Добірка наукової літератури з теми "Thérapie CAR-T"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Thérapie CAR-T".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Thérapie CAR-T"
Talarmin, C., M. Mebarki, Émilie Schwartz, A. Cras, I. Madelaine, and Jérôme Larghero. "De la biologie au circuit pharmaceutique des médicaments « cellules CAR-T »." Revue de biologie médicale 349, no. 4 (August 1, 2019): 17–25. https://doi.org/10.3917/rbm.349.0017.
Повний текст джерелаLarghero, Jérôme, Stéphanie Decoopman, and Philippe Menasché. "La bioproduction en thérapies cellulaires : le cas des CAR-T cells par la plateforme MEARY." Annales des Mines - Réalités industrielles Novembre 2023, no. 4 (November 9, 2023): 92–94. http://dx.doi.org/10.3917/rindu1.234.0092.
Повний текст джерелаAlcaraz-Serna, Ana, Raphaël Porret, Lionel Trueb, Camillo Ribi, Jörg Seebach, and Yannick D. Muller. "Thérapie cellulaire CAR-T dans le traitement des maladies auto-immunes." Revue Médicale Suisse 20, no. 868 (2024): 688–93. http://dx.doi.org/10.53738/revmed.2024.20.868.688.
Повний текст джерелаAlcantara, Marion. "Traitement d’hémopathies malignes par des CAR T-cells." Revue de biologie médicale 349, no. 4 (August 1, 2019): 27–32. https://doi.org/10.3917/rbm.349.0027.
Повний текст джерелаCatros, Véronique. "Les CAR-T cells, des cellules tueuses spécifiques d’antigènes tumoraux." médecine/sciences 35, no. 4 (April 2019): 316–26. http://dx.doi.org/10.1051/medsci/2019067.
Повний текст джерелаBrown, Kevin, Matthew D. Seftel, and Kevin A. Hay. "Innovations en immunothérapie anticancéreuse: thérapie par lymphocytes T porteurs de récepteurs antigéniques chimériques (cellules CAR-T)." Canadian Medical Association Journal 193, no. 42 (October 24, 2021): E1639—E1642. http://dx.doi.org/10.1503/cmaj.202907-f.
Повний текст джерелаCeppi, Francesco, Raffaele Renella, Manuel Diezi, Marc Ansari, Michel A. Duchosal, Caroline Arber, Lana Kandalaft, George Coukos, and Maja Beck-Popovic. "Progrès récents et orientations futures de la thérapie avec cellules CAR-T en oncologie pédiatrique." Revue Médicale Suisse 15, no. 632-33 (2019): 85–91. http://dx.doi.org/10.53738/revmed.2019.15.632-33.0085.
Повний текст джерелаDalle, Jean-Hugues, Etienne Baudoux, Sophie Caillat-Zucman, Fabienne Colledani, Maguy Pereira, Bénédicte Bruno, Stéphanie Nguyen, Marie Robin, Marie-Thérèse Rubio, and Jacques-Olivier Bay. "Le développement des cellules CAR-T et autre thérapie génique : tout n’est pas si simple." Bulletin du Cancer 107, no. 4 (April 2020): 408–9. http://dx.doi.org/10.1016/j.bulcan.2020.03.002.
Повний текст джерелаFusilier, Zoé, and Hermine Ferran. "Allier les capacités anti-tumorales des CAR-T cells aux propriétés des exosomes : une approche innovante pour combattre le cancer." médecine/sciences 36, no. 6-7 (June 2020): 655–58. http://dx.doi.org/10.1051/medsci/2020116.
Повний текст джерелаde Jorna, Romain, Isabelle Madelaine, Jérôme Larghero, and Miryam Mebarki. "Les médicaments de thérapie génique CAR-T cells : statuts réglementaires et circuits pharmaceutiques en Europe et en France." Bulletin du Cancer 108, no. 10 (October 2021): S162—S167. http://dx.doi.org/10.1016/j.bulcan.2021.05.004.
Повний текст джерелаДисертації з теми "Thérapie CAR-T"
Wang, Valentine. "Improving Allogeneic CAR-T cells : HLA class I KO Virus Specific T cells to limit GvHD and graft rejection." Electronic Thesis or Diss., Université de Lorraine, 2024. https://docnum.univ-lorraine.fr/ulprive/DDOC_T_2024_0235_WANG.pdf.
Повний текст джерелаCAR-T cell therapy have revolutionized cancer treatment by modifying a patient's T cells to target specific tumor antigens. This personalized approach has shown remarkable success in treating B-cell malignancies like leukemia and lymphoma. However, the process is costly and time-consuming, as it involves collecting and modifying the patient's own cells, which delays treatment. Moreover, some patients may not have sufficient or viable T cells due to prior treatments or advanced disease stages, limiting the availability of CAR-T therapies for all patients.To address these challenges, allogeneic CAR-T cells from healthy donors provide a faster and more scalable solution, reducing production time and costs. However, these off-the-shelf therapies face risks like graft-versus-host disease (GvHD), where donor cells might attack the patient's tissues. Our study explored combining CAR technology with Virus Specific T cells (VSTs), known for their antiviral and antitumor properties, to generate CAR-VSTs. These dual-specific CAR-VSTs present a promising alternative, especially for patients prone to both tumor relapse and viral reactivation.In our study, we generated CAR-Ts and CAR-VSTs from same donors obtaining 40.28%±9.30% and 35.96%±11.40% CD19.CAR expression on day 7 (N=3), respectively. In vitro, CAR-VSTs showed robust tumor clearance similar to CAR-Ts, achieving 74.13%±22.06% lysis of CD19+ tumor cells. In a murine lymphoma model, both CAR-VSTs and CAR-Ts demonstrated comparable antitumor efficacy, successfully controlling tumor growth and improving survival. Moreover, CAR-VSTs maintained their antiviral function, efficiently lysing 62.32%±13.84% virus-peptide-pulsed cells, similar to native VSTs. We assessed the alloreactivity of CAR-VSTs and found that they exhibited significantly lower CD3 proliferation rates (28.27%±21.64%) compared to CAR-T cells (88.3%±24.48%, p=0.0285, N=4), indicating a reduced risk of GvHD. CAR-VSTs' dual-specificity for both tumor and viral antigens makes them a powerful tool to address cancer relapse and viral complications in patients.In collaboration with the University of North Carolina, we explored strategies to delete HLA class I molecules in CAR-VSTs by targeting B-2-microglobulin (B2M), aiming to reduce immune rejection. In addition, we worked on overexpressing tolerogenic molecules such as HLA-E and HLA-G to prevent NK cell-mediated lysis. Our results showed an HLA-ABC expression of 15.1±14.6% (N=11) after CRISPR/Cas9 knockout, which indicates successful deletion, though further optimization is necessary to prevent NK-lysis by re-expressing HLA-E or HLA-G.In conclusion, generating HLA-E+ or G+/B2M-/CAR-VSTs offers a promising alternative for creating fully allogeneic cells. These modified CAR-VSTs retain their dual antiviral and antitumor functions, making them a promising candidate for "off-the-shelf" immunotherapies that could reduce the risks of immune rejection and graft-versus-host disease
Tremblay-Laganière, Camille. "Thérapie génique ciblant CD33 dans les cellules souches hématopoïétiques, une approche innovatrice pour le traitement de la leucémie myéloïde aiguë." Thèse, 2018. http://hdl.handle.net/1866/22328.
Повний текст джерелаТези доповідей конференцій з теми "Thérapie CAR-T"
Maizeray, S., H. Herry, G. Valette, and S. Boisramé. "Innovation dans la communication et la gestion du stress en chirurgie orale : méthode d’analyse ProcessCom®." In 66ème Congrès de la SFCO. Les Ulis, France: EDP Sciences, 2020. http://dx.doi.org/10.1051/sfco/20206602003.
Повний текст джерела