Добірка наукової літератури з теми "Thermal conductivities"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Thermal conductivities".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Thermal conductivities"
Jang, Seok-Pil. "Thermal Conductivities of Nanofluids." Transactions of the Korean Society of Mechanical Engineers B 28, no. 8 (August 1, 2004): 968–75. http://dx.doi.org/10.3795/ksme-b.2004.28.8.968.
Повний текст джерелаWu, Guoqiang, Zhaowei Sun, Xianren Kong, and Dan Zhao. "Molecular dynamics simulation on the out‐of plane thermal conductivity of single‐crystal silicon thin films." Aircraft Engineering and Aerospace Technology 77, no. 6 (December 1, 2005): 475–77. http://dx.doi.org/10.1108/00022660510628462.
Повний текст джерелаHands, D., K. Lane, and R. P. Sheldon. "Thermal conductivities of amorphous polymers." Journal of Polymer Science: Polymer Symposia 42, no. 2 (March 8, 2007): 717–26. http://dx.doi.org/10.1002/polc.5070420223.
Повний текст джерелаDiGuilio, Ralph M., William L. McGregor, and Amyn S. Teja. "Thermal conductivities of the ethanolamines." Journal of Chemical & Engineering Data 37, no. 2 (April 1992): 242–45. http://dx.doi.org/10.1021/je00006a029.
Повний текст джерелаMaloka, I. E. "Thermal Conductivities of Liquid Mixtures." Petroleum Science and Technology 25, no. 8 (August 2007): 1065–72. http://dx.doi.org/10.1081/lft-200041074.
Повний текст джерелаLovell, M. A. "Thermal conductivities of marine sediments." Quarterly Journal of Engineering Geology and Hydrogeology 18, no. 4 (November 1985): 437–41. http://dx.doi.org/10.1144/gsl.qjeg.1985.018.04.14.
Повний текст джерелаMidttømme, K., E. Roaldset, and P. Aagaard. "Thermal conductivities of argillaceous sediments." Geological Society, London, Engineering Geology Special Publications 12, no. 1 (1997): 355–63. http://dx.doi.org/10.1144/gsl.eng.1997.012.01.33.
Повний текст джерелаRowley, Richard L., Gary L. White, and Mudau Chiu. "Ternary liquid mixture thermal conductivities." Chemical Engineering Science 43, no. 2 (1988): 361–71. http://dx.doi.org/10.1016/0009-2509(88)85049-8.
Повний текст джерелаTang, Boning, Chuanqing Zhu, Ming Xu, Tiange Chen, and Shengbiao Hu. "Thermal conductivity of sedimentary rocks in the Sichuan basin, Southwest China." Energy Exploration & Exploitation 37, no. 2 (October 29, 2018): 691–720. http://dx.doi.org/10.1177/0144598718804902.
Повний текст джерелаGoo, Nam Seo, and Kyeongsik Woo. "Measurement and Prediction of Effective Thermal Conductivity for Woven Fabric Composites." International Journal of Modern Physics B 17, no. 08n09 (April 10, 2003): 1808–13. http://dx.doi.org/10.1142/s0217979203019708.
Повний текст джерелаДисертації з теми "Thermal conductivities"
Yao, Yulong. "THERMAL CONDUCTIVITIES OF ORGANIC SEMICONDUCTORS." UKnowledge, 2017. http://uknowledge.uky.edu/physastron_etds/48.
Повний текст джерелаAgab, Ali Faisal. "Hydraulic and thermal conductivities of soils." Thesis, University of Newcastle Upon Tyne, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.417418.
Повний текст джерелаTang, Xiaoli Dong Jianjun. "Theoretical study of thermal properties and thermal conductivities of crystals." Auburn, Ala, 2008. http://repo.lib.auburn.edu/EtdRoot/2008/SUMMER/Physics/Dissertation/Tang_Xiaoli_9.pdf.
Повний текст джерелаRowan, Linda. "The measurement of the thermal conductivity of gaseous mixture using the transient hot wire technique." Thesis, University of Leeds, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.252676.
Повний текст джерелаZhang, Hantao S. M. Massachusetts Institute of Technology. "Computational investigation of the thermal conductivities and phonon properties of strontium cobalt oxides." Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/123356.
Повний текст джерелаThesis: S.M., Massachusetts Institute of Technology, Department of Nuclear Science and Engineering, 2019
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 87-91).
The thermal conductivities of electrochemically tuned strontium cobalt oxides (SCO) are significantly different among the perovskite SrCoO3 (P-SCO), the brownmillerite SrCoO2.5 (BM-SCO) and the hydrogenated HSrCoO2.5 (H-SCO)1. The underlying mechanism causing this large difference is still unclear. And phonon properties in SCO have not been investigated thoroughly or have some contradictive predictions. In this work, we have calculated the thermal conductivities in P-SCO and BM-SCO by applying molecular and lattice dynamics, and successfully reconstructed the large difference of the thermal conductivities, consistent with measurements. Furthermore, several phonon properties including heat capacities, group velocities, lifetimes and mean free paths have been calculated, and the key roles of local atomic environment and crystal symmetry in determining the thermal conductivities have been identified. We have also analyzed the impact of interfaces, isotropic strains and defects on thermal conductivities, predicted the neutron scattering intensity in P-SCO, and tested the accuracy and performance of molecular dynamics based on deep learning. Additionally, even though the calculations about the phonon properties in H-SCO are not complete, it still offers some inspirations about its thermal conductivity. The thorough investigations about the phonon properties and the mechanisms determining the thermal conductivities in SCO may benefit future research about tunable thermal conductivities in complex oxides.
by Hantao Zhang.
S.M.
S.M. Massachusetts Institute of Technology, Department of Nuclear Science and Engineering
Zuo, Yanjia. "Preparation of silica aerogels with improved mechanical properties and extremely low thermal conductivities through modified sol-gel process." Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/64600.
Повний текст джерелаCataloged from PDF version of thesis.
Includes bibliographical references (p. 90-96).
Reported silica aerogels have a thermal conductivity as low as 15 mW/mK. The fragility of silica aerogels, however, makes them impractical for structural applications. The purpose of the study is to improve the ductility of aerogels while retain the low thermal conductivity of silica aerogels. We have established a new synthesis route, a 3-step sol-gel processing method. The method provides better control of the formation of aerogel structures. The produced silica aerogels show much improved ductility compared to conventional methods in literatures. Furthermore, the synthesized silica aerogels have thermal conductivities as low as about 9 mW/mK, which is the lowest in all reported solids. The ultra low thermal conductivity can be explained with nano-scale structures for the silica aerogels, which have been characterized using advanced techniques including BET and SEM. We have further investigated and demonstrated the ability of enhancing mechanical properties of silica aerogels through structure modification using the proposed 3-step sol-gel processing method. The molecular-level synergism between silica particles/clusters and the doped functional materials inverts the relative host-guest roles in the produced aerogel composite, leading to new stronger and more robust low-density materials.
by Yanjia Zuo.
S.M.
Jäger, Tino [Verfasser]. "Thermoelectric properties of TiNiSn and Zr 0.5 Hf 0.5 NiSn thin films and superlattices with reduced thermal conductivities / Tino Jäger." Mainz : Universitätsbibliothek Mainz, 2014. http://d-nb.info/1046354167/34.
Повний текст джерелаGelaye, Ababu A. "UPSCALING OF A THERMAL EVOLUTION EXPERIMENT ON SHREDDED-TIRE MONOFILLS." University of Akron / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=akron1512762530668535.
Повний текст джерелаKasali, Suraju Olawale. "Thermal diodes based on phase-change materials." Thesis, Poitiers, 2021. http://www.theses.fr/2021POIT2254.
Повний текст джерелаThe thermal rectification of conductive and radiative thermal diodes based on phase-change materials, whose thermal conductivities and effective emissivities significant change within a narrow range of temperatures, is theoretically studied and optimized in different geometries. This thesis is divided into three parts. In the first part, we comparatively model the performance of a spherical and cylindrical conductive thermal diodes operating with vanadium dioxide (VO2) and non-phase-change materials, and derive analytical expressions for the heat flows, temperature profiles and optimal rectification factors for both diodes. Our results show that different diode geometries have a significant impact on the temperature profiles and heat flows, but less one on the rectification factors. We obtain maximum rectification factors of up to 20.8% and 20.7%, which are higher than the one predicted for a plane diode based on VO2. In addition, it is shown that higher rectification factors could be generated by using materials whose thermal conductivity contrast is higher than that of VO2. In the second part, on the other hand, we theoretically study the thermal rectification of a conductive thermal diode based on the combined effect of two phase-change materials. Herein, the idea is to generate rectification factors higher than that of a conductive thermal diode operating with a single phase-change material. This is achieved by deriving explicit expressions for the temperature profiles, heat fluxes and rectification factor. We obtain an optimal rectification factor of 60% with a temperature variation of 250 K spanning the metal-insulator transitions of VO2 and polyethylene. This enhancement of the rectification factor leads us to the third part of our work, where we model and optimize the thermal rectification of a plane, cylindrical and spherical radiative thermal diodes based on the utilization of two phase-change materials. We analyze the rectification factors of these three diodes and obtain the following optimal rectification factors of 82%, 86% and 90.5%, respectively. The spherical geometry is thus the best shape to optimize the rectification of radiative heat currents. In addition, potential rectification factors greater than the one predicted here can be realized by utilizing two phase-change materials with higher emissivities contrasts than the one proposed here. Our analytical and graphical results provide a useful guide for optimizing the rectification factors of conductive and radiative thermal diodes based on phase-change materials with different geometries
Bamford, Erik, Gustav Ek, Daniel Hedbom, Johan Nyman, Victor Petterson, Josefin Sjöberg, Ida Styffe, and Olivier Vizuete. "Quartzene – A promising thermal insulator : Studies of thermal conductivity’s dependence of density and compression of Quartzene® in the form of powder." Thesis, Uppsala universitet, Institutionen för teknikvetenskaper, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-228087.
Повний текст джерелаЧастини книг з теми "Thermal conductivities"
Torres-Rincon, Juan M. "Thermal and Electrical Conductivities." In Hadronic Transport Coefficients from Effective Field Theories, 75–89. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00425-9_5.
Повний текст джерелаMills, K. C., B. J. Monaghan, and B. J. Keene. "Thermal Conductivities of Liquid Metals." In Thermal Conductivity 23, 519–29. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003210719-54.
Повний текст джерелаMoore, J. P., F. J. Weaver, R. S. Graves, and D. L. McElroy. "The Thermal Conductivities of SrCl2 and SrF2 from 85 to 400 K." In Thermal Conductivity 18, 115–24. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4684-4916-7_12.
Повний текст джерелаReiss, H., and B. Ziegenbein. "Temperature-Dependent Extinction Coefficients and Solid Thermal Conductivities of Glass Fiber Insulations." In Thermal Conductivity 18, 413–24. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4684-4916-7_40.
Повний текст джерелаLan, Rui. "Thermal Conductivities of Ge–Sb–Te Alloys." In Thermophysical Properties and Measuring Technique of Ge-Sb-Te Alloys for Phase Change Memory, 45–69. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2217-8_3.
Повний текст джерелаHuang, Ji-Ping. "Coupling Theory for Temperature-Independent Thermal Conductivities: Thermal Correlated Self-Fixing." In Theoretical Thermotics, 119–33. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2301-4_11.
Повний текст джерелаSivakumar, R., K. Aoyagi, T. Watanabe, and T. Akiyama. "Thermal Conductivities of β-SiAlONs by Mechanically Activated Combustion Synthesis." In SiAlONs and Non-oxides, 139–40. Stafa: Trans Tech Publications Ltd., 2008. http://dx.doi.org/10.4028/3-908454-00-x.139.
Повний текст джерелаHafizovic, S., and O. Paul. "Temperature Dependent Thermal Conductivities of CMOS Layers by Micromachined Thermal van der Pauw Test Structures." In Transducers ’01 Eurosensors XV, 1370–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-59497-7_323.
Повний текст джерелаHuang, Ji-Ping. "Coupling Theory for Temperature-Dependent Thermal Conductivities: Nonlinearity Modulation and Enhancement." In Theoretical Thermotics, 135–47. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2301-4_12.
Повний текст джерелаSrivalli, G., G. Jamuna Rani, and V. Balakrishna Murthy. "Effect of Debond and Randomness on Thermal Conductivities of Hollow Fiber Composites." In Lecture Notes in Mechanical Engineering, 597–605. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-1307-7_68.
Повний текст джерелаТези доповідей конференцій з теми "Thermal conductivities"
Wang, Zhefu, and Richard B. Peterson. "Thermal Wave Based Measurement of Liquid Thermal Conductivities." In ASME 2008 Heat Transfer Summer Conference collocated with the Fluids Engineering, Energy Sustainability, and 3rd Energy Nanotechnology Conferences. ASMEDC, 2008. http://dx.doi.org/10.1115/ht2008-56418.
Повний текст джерелаILLKOVA, KSENIA, RADEK MUSALEK, and JAN MEDRICKY. "Measured and Predicted Thermal Conductivities for YSZ Layers: Application of Different Models." In Thermal Conductivity 33/Thermal Expansion 21. Lancaster, PA: DEStech Publications, Inc., 2019. http://dx.doi.org/10.12783/tc33-te21/30338.
Повний текст джерелаWang, Yingtao, Yuan Gao, Elham Easy, Eui-Hyeok Yang, Baoxing Xu, and Xian Zhang. "Thermal Conductivities and Interfacial Thermal Conductance of 2D WSe2." In 2020 IEEE 15th International Conference on Nano/Micro Engineered and Molecular System (NEMS). IEEE, 2020. http://dx.doi.org/10.1109/nems50311.2020.9265628.
Повний текст джерелаShi, Li, Qing Hao, Choongho Yu, Natalio Mingo, Xiangyang Kong, and Zhong Lin Wang. "Thermal Conductivities of Individual Tin Dioxide Nanobelts." In ASME 2004 Heat Transfer/Fluids Engineering Summer Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/ht-fed2004-56469.
Повний текст джерелаHartung, D., F. Gather, and P. J. Klar. "Comparison of different methods for measuring thermal conductivities." In 9TH EUROPEAN CONFERENCE ON THERMOELECTRICS: ECT2011. AIP, 2012. http://dx.doi.org/10.1063/1.4731576.
Повний текст джерелаZhang, Min, Jianhua Chen, Zhenhua Che, Jiahua Lu, Zhiyou Zhong, Le Yang, and Huizhong Zhao. "Determination of thermal conductivities of biological tissue protein." In 2010 3rd International Conference on Biomedical Engineering and Informatics (BMEI). IEEE, 2010. http://dx.doi.org/10.1109/bmei.2010.5639616.
Повний текст джерелаWang, Zuyuan, and Xiulin Ruan. "Uncertainties of Thermal Conductivities From Equilibrium Molecular Dynamics Simulations." In ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/imece2016-68083.
Повний текст джерелаZhang, Min, Zhenhua Che, Jiahua Lu, Jianhua Chen, Le Yang, Zhiyou Zhong, and Huizhong Zhao. "Prediction model of thermal conductivities of agricultural products postharvest." In 2010 3rd International Congress on Image and Signal Processing (CISP). IEEE, 2010. http://dx.doi.org/10.1109/cisp.2010.5646672.
Повний текст джерелаChena, Yunfei, Deyu Li, Juekuan Yang, Zhonghua Ni, and Jennifer R. Lukes. "Interface Effect on Lattice Thermal Conductivities of Superlattice Nanowires." In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-59149.
Повний текст джерелаChen, Yunfei, Deyu Li, Jennifer R. Lukes, and Zhonghua Ni. "Monte Carlo Simulation of Thermal Conductivities of Silicon Nanowires." In ASME 2005 Summer Heat Transfer Conference collocated with the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems. ASMEDC, 2005. http://dx.doi.org/10.1115/ht2005-72377.
Повний текст джерелаЗвіти організацій з теми "Thermal conductivities"
Henager, C. H. Jr, and W. T. Pawlewicz. Thermal conductivities of thin, sputtered optical films. Office of Scientific and Technical Information (OSTI), May 1991. http://dx.doi.org/10.2172/10108496.
Повний текст джерелаHenager, C. H. Jr, and W. T. Pawlewicz. Thermal conductivities of thin, sputtered optical films. Office of Scientific and Technical Information (OSTI), May 1991. http://dx.doi.org/10.2172/6109768.
Повний текст джерелаVan Woerkom, Linn, and Richard Freeman. The Measurement of Electrical and Thermal Conductivities in Warm Dense Matter. Office of Scientific and Technical Information (OSTI), May 2019. http://dx.doi.org/10.2172/1514487.
Повний текст джерелаMrochek, J. E., J. H. Wilson, and J. K. Johnson. Thermal conductivities of Wilsonville solvent and Wilsonville solvent/Illinois No. 6 coal slurry. Office of Scientific and Technical Information (OSTI), December 1985. http://dx.doi.org/10.2172/6200832.
Повний текст джерелаHan, L. S., and L. Glower. Directional Thermal Conductivities of Graphite/Epoxy Composites: 0/90 and 0/ + or - 45/90. Fort Belvoir, VA: Defense Technical Information Center, January 1985. http://dx.doi.org/10.21236/ada152209.
Повний текст джерелаSanchez, L. C., and M. L. Hudson. Determination of effective thermal conductivities for a full-scale mock-up of a 217-element breeder reactor fuel assembly subjected to normal shipping conditions. Office of Scientific and Technical Information (OSTI), December 1986. http://dx.doi.org/10.2172/7039593.
Повний текст джерелаYarbrough, D. W., R. K. Williams, and D. R. Shockley. Thermal conductivities, electrical resistivities, and Seebeck coefficients of YBa{sub 2}Cu{sub 3}O{sub 7{minus}x} superconductors from 80 to 300 K. Office of Scientific and Technical Information (OSTI), December 1993. http://dx.doi.org/10.2172/10111984.
Повний текст джерелаFriedman, Shmuel, Jon Wraith, and Dani Or. Geometrical Considerations and Interfacial Processes Affecting Electromagnetic Measurement of Soil Water Content by TDR and Remote Sensing Methods. United States Department of Agriculture, 2002. http://dx.doi.org/10.32747/2002.7580679.bard.
Повний текст джерела