used to study the mechanical and dynamic properties. Flexural strength at 3% strain value measured with Dillon universal testing machine under 3-point bending method was found to degrade with the ultrasonic processing. The storage modulus and damping properties were studied for the two samples sonicated for 60 minutes and 120 minutes. Our study showed that the 60 minutes sonicated sample has higher damping or loss modulus than 120 minutes sonicated sample.
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Pons, Carlota. "Durabilité des géomembranes en polyéthylène haute densité utilisées dans les installations de stockage de déchets non dangereux." Phd thesis, Université Paris-Est, 2012. http://tel.archives-ouvertes.fr/tel-00787951.

Повний текст джерела
Анотація:
Les géomembranes (GMB) en polyéthylène haute densité (PEHD) sont utilisées comme barrière d'étanchéité dans les installations de stockage de déchets non dangereux (ISDND). Malgré les bonnes propriétés initiales du PEHD, face aux agressions chimiques et biologiques d'un lixiviat de déchets et aux contraintes thermiques et mécaniques générées par le massif de déchets, sa durabilité reste une question ouverte. L'objectif de cette thèse est de contribuer au développement d'un modèle cinétique non empirique de prédiction de la durée de vie des GMB en PEHD, qui prend simultanément en compte les effets du vieillissement chimique et biologique. Pour cela, nous cherchons à déterminer d'une part les paramètres d'extraction des antioxydants constitutifs des GMB, première étape du vieillissement des GMB, et d'autre part les paramètres cinétiques de vieillissement oxydatif des PE, deuxième étape de vieillissement. Ceci nécessite de connaître et de comprendre les mécanismes physico-chimiques impliqués dans le vieillissement des PE dans les conditions particulières des ISDND. A partir d'une approche multi-échelle (macro- micro) et à l'aide de différentes techniques (IRTF, GPC HT, AED, essais de traction,...), nous évaluons l'impact du vieillissement accéléré sur la composition chimique, les structures macromoléculaire et cristalline ainsi que les propriétés d'usage des GMB et des films en PEHD. Cette étude a permis de déterminer un critère de fin de vie pertinent pour évaluer la durée de vie de la GMB : la fragilisation qui correspond à une masse molaire critique M'C d'environ 100 kg.mol-1. Un couplage de la modélisation chimique de la dégradation oxydante du polymère et biologique de la cinétique de croissance du biofilm est proposé. Enfin, dans une dernière partie, la même approche multi-échelle a été utilisée pour caractériser la dégradation de GMB vieillies 18 ans en bassin de stockage d'eau pour ainsi déterminer les mécanismes impliqués dans le vieillissement sur site
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Chayopitak, Nattapon. "Performance Assessment and Design Optimization of Linear Synchronous Motors for Manufacturing Applications." Diss., Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/16281.

Повний текст джерела
Анотація:
The major contributions of this thesis are categorized into three areas: (i) magnetic modeling, (ii) optimal performance assessment and (iii) multi-objective design methodology of the linear permanent-magnet (LPM) and linear variable reluctance (LVR) motors for manufacturing automation applications. The target application is to perform repetitive point-to-point positioning tasks on a continuous basis under temperature constraints. Through simplification, the constraint on temperature rise may be replaced by a constraint on average power dissipation, provided that the thermal resistance is constant and known. The basic framework of analysis is first introduced for a class of idealized linear synchronous (LS) motors, where magnetic saturation and spatial harmonics are neglected, to provide clarity and insight. The physics-based force models for the LPM and LVR motors, including spatial harmonics and magnetic saturation as appropriate, are then developed. Due to magnetic linearity, the force model of the LPM motor is derived from the analytical solution of the Poisson Equation. A nonlinear magnetic circuit analysis model is developed for the LVR motor that includes both spatial harmonics and magnetic saturation. The accuracy of both force models are verified by finite element analysis. Applying those force models, the optimal performance assessment of the LPM and LVR motors is explored using the mathematical framework discussed for the idealized LS motors. In particular, the relationship between travel time and travel distance is characterized in terms of average power dissipation. The performance assessment methodologies developed here may be applied to any motor technology used in manufacturing automation applications. The multi-objective design optimization problem is then defined and software for its solution is developed using Monte-Carlo synthesis, the performance assessment tools and dominance-based sorting. Design results for the LPM and LVR motors are then presented. Future research is discussed as the conclusion of the thesis.
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Brossier, Pierre. "Combined analytical and empirical modelling of power losses in rolling element bearings." Thesis, Lyon, 2020. http://www.theses.fr/2020LYSEI081.

Повний текст джерела
Анотація:
Le développement de l’industrie du transport conduit la conception de transmissions mécaniques de puissance toujours plus légères et efficientes. Les composants de ces transmissions doivent supporter des efforts transmis dans des environnements de plus en plus restreints. Du fait que les carters soient devenus de plus en plus compacts, les systèmes de refroidissement se sont aussi complexifiés. C’est dans ce contexte que les paliers à roulement, plus communément appelés roulements, doivent produire moins de chaleur, opérer dans des espaces plus proches des engrènements, tout en ayant des durées de vie plus grandes. Le calcul des pertes énergétiques des roulements est essentiel pour quantifier la quantité d’huile à injecter pour refroidir ces composants. L’objectif de cette étude est donc de fournir des outils pour modéliser les pertes dans les roulements et leur comportement thermique. Dans un premier temps, une analyse bibliographique a été menée sur les pertes de puissance dans les roulements, incluant des modèles locaux et globaux de pertes de puissance. Un banc d’essais dédié a été utilisé afin d’analyser les puissances dissipées et la thermique de roulements à billes à gorge profonde. Les influences de la vitesse de rotation, du chargement, de la température d’injection, du débit d’huile injecté, des techniques de lubrification ont été examinées. Les modèles globaux précédemment investigués ont été comparés aux données expérimentales. Enfin, un modèle thermique a été développé pour comprendre l’influence des transferts de chaleur dans les pertes de puissance générées par les roulements. Des comparaisons entre différentes lubrifications et différentes géométries ont été faites. Une nouvelle formule du couple résistif a été proposée pour mieux prendre en compte la géométrie du roulement considéré
The development of the transport industry has led to design lighter and more efficient transmission systems. The components within these transmissions have to withstand the transmitted loads in closer environments. As the housing has become more compact than ever, the cooling system has also become more complex. In that context, Rolling Element Bearings (REBs) are required to produce less heat, to work closer to the gear meshes while having higher life-expectancies. The calculation of REB power loss is essential to quantity the amount of injected oil to cool off these components. This study therefore aims at providing tools to model REB power loss and their thermal behaviour. As a first step, a bibliographical survey was conducted on REB power losses, including local and global models. A dedicated test rig has been used to analyse the power losses and the thermal behaviour of Deep Groove Ball Bearings. The influence of rotational speed, load, oil injection temperature, oil flow rate and lubrication design has been investigated. The above-mentioned global models have been compared to the experimental data. Finally, a REB thermal model has been developed in order to understand the influence of heat-transfer within REBs on power losses. Comparisons between different lubrication designs and between different geometries have been done. A new formulation to better take into account the REB geometry in the global models has been proposed
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Ahlgren, Tobias, and Jalal Eliassi. "Värmeförluster vid utvändigt placerade ventilationssystem." Thesis, Linnéuniversitetet, Institutionen för teknik, TEK, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-20676.

Повний текст джерела
Анотація:
To be able to handle tomorrows need for limited energy consumption we need to reduce our use of energy. The building sector stands for around 40 % of all energy consumption in the society. The government has put up a goal to reduce the energy consumption in our buildings with 20 % by year 2020 and 50 % by year 2050 compared with year 1995. To be able to do reach that goal we need a more energy efficient building stock. The main part of the energy used in our buildings is used for space heating. By installing ventilation systems with heat recovery on the exhaust air it is possible to use the heat-energy in the exhaust air to warm up the incoming air. This can contribute to a reduction in energy use. A ventilation system with heat recovery on the exhaust air is space demanding and there can be problems with finding enough space to do the installation indoors. Therefore it can be an advantage to place the aggregate and the ducts on the outside of the buildings climate shell. A placement exterior of the buildings climate shell or in an unheated space leads to thermal heat losses. The aim with this essay is to investigate how significant the heat losses are on exterior placed ventilation systems. The investigation has been done with help of theoretical calculations and measurements of the temperature difference in the ventilation ducts. Analysis has been made on life cycle costs on how to reduce the heat losses in an economic manner. To buildings, Höstvägen 14 and 22 in Växjö, which have been equipped with exterior placed ventilation systems have been studied. The two buildings have two different types of installation of the ducts. Our result shows that the heat losses through the ventilation systems on Höstvägen 14 and 22 are significant. The majority of the losses occur in the ducts. In the aggregate the thermal bridges in the framework accounts for the larger part.
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Escalona, Cornejo Johan Enrique. "Modelling of Heat Losses through Coated Cylinder Walls and their Impact on Engine Performance." Doctoral thesis, Universitat Politècnica de València, 2021. http://hdl.handle.net/10251/165244.

Повний текст джерела
Анотація:
[ES] Actualmente, los vehículos propulsados por motores de combustión interna alternativos (MCIA) constituyen uno de los mayores agentes contaminantes para el medio ambiente. En este sentido, ha existido una importante cooperación internacional para promulgar leyes que regulen las emisiones contaminantes. De manera que los fabricantes de coches han impulsado el desarrollo de tecnologías más limpias y amigables con el medio ambiente. Ante esta situación, ha surgido recientemente la electrificación, como uno de los proyectos más ambiciosos de la industria automotriz para los próximos años. Sin embargo, esta meta parece aún lejana en el horizonte. En tal sentido, la hibridación con motores térmicos y eléctricos parece ser el camino a seguir en el corto plazo. Por consiguiente, los MCIA seguirán siendo la principal fuente de propulsión terrestre durante los años venideros. Para mitigar los inherentes efectos contaminantes de los motores de combustión interna, se han propuesto diferentes tecnologías para desarrollar motores más eficientes. Entre ellas, la aplicación de recubrimientos térmicos en las paredes de la cámara de combustión apunta a reducir las pérdidas por calor en el motor, y así aumentar su eficiencia térmica. El objetivo principal de esta tesis es estudiar el impacto de aplicar recubrimientos térmicos en las paredes de la cámara de combustión en motores de combustión interna. En este sentido, determinar los flujos de calor experimentalmente a través de las paredes es complicado y no del todo fiables, debido a que dependen de la medición de las temperaturas de pared. Por este motivo, el CFD-CHT es utilizado. El primer paso fue validar la herramienta computacional que es utilizada para los cálculos en motores de combustión interna. Para ello se realizó un estudio preliminar en geometrías sencillas como una tubería circular o un canal rectangular. Se evaluaron los modelos de transferencia de calor y se determinó la relevancia de ciertos parámetros como la rugosidad. Para complementar el estudio, se realizó un análisis de las temperaturas en una geometría más realista como el pistón de un MCIA. Los valores de temperatura calculados por el software fueron casi iguales a las medidas experimentales. Por consiguiente, la fiabilidad de la herramienta computacional fue verificada. Seguidamente, se plantea una metodología para abordar al problema de modelar capas muy finas de recubrimientos térmicos en el espacio tridimensional. Para de esta manera poder simular las paredes recubiertas en la cámara de combustión. La metodología consiste en definir un material equivalente con un espesor y número de nodos que permitan un mallado computacionalmente realista. Para ello se utilizó un DoE en combinación con un análisis de regresión múltiple. Los primeros estudios se llevaron a cabo en un motor de gasolina. El modelado se llevó a cabo para dos configuraciones: motor con paredes metálicas y motor con pistón y culata recubiertos. A través de un análisis exhaustivo de la transferencia del calor, se evaluó el impacto que tenía aplicar el revestimiento térmico en el motor. La comparación con datos experimentales demuestran la utilidad del cálculo CHT para evaluar las pérdidas de calor en un MCIA. Sin embargo, ninguna mejora fue observada en el motor de gasolina debido al tipo de recubrimiento aplicado en las paredes de la cámara de combustión. Las simulaciones llevadas a cabo en el motor de gasolina permitieron determinar que los cálculos CHT son computacionalmente largos. En este sentido, una serie de estrategias diseñadas a optimizar los cálculos han sido analizadas con el fin de reducir los tiempos de cálculo. A través de este estudio, se encontró una metodología para optimizar la malla del dominio computacional. Esta última, emplea un refinamiento AMR basado en la distancia de pared. Este método es utilizado para modelar el impacto de aplicar un revestimiento tér
[CA] Actualment, els vehicles propulsats per motors de combustió interna alter- natius (MCIA) constitueixen un dels majors agents contaminants per al medi ambient. En aquest sentit, ha existit una important cooperació internacional per a promulgar lleis que regulen les emissions contaminants. De manera que els fabricants de cotxes han impulsat el desenvolupament de tecnologies més netes i amigables amb el medi ambient. Davant aquesta situació, ha sorgit recentment l'electrificació, com un dels projectes més ambiciosos de la indústria automotriu per als pròxims anys. No obstant això, aquesta meta sembla encara llunyana en l'horitzó. En tal sentit, la hibridació amb motors tèrmics i elèctrics sembla ser el camí a seguir en el curt termini. Per consegüent, els MCIA continuaran sent la principal font de propulsió terrestre durant els anys esdevenidors. Per a mitigar els inherents efectes contaminants dels motors de combustió interna, s'han proposat diferents tecnologies per a desenvolupar motors més eficients. Entre elles, l'aplicació de recobriments tèrmics en les parets de la cambra de combustió apunta a reduir les pèrdues per calor en el motor, i així augmentar la seua eficiència tèrmica. L'objectiu principal d'aquesta tesi és estudiar l'impacte d'aplicar reco- briments tèrmics en les parets de la cambra de combustió en motors de combustió interna. En aquest sentit, determinar els fluxos de calor experi- mentalment a través de les parets és complicat i no del tot fiable, pel fet que depenen del mesurament de les temperatures de paret. Per aquest motiu, el CFD-CHT (Computational fluid dynamics-Conjugate Heat Transfer) és utilitzat. El primer pas va ser validar l'eina computacional que és utilitzada per als càlculs en motors de combustió interna. Per a això es va realitzar un estudi preliminar en geometries senzilles com una canonada circular o un canal rectangular. Es van avaluar els models de transferència de calor i es va determinar la rellevància de certs paràmetres com la rugositat. Per a complementar l'estudi, es va realitzar una anàlisi de les temperatures en una geometria més realista com el pistó d'un MCIA. Els valors de temperatura calculats pel software van ser quasi iguals a les mesures experimentals. Per consegüent, la fiabilitat de l'eina computacional va ser verificada. Seguidament, es planteja una metodologia per a abordar el problema de modelar capes molt fines de recobriments tèrmics en l'espai tridimensional, per a d'aquesta manera poder simular les parets recobertes en la cambra de combustió. La metodologia consisteix a definir un material equivalent amb una grossària i nombre de nodes que permeten un mallat computacionalment realista. Per a això es va utilitzar un DoE (Design of experiments) en combinació amb una anàlisi de regressió múltiple. Els primers estudis es van dur a terme en un motor de gasolina. El mod- elatge es va dur a terme per a dues configuracions: motor amb parets metàl·liques i motor amb pistó i culata recoberts. A través d'una anàlisi exhaustiva de la transferència de la calor, es va avaluar l'impacte que tenia aplicar el revestiment tèrmic en el motor. La comparació amb dades experi- mentals demostren la utilitat del càlcul CHT per a avaluar les pèrdues de calor en un MCIA. No obstant això, cap millora va ser observada en el motor de gasolina a causa de la mena de recobriment aplicada en les parets de la cambra de combustió. Les simulacions dutes a terme en el motor de gasolina van permetre determinar que els càlculs CHT són computacionalment llargs. En aquest sentit, una sèrie d'estratègies dissenyades per a optimitzar els càlculs han sigut analitzades amb la finalitat de reduir els temps de càlcul. A través d'aquest estudi, es va trobar una metodologia per a optimitzar la malla del domini computacional. Aquesta última, empra un refinament AMR basat en la distància de paret.
[EN] Currently, vehicles powered by internal combustion engines (ICE) are targeted as contributing largely to environmental pollution. In this regard, there has been significant international cooperation to enact laws that regulate the polluting emissions. Hence, the car manufacturers have oriented efforts to the development of cleaner and more eco-friendly technologies. In order to face this situation, electrified vehicles have emerged as one of the most promising projects in the automotive industry for the coming years. However, this target still seems far on the horizon. In this sense, hybridization with thermal and electric engines seems to be the path to follow in the short term. Consequently, ICEs will continue to be one of the important sources of terrestrial propulsion in the coming years. To mitigate the inherent polluting effects of internal combustion engines, different technologies have been proposed to develop more efficient engines. Among them, the application of thermal coatings on the combustion chamber walls. This technology aims at reducing the heat losses in the engine, and thus increase its thermal efficiency. The main objective of this thesis is to study the impact of coating the combustion chamber walls of an engine on heat losses and thermal efficiency. The experimental definition of the heat fluxes through the walls is complex and not very reliable because it requires the measurement of wall temperatures. For this reason, CFD-CHT (Computational fluid dynamics-Conjugate Heat Transfer) is used. The first step was to validate the computational tool employed for CFD-CHT calculations in internal combustion engines. For this, a preliminary study in simple geometries such as a circular pipe or a rectangular channel was performed. Heat transfer models were evaluated and the relevance of certain parameters such as roughness was determined. To reinforce the study, a thermal analysis in a more realistic geometry such as the piston of a CI engine was carried out. The temperature values calculated by the software were almost the same as the experimental measurements. Consequently, the reliability of the computational tool was verified. Next, a methodology was proposed to address the problem of modeling very thin layers of thermal coating for three-dimensional CFD-CHT calculations. The methodology consists in defining an "equivalent material" with a thickness and number of nodes that allow a computationally realistic mesh. For this, a DoE in combination with a multiple regression analysis was employed. The first CFD-CHT simulations in ICEs were carried out for a gasoline engine. The study was performed for two configurations: metallic engine and engine with coated piston and cylinder head. An exhaustive heat transfer analysis was made in order to determine the impact of applying the thermal coating on the engine. Comparison with experimental data proved the suitability of the CHT calculations to evaluate heat losses in ICEs. However, no improvement on engine efficiency was observed in the gasoline engine due to the type of coating applied on the combustion chamber walls. Experience with the gasoline engine calculations showed that CHT calculations were very time consuming. In this regard, some strategies aimed at optimizing the calculations were analyzed in order to reduce calculation times. The most successful methodology was based on AMR cell refinement to optimize the mesh and reduce significantly the computational costs. This approach was used to study the impact of applying a new generation thermal coating on the piston top of a Diesel engine. The results obtained indicated that this type of coating allows for some improvement in the thermal efficiency of the engine without affecting its performance.
The author wishes to acknowledge the financial support received through contract FPI-2018-S2-1205 of the Programa para la Formación de Personal investigador (FPI) 2018 of Universitat Politècnica de València. Parts of the work presented in this thesis have received funding from the European Union’s Horizon 2020 research and innovation programme undergrant agreement No 724084.The author wishes to thank IFPEN for their permission to use their single cylinder engine geometry and experimental results, as well as Saint Gobain Research Provence for providing the coating characteristics.The respondent wants to express its gratitude to CONVERGENT SCIENCE Inc. and Convergent Science GmbH for their kind support for performingthe CFD-CHT calculations using CONVERGE software
Escalona Cornejo, JE. (2021). Modelling of Heat Losses through Coated Cylinder Walls and their Impact on Engine Performance [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/165244
TESIS
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Marchi, Neto Ismael de [UNESP]. "Levantamento de coeficientes de desempenho de refrigeradores domésticos associados a armazenador térmico." Universidade Estadual Paulista (UNESP), 2007. http://hdl.handle.net/11449/136747.

Повний текст джерела
Анотація:
Made available in DSpace on 2016-04-01T17:55:05Z (GMT). No. of bitstreams: 0 Previous issue date: 2007-08-29. Added 1 bitstream(s) on 2016-04-01T18:00:55Z : No. of bitstreams: 1 000505950.pdf: 2040911 bytes, checksum: 6a6c3699938e4a1059984533329b05ad (MD5)
Devido à extrema necessidade de se diversificar as fontes de energia renováveis, torna-se necessário a busca por métodos de reciclagem de energia pela utilização de rejeitos térmicos de equipamentos. Assim, o aproveitamento desses rejeitos pode ser utilizado, como uma nova fonte de energia, para o aquecimento de água e armazenamento da mesma em reservatório para uso doméstico. Devido a isso, é proposta a construção de um aparato experimental de um reservatório de armazenamento térmico cilíndrico, onde o objetivo da pesquisa será o levantamento dos coeficientes de desempenho relativo aos refrigeradores convencional e modificado, além de realizar uma análise da armazenagem da água quente, através da técnica da estratificação térmica utilizando um refrigerador com condensador modificado. O rejeito térmico coletado, através do princípio do termosifão, será armazenado na forma de energia térmica. Os resultados mostraram que os coeficientes de desempenho dos sistemas, calculados pelas técnicas relativas às perdas térmicas teóricas e experimentais, apresentaram grande diferença. Observou-se o comportamento dinâmico das termoclinas, através do efeito da estratificação térmica e a evolução das temperaturas em função do tempo, mostrando maior viabilidade do refrigerador modificado, gerando assim maior conforto térmico aos usuários além de produzir água quente para uso doméstico.
Due to the extreme necessity to diversify renewable energy sources, the search for energy recycling methods through the utilization of thermal losses from equipment has become fundamental. Thus, these losses can be used as new source of energy for water heating and storage in Domestic Hot Water Storage Tanks (DHWST). For this reason, the construction of an experimental apparatus with a cylindrical thermal storage tank is proposed, in which the objective of the study will be a survey of the Coefficient of Performance concerning conventional and modified refrigerators, as well as to perform an analysis of hot water, through the thermal stratification technique using a refrigerator with a modified condenser. The collected thermal loss, as per the thermosiphon principle, will be stored as thermal energy. The results showed that the coefficient of performance for the systems, calculated using techniques for theoretical and experimental thermal losses, presented great differences. The dynamic behavior of the thermal distribution was observed through the thermal stratification effect and temperature evolution in terms of time, showing greater variability of the modified refrigerator generating more thermal comfort to users in addition to providing domestic hot water.
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Krishnan, Ganesh. "Thermo-mechanical reliability of ultra-thin low-loss system-on-package substrates." Thesis, Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/26474.

Повний текст джерела
Анотація:
Thesis (M. S.)--Materials Science and Engineering, Georgia Institute of Technology, 2009.
Committee Chair: Tummala, Rao; Committee Member: Pucha, Raghuram V.; Committee Member: Wong, C.P. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Baker, Nicholas. "Modelling and Analysis of Daylight, Solar Heat Gains and Thermal Losses to Inform the Early Stage of the Architectural Process." Thesis, KTH, Installations- och energisystem, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-222470.

Повний текст джерела
Анотація:
The EU building sector is a main contributor to greenhouse gas emissions, which need to be cut as part of the global response to anthropogenic climate change. This cut can be realised through improvements in building energy performance, such as optimisation of facade design. The early stage of the architectural process has been identified as the ideal time to implement such sustainable design choices. There is need for simple guidelines and tools to provide quantitative data to support these architectural decisions. BIM and parametric design can provide this, by facilitating model-based analysis and simulation, as part of an unbroken flow of information through the design process. This study uses Dynamo (the visual programming add-in for Autodesk Revit) together with the Honeybee and Ladybug environmental plugins, to conduct daylight, solar heat gains and thermal losses analyses and simulations. The aim was to identify limitations and opportunities in using Dynamo-Revit, to establish an optimal range for glazing-to-wall ratio (GWR) and to provide some simple room-sizing guidelines for architects in the early stage of the design process. The Dynamo-Revit workflow was found to be effective for specific projects, but difficult to perfect for multiple different projects. An optimal range for GWR was found as 30-40% for east, south and west-facing rooms and around 50% for rooms facing only north. Results were tabulated, linking room orientation and depth with estimated daylight access, solar heat gains and thermal losses. The results were reasonable, but could be improved by the use of more sophisticated analysis and simulation techniques, which should be facilitated by forthcoming development of Honeybee and Ladybug in Dynamo.
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Hartnick, Angelo. "Effects of thermal stresses on Pressurised Water Reactor nuclear containment vessels following a Loss of Coolant Accident with assimilated containment filtered venting system." Master's thesis, Faculty of Engineering and the Built Environment, 2021. http://hdl.handle.net/11427/32718.

Повний текст джерела
Анотація:
In a nuclear power plant, the last barrier under normal and accident operations is the containment building. This is normally constructed from concrete reinforced with steel bars, which are prestressed to enhance the overall capability to withstand thermodynamic stresses like over-pressurisation and high temperatures. The failure of this final barrier will lead to the release of radioactivity to the surrounding environment. To examine the effects of thermo-hydraulic stresses on PWR containment following a LOCA, a model is proposed with simulated scenarios performed at the Koeberg Nuclear Power Station as a case study. The accidents were simulated using the Koeberg engineering simulator to obtain the output data. The scenario for the proposed model correlates the critical mass flow from a double-ended guillotine break to the containment pressure and temperature increase. Different containment filtered venting systems (CFVS) are also investigated in this study as severe accident management systems. CFVS have historically been included in boiling water reactor (BWR) designs, but following the Fukushima Daiichi nuclear accident, they are being introduced as severe accident management systems to manage the threat of containment over-pressurisation in pressurised water reactors (PWR). Finally, the rate of change in containment pressure and temperature is analysed and compared to literature, with the incorporation of a simulated filtered venting system to the PWR containment building.
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Yao, Yiying. "Thermal Stability of Al₂O₃/Silicone Composites as High-Temperature Encapsulants." Diss., Virginia Tech, 2014. http://hdl.handle.net/10919/50593.

Повний текст джерела
Анотація:
Conventional microelectronic and power electronic packages based on Si devices usually work below 150°C. The emergence of wide-bandgap devices, which potentially operate above a junction temperature of 250°C, results in growing research interest in high-density and high-temperature packaging. There are high-temperature materials such as encapsulants on the market that are claimed for capability of continuous operation at or above 250°C. With an objective of identifying encapsulants suitable for packaging wide-bandgap devices, some of commercial high-temperature encapsulants were obtained and evaluated at the beginning of this study. The evaluation revealed that silicone elastomers are processable for various types of package structure and exhibit excellent dielectric performance in a wide temperature range (25 - 250°C) but are insufficiently stable against long-term aging (used by some manufacturers, e.g., P²SI, to evaluate polymer stability) at 250°C. These materials cracked during aging, causing their dielectric strength to decrease quickly (as soon as 3 days) and significantly (60 - 70%) to approximately 5 kV/mm, which is below the value required by semiconductor packaging. The results of this evaluation clearly suggested that silicone needs higher thermal stability to reliably encapsulate wide-bandgap devices. Literature survey then investigated possible methods to improve silicone stability. Adding fillers is reported to be effective possibly due to the interaction between filler surface and polymer chains. However, the interaction mechanism is not clearly documented. In this study, the effect of Al₂O₃ filler on thermal stability was first investigated by comparing the performance of unfilled and Al₂O₃-filled silicones in weight-loss measurements and dielectric characterization. All test results on composites filed with Al₂O₃ micro-rods indicated that thermal stability increased with increasing filler loading. Thermogravimetric analysis (TGA) test demonstrated that the temperature of degradation onset increased from 330 to 379°C with a 30 wt% loading of Al₂O₃ rods. In isothermal soak test, unfilled and 30-wt%-filled silicones lost 10% of polymer weight in 700 and 1800 hours, respectively. The dielectric characterization found that both Weibull parameters, characteristic dielectric strength (E₀, representing the electric field at which 62.3% of samples are electrically broken down) and shape parameter (β, representing the spread of data. The larger the β, the narrower the distribution) can reflect the thermal stability of polymers. Both of them were influenced by microstructure evolution, to which β was found to be more sensitive than E₀. The characteristic dielectric strength of unfilled silicone decreased significantly after 240 hours of aging at 250°C, whereas that of Al₂O₃/silicone composites exhibited no significant change within 560 hours. The shape parameter of Al₂O₃-filled silicone decreased slower than that of unfilled silicone, also indicating the positive effect of Al₂O₃ micro-rods on thermal stability. Improved thermal stability can be explained by restrained chain mobility caused by interfacial hydrogen bonds, which are formed between hydroxyl groups on Al₂O₃ surface and silicone backbone. In this study, the effect of hydrogen bonds was investigated by dehydrating Al₂O₃ micro-rods at high temperature in N₂ to partially destroy the bonds. Removal of hydrogen bonds impaired thermal stability by increasing the initial weight-loss rate from 0.025 to 0.036 wt%/hour. The results explained the importance of interfacial hydrogen bond, which effectively reduced the average chain mobility, hindered the formation of degradation products, and led to higher thermal stability. The main discoveries of this study are listed below: 1. Al₂O₃ micro-rods were found to efficiently improve the thermal stability of silicone elastomer used for high-temperature encapsulation. 2. Characteristic dielectric strength and shape parameter obtained from Weibull distribution reflected the change of material microstructure caused by thermal aging. The shape parameter was found to be more sensitive to microscale defects, which were responsible for dielectric breakdown at low electric field. 3. Hydrogen bonds existing at filler/matrix interface were proven to be responsible for the improvement of thermal stability because they effectively restrained the average chain mobility of the silicone matrix.
Ph. D.
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Kleo, Mario, Holger Mößinger, Florentine Förster-Zügel, Helmut F. Schlaak, and Thomas Wallmersperger. "Investigation of the thermal effects in dynamically driven dielectric elastomer actuators." SPIE, 2018. https://tud.qucosa.de/id/qucosa%3A35159.

Повний текст джерела
Анотація:
Dielectric elastomer actuators (DEAs) are compliant capacitors, which are able to transduce electrical into mechanical energy and vice versa. As they may be applied in different surrounding conditions and in applications with alternating excitations, it is necessary to investigate both, the thermal behavior and the in fluence of the temperature change during operation. Due to mechanical and electrical loss mechanisms during the energy transfer, the DEA is subjected to an intrinsic heating. In detail, the dielectric material, which has viscoelastic properties, shows a mechanical hysteresis under varying mechanical loads. This behavior leads to a viscoelastic loss of energy in the polymer layer, resulting in a heating of the structure. The non-ideal conduction of the electrode provokes a resistive loss when charging and discharging the electrode layer. Operation with frequencies in the kilohertz-range leads to remarkable local heat dissipation. The viscoelastic material behavior and the resistivity are assumed to be dependent on the temperature and/or on the strain of the material. By this, a back-coupling from the thermal field to the mechanical field or the electrical field is observed. In order to provide a thermal equilibrium, also the convective cooling { the structure is subjected to { has to be considered. Depending on the frequency and the type of electrical driving signal and mechanical load, viscoelastic and resistive heating provide different contributions during the dynamic process. In the present study we capture the described effects within our modeling approach. For a given dielectric elastomer actuator, numerical investigations are performed for a given electrical load.
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Coillet, Élodie. "Structural characterization of thin non-crystalline layers for low thermal noise optic." Thesis, Lyon, 2017. http://www.theses.fr/2017LYSE1132/document.

Повний текст джерела
Анотація:
Prédites en 1916 par Albert Einstein, puis détectées 100 ans plus tard par les collaborations LIGO et VIRGO, les ondes gravitationnelles constituent un outil prometteur pour observer l’univers sur des échelles toujours plus grandes. Cependant, pour accéder à de plus nombreux évènements, une des principales limitations des détecteurs provient du bruit thermique des couches minces composant leurs miroirs, couches minces non cristallines de SiO2 et Ta2O5 dopé TiO2.L’objectif de ce travail est d’étudier l’origine microstructurale du bruit thermique de ces couches en utilisant les spectroscopies vibrationnelles pour, à terme, obtenir des matériaux plus performants. Il a notamment été observé que le bruit thermique diminue lorsque les miroirs sont recuits à faible température. Dans la silice, nous observons une restructuration du matériau lors du recuit qui semble suivre la diminution du bruit thermique. En particulier, un relâchement des contraintes a été constaté. En revanche, dans le Ta2O5, matériau de structure complexe et encore mal connue, l’effet du recuit sur la structure des couches apparaît plus limité, alors que celles-ci cristallisent facilement dès que la température augmente. Pour compléter la connaissance de ce matériau, des mesures in-situ hautes pressions ont été réalisées. Finalement, le rôle du dopage des couches de Ta2O5 par du TiO2 a été exploré
Predicted in 1916 by Einstein, then detected one hundred year later by the VIRGO and LIGO collaborations, the gravitational waves are a promising tool to observe the universe at scales always bigger. However, to detect a larger number of events, one of the main limitation of the detectors originates in the mirrors coatings thermal noise, thin non-crystalline layers composed of SiO2 and TiO2-doped Ta2O5. The aim of this work is to study the micro-structural origin of the layers thermal noise, by using vibrational spectroscopies, in order to, ultimately, process more efficient materials. Studies show a decrease of the thermal noise when the mirrors are annealed at low temperature. In silica, a structural reorganization happens during the annealing, following the evolution of the thermal noise. Notably, a stress relaxation has been observed. However, in Ta2O5, oxide with a complex structure not much studied, the impact of the annealing seems to be more limited, while the structure crystallizes easily as soon as the temperature increases. To complete our knowledge of this structure, in-situ high pressure measurements were conducted. Finally, the TiO2-doping effect of the Ta2O5 structures was studied
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Haro, Daniel. "Cold acclimation response of non-native Italian wall lizard (Podarcis siculus) populations from New York and California." DigitalCommons@CalPoly, 2018. https://digitalcommons.calpoly.edu/theses/1952.

Повний текст джерела
Анотація:
Understanding how organisms respond to climatic variability and novel conditions is becoming an increasingly important task for ecologists. For ectotherms in the northern hemisphere, the response to cold is of special interest, considering that poleward range expansion events and increasing variability of temperatures during winter are already being observed as consequences of a warming planet. Though direction of change in physiological variables in response to cold is well studied in ectotherms, the extent to which traits can change and the rate at which they can change is not. We compared the extent and rate of change in cold tolerance (CTmin) between two long-term captive populations of the Italian wall lizard (Podarcis siculus) during a lab cold-acclimation treatment. Heat tolerance (CTmax), thermal preference (Tpref), temperature dependent rates of oxygen consumption (SMRO2), and temperature dependent rates of water loss (EWL) were also compared between Italian wall lizards previously introduced to Long Island, NY and San Pedro, CA before and after the lab cold acclimation treatment. Because our study coincided with a cold snap during the spring 2018 season for the San Pedro, CA population, we also studied the effects of cold acclimatization on wild lizards from the CA population. After initial lab acclimation of the lizards to laboratory conditions, SMRO2 at 15°C and EWL at 10°C were higher in NY lizards compared to CA lizards. Lizards from the two populations did not differ in any other variables measured before the cold acclimation treatment. We found that lizards from the NY population experienced an 80% decrease in CTmin following a switch from 20°C:18°C to 17.5°C:16°C (12h light:12h dark) acclimation treatment. Lizards from the CA population did not decrease CTmin in response to the same cold acclimation treatment. Overall, NY lizards decreased CTmin, CTmax, and Tpref following cold acclimation, whereas CA lizards decreased CTmax only. Wild CA lizards decreased CTmax following the cold spring 2018 season in a manner similar to that of lab acclimated NY and CA lizards, suggesting that these lizards do not maintain a high CTmax when the environment is unlikely to expose them to high temperatures. Thermal sensitivity (Q10) of SMRO2 and EWL was lower in NY lizards, suggesting physiological adaptation to fluctuation in diurnal temperatures. The ratio of CO2 produced to O2 consumed (respiratory exchange ratio, RER) measured at 15°C increased in NY lizards following cold acclimation suggesting an increased use of carbohydrates and/or an increased production of lipids in the colder conditions. These responses in combination with the higher observed plasticity in NY lizards are in accordance with the climatic variability hypothesis, which predicts that organisms from more variable climates will be better adapted to physiologically respond to variable conditions. The higher capacity for physiological plasticity may explain the relatively high success of P. siculus in NY and other northern U.S. states. By describing the rate of change of CTmin during cold acclimation we hope to better understand how these lizards minimize the risk of low temperature exposure during winter. We ultimately hope to incorporate the rate at which cold tolerance can change into predictions of species distributions and hypothesis tests investigating the relationship between climatic variability and the rate at which animals can exhibit plasticity.
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Zavadzkis, Lukas. "Skirstomųjų tinklų galios nuostolių skaičiavimo metodų palyginimas." Master's thesis, Lithuanian Academic Libraries Network (LABT), 2005. http://vddb.library.lt/obj/LT-eLABa-0001:E.02~2005~D_20050614_162126-59320.

Повний текст джерела
Анотація:
Calculation methods of electric power loss in 10 kV distribution network were analyzed in this study. It was examined what influence to power loss calculations has the cable resistance dependency on temperature and cable load. Voltage losses dependency on step-down transformer load, active and reactive power coefficients cosφ and sinφ was also an object of this research. It was intended to analyze comparative power loss dependences for various cross-section 10 kV cables too. Electric power loss calculations according to average load current are made for the real distribution network.
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Xu, Shuangyan. "Evaluating Thermal and Mechanical Properties of Electrically Conductive Adhesives for Electronic Applications." Diss., Virginia Tech, 2002. http://hdl.handle.net/10919/27112.

Повний текст джерела
Анотація:
The objective of this study was to evaluate and gain a better understanding of the short-term impact performance and the long-term durability of electrically conductive adhesives for electronic interconnection applications. Three model conductive adhesives, designated as ECA1, ECA2 and ECA3, supplied by Emerson & Cuming, were investigated, in conjunction with printed circuit board (PCB) substrates with metallizations of Au/Ni/Cu and Cu, manufactured by Triad Circuit Inc. Effects of environmental aging on the durability of conductive adhesives and their joints were evaluated. All the samples for both mechanical tests and thermal tests were aged at 85%, 100%RH for periods of up to 50 days. Studies of bulk conductive adhesives suggested that both plasticization, which is reversible and further crosslinking and thermal degradation, which are irreversible, might have occurred upon exposure of ECAs to the hot/wet environment. The durability of electrically conductive adhesive joints was then investigated utilizing the double cantilever beam (DCB) test. It was observed that the conductive adhesive joint was significantly weakened following hydrothermal aging, and there was a transition from cohesive failure to interfacial failure as aging continued. A comparative study of the durability of different conductive adhesive and substrate metallization combinations suggested that the resistance of the adhesive joints to moisture attack is related to the adhesive properties, as well as the substrate metallizations. It was noted that the gold/adhesive interface had better resistance to moisture attack than the copper/adhesive interface. A reasonable explanation of this phenomenon was given based upon the concept of surface free energy and interfacial free energy. XPS analysis was performed on the fractured surfaces of DCB samples. For adhesive joints with copper metallization, copper oxide was detected on the failed surfaces upon exposure of the conductive adhesive joints following aging. XPS analysis on the fractured surfaces of adhesive joints with Au metallization suggested that diffusion of Cu to the Au surface might have happened on the Au/Ni/Cu plated PCB substrates during aging. The impact performance of conductive adhesives was quantitatively determined using a falling wedge test. This unique impact resistance testing method could serve as a useful tool to screen conductive adhesives at the materials level for bonding purpose. Moreover, this test could also provide some useful information for conductive adhesive development. This study revealed that the viscoelastic energy, which is a result of the internal friction created by chain motions within the adhesive material, played an important role in the impact fracture behavior of the conductive adhesives. This study also demonstrated that the loss factor, evaluated at the impact environment conditions, is a good indicator of a conductive adhesive's ability to withstand impact loading.
Ph. D.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії