Добірка наукової літератури з теми "Thermal hyperspectral imaging"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Thermal hyperspectral imaging".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Thermal hyperspectral imaging"

1

Boubanga-Tombet, Stephane, Alexandrine Huot, Iwan Vitins, Stefan Heuberger, Christophe Veuve, Andreas Eisele, Rob Hewson, Eric Guyot, Frédérick Marcotte, and Martin Chamberland. "Thermal Infrared Hyperspectral Imaging for Mineralogy Mapping of a Mine Face." Remote Sensing 10, no. 10 (September 21, 2018): 1518. http://dx.doi.org/10.3390/rs10101518.

Повний текст джерела
Анотація:
Remote sensing systems are largely used in geology for regional mapping of mineralogy and lithology mainly from airborne or spaceborne platforms. Earth observers such as Landsat, ASTER or SPOT are equipped with multispectral sensors, but suffer from relatively poor spectral resolution. By comparison, the existing airborne and spaceborne hyperspectral systems are capable of acquiring imagery from relatively narrow spectral bands, beneficial for detailed analysis of geological remote sensing data. However, for vertical exposures, those platforms are inadequate options since their poor spatial resolutions (metres to tens of metres) and NADIR viewing perspective are unsuitable for detailed field studies. Here, we have demonstrated that field-based approaches that incorporate thermal infrared hyperspectral technology with about a 40-nm bandwidth spectral resolution and tens of centimetres of spatial resolution allow for efficient mapping of the mineralogy and lithology of vertical cliff sections. We used the Telops lightweight and compact passive thermal infrared hyperspectral research instrument for field measurements in the Jura Cement carbonate quarry, Switzerland. The obtained hyperspectral data were analysed using temperature emissivity separation algorithms to isolate the different contributions of self-emission and reflection associated with different carbonate minerals. The mineralogical maps derived from measurements were found to be consistent with the expected carbonate results of the quarry mineralogy. Our proposed approach highlights the benefits of this type of field-based lightweight hyperspectral instruments for routine field applications such as in mining, engineering, forestry or archaeology.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Marwaha, R., A. Kumar, P. L. N. Raju, and Y. V. N. Krishna Murthy. "Target detection algorithm for airborne thermal hyperspectral data." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XL-8 (November 28, 2014): 827–32. http://dx.doi.org/10.5194/isprsarchives-xl-8-827-2014.

Повний текст джерела
Анотація:
Airborne hyperspectral imaging is constantly being used for classification purpose. But airborne thermal hyperspectral image usually is a challenge for conventional classification approaches. The Telops Hyper-Cam sensor is an interferometer-based imaging system that helps in the spatial and spectral analysis of targets utilizing a single sensor. It is based on the technology of Fourier-transform which yields high spectral resolution and enables high accuracy radiometric calibration. The Hypercam instrument has 84 spectral bands in the 868 cm<sup>&minus;1</sup> to 1280 cm<sup>&minus;1</sup> region (7.8 μm to 11.5 μm), at a spectral resolution of 6 cm<sup>&minus;1</sup> (full-width-half-maximum) for LWIR (long wave infrared) range. Due to the Hughes effect, only a few classifiers are able to handle high dimensional classification task. MNF (Minimum Noise Fraction) rotation is a data dimensionality reducing approach to segregate noise in the data. In this, the component selection of minimum noise fraction (MNF) rotation transformation was analyzed in terms of classification accuracy using constrained energy minimization (CEM) algorithm as a classifier for Airborne thermal hyperspectral image and for the combination of airborne LWIR hyperspectral image and color digital photograph. On comparing the accuracy of all the classified images for airborne LWIR hyperspectral image and combination of Airborne LWIR hyperspectral image with colored digital photograph, it was found that accuracy was highest for MNF component equal to twenty. The accuracy increased by using the combination of airborne LWIR hyperspectral image with colored digital photograph instead of using LWIR data alone.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Jung, András, Péter Kardeván, and László Tőkei. "Hyperspectral Technology in Vegetation Analysis." Progress in Agricultural Engineering Sciences 2, no. 1 (December 1, 2006): 95–117. http://dx.doi.org/10.1556/progress.2.2006.1.5.

Повний текст джерела
Анотація:
The objective of the work reported is the development of red-edge methodology in order to characterize agricultural vegetation types and the determination of relationships between different vegetation (high biomass, low biomass) and thermal images. Therefore, the aim was to calculate red-edge position (REP) values and compare them to traditional vegetation indices (NDVI) and thermal images. Images were taken by a DAIS 7915 airborne imaging spectrometer that was equipped with an additional thermal imaging system. An exponential relationship was found between the on-curve-evaluation based (REP) and the broad band vegetation indices (NDVI). A linear relationship was determined between surface temperature differences ( ΔTs ) of the vegetation and NDVI values. A logarithmic relationship was found between surface temperature differences ( ΔTs ) of the vegetation of the canopy and red-edge position (REP). NDVI and REP are suitable vegetation indices when there are several bands available in the spectral range of 600-800 nm. REP was found to be a suitable method for analyzing and characterizing vegetated surfaces.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Liu, Bingxin, Yulong Du, Chengyu Liu, and Ying Li. "A Practical Method for Blind Pixel Detection for the Push-Broom Thermal-Infrared Hyperspectral Imager." Sensors 22, no. 19 (September 29, 2022): 7403. http://dx.doi.org/10.3390/s22197403.

Повний текст джерела
Анотація:
Thermal infrared hyperspectral imager is one of the frontier payloads in current hyperspectral remote sensing research. It has broad application prospects in land and ocean temperature inversion, environmental monitoring, and other fields. However, due to the influence of the production process of the infrared focal plane array and the characteristics of the material itself, the infrared focal plane array inevitably has blind pixels, resulting in spectral distortion of the data or even invalid data, which limits the application of thermal infrared hyperspectral data. Most of the current blind pixels detection methods are based on the spatial dimension of the image, that is, processing single-band area images. The push-broom thermal infrared hyperspectral imager works completely different from the conventional area array thermal imager, and only one row of data is obtained per scan. Therefore, the current method cannot be directly applied to blind pixels detection of push-broom thermal infrared hyperspectral imagers. Based on the imaging principle of push-broom thermal infrared hyperspectral imager, we propose a practical blind pixels detection method. The method consists of two stages to detect and repair four common types of blind pixels: dead pixel, dark current pixel, blinking pixel, and noise pixel. In the first stage, dead pixels and dark current pixels with a low spectral response rate are detected by spectral filter detection; noise pixels are detected by spatial noise detection; and dark current pixels with a negative response slope are detected by response slope detection. In the second stage, according to the random appearance of blinking pixels, spectral filter detection is used to detect and repair spectral anomalies caused by blinking pixels line by line. In order to verify the effectiveness of the proposed method, a flight test was carried out, using the Airborne Thermal-infrared Hyperspectral Imaging System (ATHIS), the latest thermal infrared imager in China, for data acquisition. The results show that the method proposed in this paper can accurately detect and repair blind pixel, thus effectively eliminating spectral anomalies and significantly improving image quality.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Aref, Mohamed Hisham, Ibrahim H. Aboughaleb, and Yasser H. El-Sharkawy. "Tissue characterization utilizing hyperspectral imaging for liver thermal ablation." Photodiagnosis and Photodynamic Therapy 31 (September 2020): 101899. http://dx.doi.org/10.1016/j.pdpdt.2020.101899.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Schlerf, Martin, Gilles Rock, Philippe Lagueux, Franz Ronellenfitsch, Max Gerhards, Lucien Hoffmann, and Thomas Udelhoven. "A Hyperspectral Thermal Infrared Imaging Instrument for Natural Resources Applications." Remote Sensing 4, no. 12 (December 14, 2012): 3995–4009. http://dx.doi.org/10.3390/rs4123995.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Diani, Marco, Matteo Moscadelli, and Giovanni Corsini. "Improved Alpha Residuals for Target Detection in Thermal Hyperspectral Imaging." IEEE Geoscience and Remote Sensing Letters 15, no. 5 (May 2018): 779–83. http://dx.doi.org/10.1109/lgrs.2018.2808372.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Gorin, Brian A. "New method to optimize atmospheric correction for hyperspectral thermal imaging." Optical Engineering 41, no. 9 (September 1, 2002): 2088. http://dx.doi.org/10.1117/1.1499498.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Öner, Bahar, James W. Pomeroy, and Martin Kuball. "Submicrometer Resolution Hyperspectral Quantum Rod Thermal Imaging of Microelectronic Devices." ACS Applied Electronic Materials 2, no. 1 (December 3, 2019): 93–102. http://dx.doi.org/10.1021/acsaelm.9b00575.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kastek, Mariusz, Krzysztof Firmanty, Benjamin Saute, Philippe Gagnon, Martin Lariviere-Bastien, and Daniel Pawelski. "Detection, Identification, and Quantification of SF6 Point-Source Emissions Using Hyper-Cam LW Airborne Platform." Pomiary Automatyka Robotyka 25, no. 3 (September 13, 2021): 37–41. http://dx.doi.org/10.14313/par_241/37.

Повний текст джерела
Анотація:
Detection, identification, and quantification of greenhouse gases is essential to ensure compliance with regulatory guidelines and mitigate damage associated with anthropogenic climate change. Passive infrared hyperspectral imaging technology is among the solutions that can detect, identify and quantify multiple greenhouse gases simultaneously. The Telops Hyper-Cam Airborne Platform is an established system for aerial thermal infrared hyperspectral measurements for gas survey applications. In support of the Hypercam, is developing a suite of hyperspectral imaging data processing algorithms that allow for gas detection, identification, and quantification in real-time. In the Fall of 2020, the Hyper-Cam-LW Airborne platform was flown above a validated SF6 gas release system to collect hyperspectral data for gas quantification analysis. This measurement campaign was performed to document performance of the Hyper-Cam gas quantification capabilities against known quantities of released gas.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Thermal hyperspectral imaging"

1

Polam, Anudeep. "Thermal and Draw Induced Crystallinity in Poly-L-Lactic Acid Fibers." Cleveland State University / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=csu1439843418.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Cubero-Castan, Manuel. "Etude du démélange en imagerie hyperspectrale infrarouge." Thesis, Grenoble, 2014. http://www.theses.fr/2014GRENT068/document.

Повний текст джерела
Анотація:
La télédétection en imagerie hyperspectrale infrarouge thermique est l'étude d'images en luminance, acquises depuis un avion ou un satellite dans le domaine spectral de l'infrarouge thermique. Ces images sont liées à l'émissivité et à la température, estimées par les méthodes de découplage température/émissivité (T/E), ainsi qu'à l'abondance, estimée par les méthodes de démélange, des matériaux présents dans la scène. Si les méthodes de découplage T/E ont été largement étudiées, les méthodes de démélange dans ce domaine spectral restent peu explorées : c'est l'objectif de cette thèse. Pour cela, nous avons mis en place trois stratégies de démélange. Dans un premier temps, le démélange est effectué sur les luminances. Cette stratégie donne globalement de bons résultats mais est relativement sensible aux variations spatiales de la température. La deuxième stratégie, démélangeant à partir des estimations d'émissivité des méthodes de découplage T/E, s'affranchit de cette variation spatiale mais donne des résultats plus bruités. Enfin, une méthode de démélange basée sur l'estimation conjointe de la température et des abondances a été élaborée. Cette méthode s'appelle Thermal Remote sensing Unmixing for Subpixel Temperature (TRUST) et donne de meilleurs résultats que la première stratégie tout en étant robuste aux variations spatiales de la température
Thermal hyperspectral remote sensing provides information about materials from the measured radiance image. It is achieved using temperature and emissivity separation (TES) methods, estimating the emissivity and the temperature of the materials, and using unmixing methods, estimating their abundances. TES methods have been well investigated while too few studies have been working on unmixing in thermal infrared domain : this is the objective of this PhD. Therefore, three strategies have been studied. First, the unmixing is applied on radiance. It achieves good results but depends on the spatial variation of temperature. Applying the unmixing on the emissivities, estimated using the TES methods, gets rid of the spatial variation of temperature but provides a noisy abundance estimation. Eventually, a new method called Thermal Remote sensing Unmixing for Subpixel Temperature (TRUST) is designed to jointly estimate the abundance and the temperature of materials within the pixels. It gives better results than the first strategy and is more robust to spatial variation of temperature
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Magdic, Matthew James. "Assessment of Soil Properties in Proximity to Abandoned Oil Wells usingRemote Sensing and Clay X-ray Analysis, Wood County, Ohio." Bowling Green State University / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1462537679.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Thermal hyperspectral imaging"

1

United States. National Aeronautics and Space Administration., ed. Planetary Hyperspectral Imager (PHI): PIDDP, final report. Danbury, CT: Hughes Danbury Optical Systems, 1996.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Wich, Serge A., and Lian Pin Koh. Sensors. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198787617.003.0003.

Повний текст джерела
Анотація:
The number of sensors that can be fitted and/or have been specifically designed to be fitted to drones is expanding rapidly. This chapter provides an overview of the various types of sensors used on drones for conservation research and monitoring, including RGB cameras, multispectral and hyperspectral cameras, and thermal imaging cameras. Increasing miniaturization means LiDAR and synthetic aperture radar (SAR) sensors can now also be fitted to drones, and they are also discussed briefly, as are a number of other types (e.g. acoustic and gas sensors) now being developed. Because most conservation researchers will start with a specific question and then explore which sensor or set of sensors will be suitable for their data collection, we approach the sensor issue from the application end. Some technical information on the sensors is provided as well as an overview of the various studies that they have been used for.
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Thermal hyperspectral imaging"

1

Holma, Hannu, Timo Hyvärinen, Antti-Jussi Mattila, and Ilkka Kormano. "Thermal hyperspectral chemical imaging." In SPIE Defense, Security, and Sensing, edited by Mark A. Druy and Richard A. Crocombe. SPIE, 2012. http://dx.doi.org/10.1117/12.919294.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kendig, Dustin, Kazuaki Yazawa, and Ali Shakouri. "Hyperspectral thermoreflectance imaging for power devices." In 2017 33rd Thermal Measurement, Modeling & Management Symposium (SEMI-THERM). IEEE, 2017. http://dx.doi.org/10.1109/semi-therm.2017.7896931.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Shimoni, M., and C. Perneel. "Dedicated classification method for thermal hyperspectral imaging." In IGARSS 2012 - 2012 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2012. http://dx.doi.org/10.1109/igarss.2012.6351275.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Gagnon, Marc-Andre, Pierre Tremblay, Simon Savary, Marc Duval, Philippe Lagueux, and Martin Chamberland. "Airborne Thermal Infrared Hyperspectral Imaging of Gases." In 2014 6th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS). IEEE, 2014. http://dx.doi.org/10.1109/whispers.2014.8077524.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Saute, Benjamin, Vince Morton, Jean-Philippe Gagnon, Philippe Lagueux, Martin Larivière-Bastien, and Martin Chamberland. "Next-generation thermal infrared hyperspectral imaging sensors." In Algorithms, Technologies, and Applications for Multispectral and Hyperspectral Imaging XXVIII, edited by David W. Messinger and Miguel Velez-Reyes. SPIE, 2022. http://dx.doi.org/10.1117/12.2619046.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Gagnon, Marc-André, Philippe Lagueux, Jean-Philippe Gagnon, Simon Savary, Pierre Tremblay, Vincent Farley, Éric Guyot, and Martin Chamberland. "Airborne thermal infrared hyperspectral imaging of buried objects." In SPIE Defense + Security, edited by Steven S. Bishop and Jason C. Isaacs. SPIE, 2015. http://dx.doi.org/10.1117/12.2177182.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Gagnon, Marc-André, Philippe Lagueux, Jean-Philippe Gagnon, Simon Savary, Pierre Tremblay, Vincent Farley, Éric Guyot, and Martin Chamberland. "Airborne thermal infrared hyperspectral imaging of buried objects." In SPIE Security + Defence, edited by Gary Kamerman, Ove Steinvall, Keith L. Lewis, and John D. Gonglewski. SPIE, 2015. http://dx.doi.org/10.1117/12.2195148.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Wang, Jianyu, Chunlai Li, Gang Lv, Liyin Yuan, Enguang Liu, Jian Jin, and Hongzhen Ji. "Development of practical thermal infrared hyperspectral imaging system." In SPIE Asia Pacific Remote Sensing, edited by Allen M. Larar, Makoto Suzuki, and Jianyu Wang. SPIE, 2014. http://dx.doi.org/10.1117/12.2068860.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kirkland, Laurel E., Kenneth C. Herr, Paul M. Adams, John McAfee, and John Salisbury. "Thermal infrared hyperspectral imaging from vehicle-carried instrumentation." In International Symposium on Optical Science and Technology, edited by Sylvia S. Shen. SPIE, 2002. http://dx.doi.org/10.1117/12.457555.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Wright, Robert, Miguel Nunes, Paul Lucey, Luke Flynn, Sarath Gunapala, David Ting, Sir Rafol, et al. "HYTI: thermal hyperspectral imaging from a CubeSat platform." In CubeSats and SmallSats for Remote Sensing III, edited by Charles D. Norton, Thomas S. Pagano, and Sachidananda R. Babu. SPIE, 2019. http://dx.doi.org/10.1117/12.2530821.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Thermal hyperspectral imaging"

1

Lee, W. S., Victor Alchanatis, and Asher Levi. Innovative yield mapping system using hyperspectral and thermal imaging for precision tree crop management. United States Department of Agriculture, January 2014. http://dx.doi.org/10.32747/2014.7598158.bard.

Повний текст джерела
Анотація:
Original objectives and revisions – The original overall objective was to develop, test and validate a prototype yield mapping system for unit area to increase yield and profit for tree crops. Specific objectives were: (1) to develop a yield mapping system for a static situation, using hyperspectral and thermal imaging independently, (2) to integrate hyperspectral and thermal imaging for improved yield estimation by combining thermal images with hyperspectral images to improve fruit detection, and (3) to expand the system to a mobile platform for a stop-measure- and-go situation. There were no major revisions in the overall objective, however, several revisions were made on the specific objectives. The revised specific objectives were: (1) to develop a yield mapping system for a static situation, using color and thermal imaging independently, (2) to integrate color and thermal imaging for improved yield estimation by combining thermal images with color images to improve fruit detection, and (3) to expand the system to an autonomous mobile platform for a continuous-measure situation. Background, major conclusions, solutions and achievements -- Yield mapping is considered as an initial step for applying precision agriculture technologies. Although many yield mapping systems have been developed for agronomic crops, it remains a difficult task for mapping yield of tree crops. In this project, an autonomous immature fruit yield mapping system was developed. The system could detect and count the number of fruit at early growth stages of citrus fruit so that farmers could apply site-specific management based on the maps. There were two sub-systems, a navigation system and an imaging system. Robot Operating System (ROS) was the backbone for developing the navigation system using an unmanned ground vehicle (UGV). An inertial measurement unit (IMU), wheel encoders and a GPS were integrated using an extended Kalman filter to provide reliable and accurate localization information. A LiDAR was added to support simultaneous localization and mapping (SLAM) algorithms. The color camera on a Microsoft Kinect was used to detect citrus trees and a new machine vision algorithm was developed to enable autonomous navigations in the citrus grove. A multimodal imaging system, which consisted of two color cameras and a thermal camera, was carried by the vehicle for video acquisitions. A novel image registration method was developed for combining color and thermal images and matching fruit in both images which achieved pixel-level accuracy. A new Color- Thermal Combined Probability (CTCP) algorithm was created to effectively fuse information from the color and thermal images to classify potential image regions into fruit and non-fruit classes. Algorithms were also developed to integrate image registration, information fusion and fruit classification and detection into a single step for real-time processing. The imaging system achieved a precision rate of 95.5% and a recall rate of 90.4% on immature green citrus fruit detection which was a great improvement compared to previous studies. Implications – The development of the immature green fruit yield mapping system will help farmers make early decisions for planning operations and marketing so high yield and profit can be achieved.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Van Benthem, Mark Hilary, Ryan W. Davis, James Bryce Ricken, Amy Jo Powell, and Michael Robert Keenan. Hyperspectral imaging of oil producing microalgae under thermal and nutritional stress. Office of Scientific and Technical Information (OSTI), September 2008. http://dx.doi.org/10.2172/946556.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії