Дисертації з теми "THEORY OF SIGNED GRAPHS"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: THEORY OF SIGNED GRAPHS.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 дисертацій для дослідження на тему "THEORY OF SIGNED GRAPHS".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Bowlin, Garry. "Maximum frustration of bipartite signed graphs." Diss., Online access via UMI:, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Wang, Jue. "Algebraic structures of signed graphs /." View abstract or full-text, 2007. http://library.ust.hk/cgi/db/thesis.pl?MATH%202007%20WANG.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Sen, Sagnik. "A contribution to the theory of graph homomorphisms and colorings." Phd thesis, Bordeaux, 2014. http://tel.archives-ouvertes.fr/tel-00960893.

Повний текст джерела
Анотація:
Dans cette thèse, nous considérons des questions relatives aux homomorphismes de quatre types distincts de graphes : les graphes orientés, les graphes orientables, les graphes 2-arête colorés et les graphes signés. Pour chacun des ces quatre types, nous cherchons à déterminer le nombre chromatique, le nombre de clique relatif et le nombre de clique absolu pour différentes familles de graphes planaires : les graphes planaires extérieurs, les graphes planaires extérieurs de maille fixée, les graphes planaires et les graphes planaires de maille fixée. Nous étudions également les étiquetages "2-dipath" et "L(p,q)" des graphes orientés et considérons les catégories des graphes orientables et des graphes signés. Nous étudions enfin les différentes relations pouvant exister entre ces quatre types d'homomorphismes de graphes.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Sivaraman, Vaidyanathan. "Some Topics concerning Graphs, Signed Graphs and Matroids." The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1354645035.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Sun, Qiang. "A contribution to the theory of (signed) graph homomorphism bound and Hamiltonicity." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS109/document.

Повний текст джерела
Анотація:
Dans cette thèse, nous etudions deux principaux problèmes de la théorie des graphes: problème d’homomorphisme des graphes planaires (signés) et problème de cycle hamiltonien.Comme une extension du théorème des quatre couleurs, il est conjecturé([80], [41]) que chaque graphe signé cohérent planaire de déséquilibré-maille d+1(d>1) admet un homomorphisme à cube projective signé SPC(d) de dimension d. La question suivant étalés naturelle:Est-ce que SPC(d) une borne optimale de déséquilibré-maille d+1 pour tous les graphes signés cohérente planaire de déséquilibré-maille d+1?Au Chapitre 2, nous prouvons que: si (B,Ω) est un graphe signé cohérente dedéséquilibré-maille d qui borne la classe des graphes signés cohérents planaires de déséquilibré-maille d+1, puis |B| ≥2^{d−1}. Notre résultat montre que si la conjecture ci-dessus est vérifiée, alors le SPC(d) est une borne optimale à la fois en terme du nombre des sommets et du nombre de arêtes.Lorsque d=2k, le problème est équivalent aux problème des graphes:est-ce que PC(2k) une borne optimale de impair-maille 2k+1 pour P_{2k+1} (tous les graphes planaires de impair-maille au moins 2k+1)? Notez que les graphes K_4-mineur libres sont les graphes planaires, est PC(2k) aussi une borne optimale de impair-maille 2k+1 pour tous les graphes K_4-mineur libres de impair-maille 2k+1? La réponse est négative, dans[6], est donné une famille de graphes d’ordre O(k^2) que borne les graphes K_4-mineur libres de impair-maille 2k+1. Est-ce que la borne optimale? Au Chapitre 3, nous prouvons que: si B est un graphe de impair-maille 2k+1 qui borne tous les graphes K_4-mineur libres de impair-maille 2k+1, alors |B|≥(k+1)(k+2)/2. La conjonction de nos résultat et le résultat dans [6] montre que l’ordre O(k^2) est optimal. En outre, si PC(2k) borne P_{2k+1}, PC(2k) borne également P_{2r+1}(r>k).Cependant, dans ce cas, nous croyons qu’un sous-graphe propre de P(2k) serait suffisant à borner P_{2r+1}, alors quel est le sous-graphe optimal de PC2k) qui borne P_{2r+1}? Le premier cas non résolu est k=3 et r= 5. Dans ce cas, Naserasr [81] a conjecturé que le graphe Coxeter borne P_{11}. Au Chapitre 4, nous vérifions cette conjecture pour P_{17}.Au Chapitres 5, 6, nous étudions les problèmes du cycle hamiltonien. Dirac amontré en 1952 que chaque graphe d’ordre n est hamiltonien si tout sommet a un degré au moins n/2. Depuis, de nombreux résultats généralisant le théorème de Dirac sur les degré ont été obtenus. Une approche consiste à construire un cycle hamiltonien à partir d'un ensemble de sommets en contrôlant leur position sur le cycle. Dans cette thèse, nous considérons deux conjectures connexes. La première est la conjecture d'Enomoto: si G est un graphe d’ordre n≥3 et δ(G)≥n/2+1, pour toute paire de sommets x,y dans G, il y a un cycle hamiltonien C de G tel que dist_C(x,y)=n/2.Notez que l’ ́etat de degre de la conjecture de Enomoto est forte. Motivé par cette conjecture, il a prouvé, dans [32], qu’une paire de sommets peut être posé des distances pas plus de n/6 sur un cycle hamiltonien. Dans [33], les cas δ(G)≥(n+k)/2 sont considérés, il a prouvé qu’une paire de sommets à une distance entre 2 à k peut être posé sur un cycle hamiltonien. En outre, Faudree et Li ont proposé une conjecture plus générale: si G est un graphe d’ordre n≥3 et δ(G)≥n/2+1, pour toute paire de sommets x,y dans G et tout entier 2≤k≤n/2, il existe un cycle hamiltonien C de G tel que dist_C(x,y)=k. Utilisant de Regularity Lemma et Blow-up Lemma, au chapitre 5, nous donnons une preuve de la conjeture d'Enomoto conjecture pour les graphes suffisamment grand, et dans le chapitre 6, nous donnons une preuve de la conjecture de Faudree et Li pour les graphe suffisamment grand
In this thesis, we study two main problems in graph theory: homomorphism problem of planar (signed) graphs and Hamiltonian cycle problem.As an extension of the Four-Color Theorem, it is conjectured ([80],[41]) that every planar consistent signed graph of unbalanced-girth d+1(d>1) admits a homomorphism to signed projective cube SPC(d) of dimension d. It is naturally asked that:Is SPC(d) an optimal bound of unbalanced-girth d+1 for all planar consistent signed graphs of unbalanced-girth d+1?In Chapter 2, we prove that: if (B,Ω) is a consistent signed graph of unbalanced-girth d which bounds the class of consistent signed planar graphs of unbalanced-girth d, then |B|≥2^{d-1}. Furthermore,if no subgraph of (B,Ω) bounds the same class, δ(B)≥d, and therefore,|E(B)|≥d·2^{d-2}.Our result shows that if the conjecture above holds, then the SPC(d) is an optimal bound both in terms of number of vertices and number of edges.When d=2k, the problem is equivalent to the homomorphisms of graphs: isPC(2k) an optimal bound of odd-girth 2k+1 for P_{2k+1}(the class of all planar graphs of odd-girth at least 2k+1)? Note that K_4-minor free graphs are planar graphs, is PC(2k) also an optimal bound of odd-girth 2k+1 for all K_4-minor free graphs of odd-girth 2k+1 ? The answer is negative, in [6], a family of graphs of order O(k^2) bounding the K_4-minor free graphs of odd-girth 2k+1 were given. Is this an optimal bound? In Chapter 3, we prove that: if B is a graph of odd-girth 2k+1 which bounds all the K_4-minor free graphs of odd-girth 2k+1,then |B|≥(k+1)(k+2)/2. Our result together with the result in [6] shows that order O(k^2) is optimal.Furthermore, if PC(2k) bounds P_{2k+1},then PC(2k) also bounds P_{2r+1}(r>k). However, in this case we believe that a proper subgraph of PC(2k) would suffice to bound P_{2r+1}, then what’s the optimal subgraph of PC(2k) that bounds P_{2r+1}? The first case of this problem which is not studied is k=3 and r=5. For this case, Naserasr [81] conjectured that the Coxeter graph bounds P_{11} . Supporting this conjecture, in Chapter 4, we prove that the Coxeter graph bounds P_{17}.In Chapter 5,6, we study the Hamiltonian cycle problems. Dirac showed in 1952that every graph of order n is Hamiltonian if any vertex is of degree at least n/2. This result started a new approach to develop sufficient conditions on degrees for a graph to be Hamiltonian. Many results have been obtained in generalization of Dirac’s theorem. In the results to strengthen Dirac’s theorem, there is an interesting research area: to control the placement of a set of vertices on a Hamiltonian cycle such that thesevertices have some certain distances among them on the Hamiltonian cycle.In this thesis, we consider two related conjectures, one is given by Enomoto: if G is a graph of order n≥3, and δ(G)≥n/2+1, then for any pair of vertices x, y in G, there is a Hamiltonian cycle C of G such that dist_C(x, y)=n/2. Motivated by this conjecture, it is proved,in [32],that a pair of vertices are located at distances no more than n/6 on a Hamiltonian cycle. In [33], the cases δ(G) ≥(n+k)/2 are considered, it is proved that a pair of vertices can be located at any given distance from 2 to k on a Hamiltonian cycle. Moreover, Faudree and Li proposed a more general conjecture: if G is a graph of order n≥3, and δ(G)≥n/2+1, then for any pair of vertices x, y in G andany integer 2≤k≤n/2, there is a Hamiltonian cycle C of G such that dist_C(x, y) = k. Using Regularity Lemma and Blow-up Lemma, in Chapter 5, we give a proof ofEnomoto’s conjecture for graphs of sufficiently large order, and in Chapter 6, we give a proof of Faudree and Li’s conjecture for graphs of sufficiently large order
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Kotzagiannidis, Madeleine S. "From spline wavelet to sampling theory on circulant graphs and beyond : conceiving sparsity in graph signal processing." Thesis, Imperial College London, 2017. http://hdl.handle.net/10044/1/56614.

Повний текст джерела
Анотація:
Graph Signal Processing (GSP), as the field concerned with the extension of classical signal processing concepts to the graph domain, is still at the beginning on the path toward providing a generalized theory of signal processing. As such, this thesis aspires to conceive the theory of sparse representations on graphs by traversing the cornerstones of wavelet and sampling theory on graphs. Beginning with the novel topic of graph spline wavelet theory, we introduce families of spline and e-spline wavelets, and associated filterbanks on circulant graphs, which lever- age an inherent vanishing moment property of circulant graph Laplacian matrices (and their parameterized generalizations), for the reproduction and annihilation of (exponen- tial) polynomial signals. Further, these families are shown to provide a stepping stone to generalized graph wavelet designs with adaptive (annihilation) properties. Circulant graphs, which serve as building blocks, facilitate intuitively equivalent signal processing concepts and operations, such that insights can be leveraged for and extended to more complex scenarios, including arbitrary undirected graphs, time-varying graphs, as well as associated signals with space- and time-variant properties, all the while retaining the focus on inducing sparse representations. Further, we shift from sparsity-inducing to sparsity-leveraging theory and present a novel sampling and graph coarsening framework for (wavelet-)sparse graph signals, inspired by Finite Rate of Innovation (FRI) theory and directly building upon (graph) spline wavelet theory. At its core, the introduced Graph-FRI-framework states that any K-sparse signal residing on the vertices of a circulant graph can be sampled and perfectly reconstructed from its dimensionality-reduced graph spectral representation of minimum size 2K, while the structure of an associated coarsened graph is simultaneously inferred. Extensions to arbitrary graphs can be enforced via suitable approximation schemes. Eventually, gained insights are unified in a graph-based image approximation framework which further leverages graph partitioning and re-labelling techniques for a maximally sparse graph wavelet representation.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Lucas, Claire. "Trois essais sur les relations entre les invariants structuraux des graphes et le spectre du Laplacien sans signe." Phd thesis, Ecole Polytechnique X, 2013. http://pastel.archives-ouvertes.fr/pastel-00956183.

Повний текст джерела
Анотація:
Le spectre du Laplacien sans signe a fait l'objet de beaucoup d'attention dans la communauté scientifique ces dernières années. La principale raison est l'intuition, basée sur une étude des petits graphes et sur des propriétés valides pour des graphes de toutes tailles, que plus de graphes sont déterminés par le spectre de cette matrice que par celui de la matrice d'adjacence et du Laplacien. Les travaux présentés dans cette thèse ont apporté des éléments nouveaux sur les informations contenues dans le spectre cette matrice. D'une part, on y présente des relations entre les invariants de structure et une valeur propre du Laplacien sans signe. D'autre part, on présente des familles de graphes extrêmes pour deux de ses valeurs propres, avec et sans contraintes additionnelles sur la forme de graphe. Il se trouve que ceux-ci sont très similaires à ceux obtenus dans les mêmes conditions avec les valeurs propres de la matrice d'adjacence. Cela aboutit à la définition de familles de graphes pour lesquelles, le spectre du Laplacien sans signe ou une de ses valeurs propres, le nombre de sommets et un invariant de structure suffisent à déterminer le graphe. Ces résultats, par leur similitude avec ceux de la littérature viennent confirmer l'idée que le Laplacien sans signe détermine probablement aussi bien les graphes que la matrice d'adjacence.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Mutar, Mohammed A. "Hamiltonicity in Bidirected Signed Graphs and Ramsey Signed Numbers." Wright State University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=wright1513377549200572.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kang, Yingli [Verfasser]. "Coloring of signed graphs / Yingli Kang." Paderborn : Universitätsbibliothek, 2018. http://d-nb.info/1153824663/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Omeroglu, Nurettin Burak. "K-way Partitioning Of Signed Bipartite Graphs." Master's thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12614817/index.pdf.

Повний текст джерела
Анотація:
Clustering is the process in which data is differentiated, classified according to some criteria. As a result of partitioning process, data is grouped into clusters for specific purpose. In a social network, clustering of people is one of the most popular problems. Therefore, we mainly concentrated on finding an efficient algorithm for this problem. In our study, data is made up of two types of entities (e.g., people, groups vs. political issues, religious beliefs) and distinct from most previous works, signed weighted bipartite graphs are used to model relations among them. For the partitioning criterion, we use the strength of the opinions between the entities. Our main intention is to partition the data into k-clusters so that entities within clusters represent strong relationship. One such example from a political domain is the opinion of people on issues. Using the signed weights on the edges, these bipartite graphs can be partitioned into two or more clusters. In political domain, a cluster represents strong relationship among a group of people and a group of issues. After partitioning, each cluster in the result set contains like-minded people and advocated issues. Our work introduces a general mechanism for k-way partitioning of signed bipartite graphs. One of the great advantages of our thesis is that it does not require any preliminary information about the structure of the input dataset. The idea has been illustrated on real and randomly generated data and promising results have been shown.
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Schubert, Michael [Verfasser]. "Circular flows on signed graphs / Michael Schubert." Paderborn : Universitätsbibliothek, 2018. http://d-nb.info/1161798684/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Le, Falher Géraud. "Characterizing edges in signed and vector-valued graphs." Thesis, Lille 1, 2018. http://www.theses.fr/2018LIL1I013/document.

Повний текст джерела
Анотація:
Nous proposons des méthodes pour caractériser efficacement les arêtes au sein de réseaux complexes. Dans les graphes simples, les nœuds sont liés par une sémantique unique, tels deux utilisateurs amis dans un réseau social. De plus, ces arêtes sont guidées par la similarité entre les nœuds (homophilie). Ainsi, les membres deviennent amis à cause de caractéristiques communes. En revanche, les réseaux complexes sont des graphes où chaque arête possède une sémantique parmi k possibles. Ces arêtes sont de plus basées à la fois sur une homophilie et une hétérophilie partielle. Cette information supplémentaire permet une analyse plus fine de graphes issus d’applications réelles. Cependant, elle peut être coûteuse à acquérir, ou même être indisponible. Nous abordons donc le problème d’inférer la sémantique des arêtes. Nous considérons d'abord les graphes dont les arêtes ont deux sémantiques opposées, et où seul une fraction des étiquettes est visibles. Ces «graphes signés» sont une façon élégante de représenter des interactions polarisées. Nous proposons deux biais d’apprentissage, adaptés respectivement aux graphes signés dirigés ou non, et plusieurs algorithmes utilisant la topologie du graphe pour résoudre un problème de classification binaire. Ensuite, nous traitons les graphes avec k > 2 sémantiques possibles. Dans ce cas, nous ne recevons pas d’étiquette d’arêtes, mais plutôt un vecteur de caractéristiques pour chaque nœud. Face à ce problème non supervisé, nous concevons un critère de qualité exprimant dans quelle mesure une k-partition des arêtes et k vecteurs sémantiques expliquent les arêtes observées. Nous optimisons ce critère sous forme vectorielle et matricielle
We develop methods to efficiently and accurately characterize edges in complex networks. In simple graphs, nodes are connected by a single semantic. For instance, two users are friends in a social networks. Moreover, those connections are typically driven by node similarity, according to homophily. In the previous example, users become friends because of common features. By contrast, complex networks are graphs where every connection has one semantic among k possible ones. Those connections are moreover based on both partial homophily and heterophily of their endpoints. This additional information enable finer analysis of real world graphs. However, it can be expensive to acquire, or is sometimes not known beforehand. We address the problems of inferring edge semantics in various settings. First, we consider graphs where edges have two opposite semantics, and where we observe the label of some edges. These so-called signed graphs are a common way to represent polarized interactions. We propose two learning biases suited for directed and undirected signed graphs respectively. This leads us to design several algorithms leveraging the graph topology to solve a binary classification problem that we call edge sign prediction. Second, we consider graphs with k > 2 available semantics for edge. In that case of multilayer graphs, we are not provided with any edge label, but instead are given one feature vector for each node. Faced with such an unsupervised problem, we devise a quality criterion expressing how well an edge k-partition and k semantical vectors explains the observed connections. We optimize this goodness of explanation criterion in vectorial and matricial forms
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Papalamprou, Konstantinos. "Structural and decomposition results for binet matrices, bidirected graphs and signed-graphic matroids." Thesis, London School of Economics and Political Science (University of London), 2009. http://etheses.lse.ac.uk/2193/.

Повний текст джерела
Анотація:
In this thesis we deal with binet matrices and the class of signed-graphic matroids which is the class of matroids represented over R by binet matrices. The thesis is divided in three parts. In the first part, we provide the vast majority of the notions used throughout the thesis and some results regarding the class of binet matrices. In this part, we focus on the class of linear and integer programming problems in which the constraint matrix is binet and provide methods and algorithms which solve these problems efficiently. The main new result is that the existing combinatorial methods can not solve the {0, 1/2}-separation problem (special case of the well known separation problem) with integral binet matrices. The main new results of the whole thesis are provided in the next two parts. In the second part, we present a polynomial time algorithm to construct a bidirected graph for any totally unimodular matrix B by finding node-edge incidence matrices Q and S such that QB = S. Seymour's famous decomposition theorem for regular matroids states that any totally unimodular matrix can be constructed through a series of composition operations called k-sums starting from network matrices and their transposes and two compact representation matrices B1 and B2 of a certain ten element matroid. Given that B1 and B2 are binet matrices, we examine the k-sums of network and binet matrices (k = 1,2, 3). It is shown that the k-sum of a network and a binet matrix is a binet matrix, but binet matrices are not closed under this operation for k = 2, 3. A new class of matrices is introduced, the so-called tour matrices, which generalises network and totally unimodular matrices. For any such matrix there exists a bidirected graph such that the columns represent a collection of closed tours in the graph. It is shown that tour matrices are closed under 1-, 2- and 3-sum as well as under elementary operations on their rows and columns. Given the constructive proofs of the above results regarding the k-sum operations and existing recognition algorithms for network and binet matrices, an algorithm is presented which constructs a bidirected graph for any totally unimodular matrix. In the third part of this thesis we deal with the frame matroid of a signed graph, or simply the signed-graphic matroid. Several new results are provided in this last part of the thesis. Specifically, given a signed graph, we provide methods to find representation matrices of the associated signed-graphic matroid over GF(2), GF(3) and R. Furthermore, two new matroid recognition algorithms are presented in this last part. The first one determines whether a binary matroid is signed-graphic or not and the second one determines whether a (general) matroid is binary signed-graphic or not. Finally, one of the most important new results of this thesis is the decomposition theory for the class of binary signed-graphic matroids which is provided in the last chapter. In order to achieve this result, we employed Tutte's theory of bridges. The proposed decomposition differs from previous decomposition results on matroids that have appeared in the literature in the sense that it is not based on k-sums, but rather on the operation of deletion of a cocircuit. Specifically, it is shown that certain minors resulting from the deletion of a cocircuit of a binary matroid will be graphic matroids except for one that will be signed-graphic if and only if the matroid is signed-graphic. The decomposition theory for binary signed-graphic matroids is a joint work with G. Appa and L. Pitsoulis.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Lamb, John D. "Theory of bond graphs." Thesis, University of Nottingham, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.239418.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Borinsky, Michael. "Graphs in perturbation theory." Doctoral thesis, Humboldt-Universität zu Berlin, 2018. http://dx.doi.org/10.18452/19201.

Повний текст джерела
Анотація:
Inhalt dieser Arbeit ist eine Erweiterung der Hopfalgebrastruktur der Feynmangraphen und Renormierung von Connes und Kreimer. Zusätzlich wird eine Struktur auf faktoriell wachsenden Potenzreihen eingeführt, die deren asymptotisches Wachstum beschreibt und die kompatibel mit der Hopfalgebrastruktur ist. Die Hopfalgebrastruktur auf Graphen erlaubt die explizite Enumeration von Graphen mit Einschränkungen in Bezug auf die erlaubten Untergraphen. Im Fall der Feynmangraphen wird zusätzlich eine algebraische Verbandstruktur eingeführt, die weitere eindeutige Eigenschaften von physikalischen Quantenfeldtheorien aufdeckt. Der Differenzialring der faktoriell divergenten Potenzreihen erlaubt es asymptotische Resultate von implizit definierten Potenzreihen mit verschwindendem Konvergenzradius zu extrahieren. In Kombination ergeben beide Strukturen eine algebraische Formulierung großer Graphen mit Einschränkungen für die erlaubten Untergraphen. Diese Strukturen sind motiviert von null-dimensionaler Quantenfeldtheorie and werden zur Analyse ebendieser benutzt. Als reine Anwendung der Hopfalgebrastruktur wird eine hopfalgebraische Formulierung der Legendretransformation in Quantenfeldtheorien formuliert. Der Differenzialring der faktoriell divergenten Potenzreihen wird dazu benutzt zwei asymptotische Enumerationsprobleme zu lösen: Die asymptotische Anzahl der verbundenen Chorddiagramme und die asymptotische Anzahl der simplen Permutationen. Für beide asymptotischen Lösungen werden vollständige asymptotische Entwicklungen in Form von geschlossenen Erzeugendenfunktionen berechnet. Kombiniert werden beide Strukturen zur Anwendung an null-dimensionaler Quantenfeldtheorie. Zahlreiche Größen werden in den null-dimensionalen Varianten von phi^3, phi^4, QED, quenched QED and Yukawatheorie mit ihren kompletten asymptotischen Entwicklungen berechnet.
This thesis provides an extension of the work of Dirk Kreimer and Alain Connes on the Hopf algebra structure of Feynman graphs and renormalization to general graphs. Additionally, an algebraic structure of the asymptotics of formal power series with factorial growth, which is compatible with the Hopf algebraic structure, will be introduced. The Hopf algebraic structure on graphs permits the explicit enumeration of graphs with constraints for the allowed subgraphs. In the case of Feynman diagrams a lattice structure, which will be introduced, exposes additional unique properties for physical quantum field theories. The differential ring of factorially divergent power series allows the extraction of asymptotic results of implicitly defined power series with vanishing radius of convergence. Together both structures provide an algebraic formulation of large graphs with constraints on the allowed subgraphs. These structures are motivated by and used to analyze renormalized zero-dimensional quantum field theory at high orders in perturbation theory. As a pure application of the Hopf algebra structure, an Hopf algebraic interpretation of the Legendre transformation in quantum field theory is given. The differential ring of factorially divergent power series will be used to solve two asymptotic counting problems in combinatorics: The asymptotic number of connected chord diagrams and the number of simple permutations. For both asymptotic solutions, all order asymptotic expansions are provided as generating functions in closed form. Both structures are combined in an application to zero-dimensional quantum field theory. Various quantities are explicitly given asymptotically in the zero-dimensional version of phi^3, phi^4, QED, quenched QED and Yukawa theory with their all order asymptotic expansions.
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Badaoui, Mohamad. "G-graphs and Expander graphs." Thesis, Normandie, 2018. http://www.theses.fr/2018NORMC207/document.

Повний текст джерела
Анотація:
L’utilisation de l’algèbre pour résoudre des problèmes de graphes a conduit au développement de trois branches : théorie spectrale des graphes, géométrie et combinatoire des groupes et études des invariants de graphes. La notion de graphe d’expansions (invariant de graphes) est relativement récente, elle a été développée afin d’étudier la robustesse des réseaux de télécommunication. Il s’avère que la construction de familles infinies de graphes expanseurs est un problème difficile. Cette thèse traite principalement de la construction de nouvelles familles de tels graphes. Les graphes expanseurs possèdent des nombreuses applications en informatique, notamment dans la construction de certains algorithmes, en théorie de la complexité, sur les marches aléatoires (random walk), etc. En informatique théorique, ils sont utilisés pour construire des familles de codes correcteurs d’erreur. Comme nous l’avons déjà vu les familles d’expanseurs sont difficiles à construire. La plupart des constructions s'appuient sur des techniques algébriques complexes, principalement en utilisant des graphes de Cayley et des produit Zig-Zag. Dans cette thèse, nous présentons une nouvelle méthode de construction de familles infinies d’expanseurs en utilisant les G-graphes. Ceux-ci sont en quelque sorte une généralisation des graphes de Cayley. Plusieurs nouvelles familles infinies d’expanseurs sont construites, notamment la première famille d’expanseurs irréguliers
Applying algebraic and combinatorics techniques to solve graph problems leads to the birthof algebraic and combinatorial graph theory. This thesis deals mainly with a crossroads questbetween the two theories, that is, the problem of constructing infinite families of expandergraphs.From a combinatorial point of view, expander graphs are sparse graphs that have strongconnectivity properties. Expanders constructions have found extensive applications in bothpure and applied mathematics. Although expanders exist in great abundance, yet their explicitconstructions, which are very desirable for applications, are in general a hard task. Mostconstructions use deep algebraic and combinatorial approaches. Following the huge amountof research published in this direction, mainly through Cayley graphs and the Zig-Zagproduct, we choose to investigate this problem from a new perspective; namely by usingG-graphs theory and spectral hypergraph theory as well as some other techniques. G-graphsare like Cayley graphs defined from groups, but they correspond to an alternative construction.The reason that stands behind our choice is first a notable identifiable link between thesetwo classes of graphs that we prove. This relation is employed significantly to get many newresults. Another reason is the general form of G-graphs, that gives us the intuition that theymust have in many cases such as the relatively high connectivity property.The adopted methodology in this thesis leads to the identification of various approaches forconstructing an infinite family of expander graphs. The effectiveness of our techniques isillustrated by presenting new infinite expander families of Cayley and G-graphs on certaingroups. Also, since expanders stand in no single stem of graph theory, this brings us toinvestigate several closely related threads from a new angle. For instance, we obtain newresults concerning the computation of spectra of certain Cayley and G-graphs, and theconstruction of several new infinite classes of integral and Hamiltonian Cayley graphs
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Mighton, John 1957. "Knot theory on bipartite graphs." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp03/NQ49930.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Backman, Spencer Christopher Foster. "Combinatorial divisor theory for graphs." Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/51908.

Повний текст джерела
Анотація:
Chip-firing is a deceptively simple game played on the vertices of a graph, which was independently discovered in probability theory, poset theory, graph theory, and statistical physics. In recent years, chip-firing has been employed in the development of a theory of divisors on graphs analogous to the classical theory for Riemann surfaces. In particular, Baker and Norin were able to use this set up to prove a combinatorial Riemann-Roch formula, whose classical counterpart is one of the cornerstones of modern algebraic geometry. It is now understood that the relationship between divisor theory for graphs and algebraic curves goes beyond pure analogy, and the primary operation for making this connection precise is tropicalization, a certain type of degeneration which allows us to treat graphs as “combinatorial shadows” of curves. The development of this tropical relationship between graphs and algebraic curves has allowed for beautiful applications of chip-firing to both algebraic geometry and number theory. In this thesis we continue the combinatorial development of divisor theory for graphs. In Chapter 1 we give an overview of the history of chip-firing and its connections to algebraic geometry. In Chapter 2 we describe a reinterpretation of chip-firing in the language of partial graph orientations and apply this setup to give a new proof of the Riemann-Roch formula. We introduce and investigate transfinite chip-firing, and chip-firing with respect to open covers in Chapters 3 and 4 respectively. Chapter 5 represents joint work with Arash Asadi, where we investigate Riemann-Roch theory for directed graphs and arithmetical graphs, the latter of which are a special class of balanced vertex weighted graphs arising naturally in arithmetic geometry.
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Hoang, Chinh T. "Perfect graphs." Thesis, McGill University, 1985. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=74011.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Möller, Rögnvaldur G. "Groups acting on graphs." Thesis, University of Oxford, 1991. http://ora.ox.ac.uk/objects/uuid:2dacfc67-56c4-4541-b52e-10199a13dcc2.

Повний текст джерела
Анотація:
In the first part of this thesis we investigate the automorphism groups of regular trees. In the second part we look at the action of the automorphism group of a locally finite graph on the ends of the graph. The two part are not directly related but trees play a fundamental role in both parts. Let Tn be the regular tree of valency n. Put G := Aut(Tn) and let G0 be the subgroup of G that is generated by the stabilisers of points. The main results of the first part are : Theorem 4.1 Suppose 3 ≤ n < N0 and α ϵ Tn. Then Gα (the stabiliser of α in G) contains 22N0 subgroups of index less than 22N0. Theorem 4.2 Suppose 3 ≤ n < N0 and H ≤ G with G : H |< 2N0. Then H = G or H = G0 or H fixes a point or H stabilises an edge. Theorem 4.3 Let n = N0 and H ≤ G with | G : H |< 2N0. Then H = G or H = G0 or there is a finite subtree ϕ of Tn such that G(ϕ) ≤ H ≤ G{ϕ}. These are proved by finding a concrete description of the stabilisers of points in G, using wreath products, and also by making use of methods and results of Dixon, Neumann and Thomas [Bull. Lond. Math. Soc. 18, 580-586]. It is also shown how one is able to get short proofs of three earlier results about the automorphism groups of regular trees by using the methods used to prove these theorems. In their book Groups acting on graphs, Warren Dicks and M. J. Dunwoody [Cambridge University Press, 1989] developed a powerful technique to construct trees from graphs. An end of a graph is an equivalence class of half-lines in the graph, with two half-lines, L1 and L2, being equivalent if and only if we can find the third half-line that contains infinitely many vertices of both L1 and L2. In the second part we point out how one can, by using this technique, reduce questions about ends of graphs to questions about trees. This allows us both to prove several new results and also to give simple proofs of some known results concerning fixed points of group actions on the ends of a locally finite graph (see Chapter 10). An example of a new result is the classification of locally finite graphs with infinitely many ends, whose automorphism group acts transitively on the set of ends (Theorem 11.1).
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Jagger, Christopher Neil. "Partitions of graphs." Thesis, University of Cambridge, 1995. https://www.repository.cam.ac.uk/handle/1810/251583.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Al-Doujan, Fawwaz Awwad. "Spectra of graphs." Thesis, University of East Anglia, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.306195.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Chan, Wai Hong. "Bandwidth problems of graphs." HKBU Institutional Repository, 1996. http://repository.hkbu.edu.hk/etd_ra/62.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Macon, Lisa Fischer. "Almost regular graphs and edge-face colorings of plane graphs." Orlando, Fla. : University of Central Florida, 2009. http://purl.fcla.edu/fcla/etd/CFE0002507.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Pearce, Geoffrey. "Transitive decompositions of graphs." University of Western Australia. School of Mathematics and Statistics, 2008. http://theses.library.uwa.edu.au/adt-WU2008.0087.

Повний текст джерела
Анотація:
A transitive decomposition of a graph is a partition of the arc set such that there exists a group of automorphisms of the graph which preserves and acts transitively on the partition. This turns out to be a very broad idea, with several striking connections with other areas of mathematics. In this thesis we first develop some general theory of transitive decompositions, and in particular we illustrate some of the more interesting connections with certain combinatorial and geometric structures. We then give complete, or nearly complete, structural characterisations of certain classes of transitive decompositions preserved by a group with a rank 3 action on vertices (such a group has exactly two orbits on ordered pairs of distinct vertices). The main classes of rank 3 groups we study (namely those which are imprimitive, or primitive of grid type) are derived in some way from 2-transitive groups (that is, groups which are transitive on ordered pairs of distinct vertices), and the results we achieve make use of the classification by Sibley in 2004 of transitive decompositions preserved by a 2-transitive group.
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Wojciechowska, Iwona. "Broadcasting in grid graphs." Morgantown, W. Va. : [West Virginia University Libraries], 1999. http://etd.wvu.edu/templates/showETD.cfm?recnum=877.

Повний текст джерела
Анотація:
Thesis (Ph. D.)--West Virginia University, 1999.
Title from document title page. Document formatted into pages; contains vii, 69 p. : ill. Includes abstract. Includes bibliographical references (p. 67-69).
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Montgomery, Bruce Lee. "Dynamic coloring of graphs." Morgantown, W. Va. : [West Virginia University Libraries], 2001. http://etd.wvu.edu/templates/showETD.cfm?recnum=2109.

Повний текст джерела
Анотація:
Thesis (Ph. D.)--West Virginia University, 2001.
Title from document title page. Document formatted into pages; contains viii, 52 p. : ill. Vita. Includes abstract. Includes bibliographical references (p. 51).
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Bessy, Stéphane. "Some problems in graph theory and graphs algorithmic theory." Habilitation à diriger des recherches, Université Montpellier II - Sciences et Techniques du Languedoc, 2012. http://tel.archives-ouvertes.fr/tel-00806716.

Повний текст джерела
Анотація:
This document is a long abstract of my research work, concerning graph theory and algorithms on graphs. It summarizes some results, gives ideas of the proof for some of them and presents the context of the different topics together with some interesting open questions connected to them The first part precises the notations used in the rest of the paper; the second part deals with some problems on cycles in digraphs; the third part is an overview of two graph coloring problems and one problem on structures in colored graphs; finally the fourth part focus on some results in algorithmic graph theory, mainly in parametrized complexity.
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Srinivasa, Christopher. "Graph Theory for the Discovery of Non-Parametric Audio Objects." Thèse, Université d'Ottawa / University of Ottawa, 2011. http://hdl.handle.net/10393/20126.

Повний текст джерела
Анотація:
A novel framework based on cluster co-occurrence and graph theory for structure discovery is applied to audio to find new types of audio objects which enable the compression of an input signal. These new objects differ from those found in current object coding schemes as their shape is not restricted by any a priori psychoacoustic knowledge. The framework is novel from an application perspective, as it marks the first time that graph theory is applied to audio, and with regards to theoretical developments, as it involves new extensions to the areas of unsupervised learning algorithms and frequent subgraph mining methods. Tests are performed using a corpus of audio files spanning a wide range of sounds. Results show that the framework discovers new types of audio objects which yield average respective overall and relative compression gains of 15.90% and 23.53% while maintaining a very good average audio quality with imperceptible changes.
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Thwaites, Peter. "Chain event graphs : theory and application." Thesis, University of Warwick, 2008. http://wrap.warwick.ac.uk/49194/.

Повний текст джерела
Анотація:
This thesis is concerned with the Graphical model known as the Chain Event Graph (CEG) [1][60][61], and develops the theory that appears in the currently published papers on this work. Results derived are analogous to those produced for Bayesian Networks (BNs), and I show that for asymmetric problems the CEG is generally superior to the BN both as a representation of the problem and as an analytical tool. The CEG is designed to embody the conditional independence structure of problems whose state spaces are asymmetric and do not admit a natural Product Space structure. In this they differ from BNs and other structures with variable-based topologies. Chapter 1 details researchers' attempts to adapt BNs to model such problems, and outlines the advantages CEGs have over these adaptations. Chapter 2 describes the construction of CEGs. In chapter 3I create a semantic structure for the reading of CEGs, and derive results expressible in the form of context-specific conditional independence statements, that allow us to delve much more deeply into the independence structure of a problem than we can do with BNs. In chapter 4I develop algorithms for the updating of a CEG following observation of an event, analogous to the Local Message Passing algorithms used with BNs. These are more efficient than the BN-based algorithms when used with asymmetric problems. Chapter 5 develops the theory of Causal manipulation of CEGs, and introduces the singular manipulation, a class of interventions containing the set of interventions possible with BNs. I produce Back Door and Front Door Theorems analogous to those of Pearl [42], but more flexible as they allow asymmetric manipulations of asymmetric problems. The ideas and results of chapters 2 to 5 are summarised in chapter 6.
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Wagner, Peter. "The Ramsey theory of multicoloured graphs." Thesis, University of Cambridge, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.614225.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Jonsson, Jakob. "Simplicial complexes of graphs /." Berlin [u.a.] : Springer, 2008. http://dx.doi.org/10.1007/978-3-540-75858-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Williams, Trevor K. "Combinatorial Games on Graphs." DigitalCommons@USU, 2017. https://digitalcommons.usu.edu/etd/6502.

Повний текст джерела
Анотація:
Combinatorial games are intriguing and have a tendency to engross students and lead them into a serious study of mathematics. The engaging nature of games is the basis for this thesis. Two combinatorial games along with some educational tools were developed in the pursuit of the solution of these games. The game of Nim is at least centuries old, possibly originating in China, but noted in the 16th century in European countries. It consists of several stacks of tokens, and two players alternate taking one or more tokens from one of the stacks, and the player who cannot make a move loses. The formal and intense study of Nim culminated in the celebrated Sprague-Grundy Theorem, which is now one of the centerpieces in the theory of impartial combinatorial games. We study a variation on Nim, played on a graph. Graph Nim, for which the theory of Sprague-Grundy does not provide a clear strategy, was originally developed at the University of Colorado Denver. Graph Nim was first played on graphs of three vertices. The winning strategy, and losing position, of three vertex Graph Nim has been discovered, but we will expand the game to four vertices and develop the winning strategies for four vertex Graph Nim. Graph Theory is a markedly visual field of mathematics. It is extremely useful for graph theorists and students to visualize the graphs they are studying. There exists software to visualize and analyze graphs, such as SAGE, but it is often extremely difficult to learn how use such programs. The tools in GeoGebra make pretty graphs, but there is no automated way to make a graph or analyze a graph that has been built. Fortunately GeoGebra allows the use of JavaScript in the creation of buttons which allow us to build useful Graph Theory tools in GeoGebra. We will discuss two applets we have created that can be used to help students learn some of the basics of Graph Theory. The game of thrones is a two-player impartial combinatorial game played on an oriented complete graph (or tournament) named after the popular fantasy book and TV series. The game of thrones relies on a special type of vertex called a king. A king is a vertex, k, in a tournament, T, which for all x in T either k beats x or there exists a vertex y such that k beats y and y beats x. Players take turns removing vertices from a given tournament until there is only one king left in the resulting tournament. The winning player is the one which makes the final move. We develop a winning position and classify those tournaments that are optimal for the first or second-moving player.
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Wang, Jiaxin. "Various pushing methods on grid graphs." Morgantown, W. Va. : [West Virginia University Libraries], 1999. http://etd.wvu.edu/templates/showETD.cfm?recnum=839.

Повний текст джерела
Анотація:
Thesis (M.S.)--West Virginia University, 1999.
Title from document title page. Document formatted into pages; contains v, 39 p. : ill. (some col.) Includes abstract. Includes bibliographical references (p. 39).
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Hunt, D'Hania J. "Constructing higher-order de Bruijn graphs." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2002. http://library.nps.navy.mil/uhtbin/hyperion-image/02Jun%5FHunt.pdf.

Повний текст джерела
Анотація:
Thesis (M.S. in Applied Mathematics)--Naval Postgraduate School, June 2002.
Thesis advisor(s): Harold Fredricksen, Craig W. Rasmussen. Includes bibliographical references (p. 45-46). Also available online.
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Meagher, Karen. "Covering arrays on graphs: Qualitative independence graphs and extremal set partition theory." Thesis, University of Ottawa (Canada), 2005. http://hdl.handle.net/10393/29234.

Повний текст джерела
Анотація:
There has been a good deal of research on covering arrays over the last 20 years. Most of this work has focused on constructions, applications and generalizations of covering arrays. The main focus of this thesis is a generalization of covering arrays, covering arrays on graphs. The original motivation for this generalization was to improve applications of covering arrays to testing systems and networks, but this extension also gives us new ways to study covering arrays. Two vectors v, w in Znk are qualitatively independent if for all ordered pairs (a, b) ∈ Zk x Zk there is a position i in the vectors where ( a, b) = (vi, w i). A covering array is an array with the property that any pair of rows are qualitatively independent. A covering array on a graph is an array with a row for each vertex of the graph with the property that any two rows which correspond to adjacent vertices are qualitatively independent. A covering array on the complete graph is a covering array. A covering array is optimal if it has the minimum number of columns among covering arrays with the same number of rows. The addition of a graph structure to covering arrays makes it possible to use methods from graph theory to study these designs. In this thesis, we define a family of graphs called the qualitative independence graphs . A graph has a covering array, with given parameters, if and only if there is a homomorphism from the graph to a particular qualitative independence graph. Cliques in qualitative independence graphs relate to covering arrays and independent sets are connected to intersecting partition systems. It is known that the exact size of an optimal binary covering array can be determined using Sperner's Theorem and the Erdős-Ko-Rado Theorem. In this thesis, we find good bounds on the size of an optimal binary covering array on a graph. In addition, we determine both the chromatic number and a core of the binary qualitative independence graphs. Since the rows of general covering arrays correspond to set partitions, we give extensions of Sperner's Theorem and the Erdős-Ko-Rado Theorem to set-partition systems. These results are part of a general framework to study extremal partition systems. The core of the binary qualitative independence graphs can be generalized to a subgraph of a general qualitative independence graph called the uniform qualitative independence graph. Cliques in the uniform qualitative independence graphs relate to balanced covering arrays. Using these graphs, we find bounds on the size of a balanced covering array. We give the spectra for several of these graphs and conjecture that they are graphs in an association scheme. We also give a new construction for covering arrays which yields many new upper bounds on the size of optimal covering arrays.
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Song, Zengmin. "Cycles and coloring in graphs." HKBU Institutional Repository, 2001. http://repository.hkbu.edu.hk/etd_ra/285.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Ngô, Van Chan. "Formal verification of a synchronous data-flow compiler : from Signal to C." Phd thesis, Université Rennes 1, 2014. http://tel.archives-ouvertes.fr/tel-01067477.

Повний текст джерела
Анотація:
Synchronous languages such as Signal, Lustre and Esterel are dedicated to designing safety-critical systems. Their compilers are large and complicated programs that may be incorrect in some contexts, which might produce silently bad compiled code when compiling source programs. The bad compiled code can invalidate the safety properties that are guaranteed on the source programs by applying formal methods. Adopting the translation validation approach, this thesis aims at formally proving the correctness of the highly optimizing and industrial Signal compiler. The correctness proof represents both source program and compiled code in a common semantic framework, then formalizes a relation between the source program and its compiled code to express that the semantics of the source program are preserved in the compiled code.
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Hill, Alan. "Self-Dual Graphs." Thesis, University of Waterloo, 2002. http://hdl.handle.net/10012/1014.

Повний текст джерела
Анотація:
The study of self-duality has attracted some attention over the past decade. A good deal of research in that time has been done on constructing and classifying all self-dual graphs and in particular polyhedra. We will give an overview of the recent research in the first two chapters. In the third chapter, we will show the necessary condition that a self-complementary self-dual graph have n ≡ 0, 1 (mod 8) vertices and we will review White's infinite class (the Paley graphs, for which n ≡ 1 (mod 8)). Finally, we will construct a new infinite class of self-complementary self-dual graphs for which n ≡ 0 (mod 8).
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Olariu, Stephan. "Results on perfect graphs." Thesis, McGill University, 1986. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=73997.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Hearn, John. "Kolmogorov Complexity of Graphs." Scholarship @ Claremont, 2006. https://scholarship.claremont.edu/hmc_theses/182.

Повний текст джерела
Анотація:
Kolmogorov complexity is a theory based on the premise that the complexity of a binary string can be measured by its compressibility; that is, a string’s complexity is the length of the shortest program that produces that string. We explore applications of this measure to graph theory.
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Ferra, Gomes de Almeida Girão António José. "Extremal and structural problems of graphs." Thesis, University of Cambridge, 2019. https://www.repository.cam.ac.uk/handle/1810/285427.

Повний текст джерела
Анотація:
In this dissertation, we are interested in studying several parameters of graphs and understanding their extreme values. We begin in Chapter~$2$ with a question on edge colouring. When can a partial proper edge colouring of a graph of maximum degree $\Delta$ be extended to a proper colouring of the entire graph using an `optimal' set of colours? Albertson and Moore conjectured this is always possible provided no two precoloured edges are within distance $2$. The main result of Chapter~$2$ comes close to proving this conjecture. Moreover, in Chapter~$3$, we completely answer the previous question for the class of planar graphs. Next, in Chapter~$4$, we investigate some Ramsey theoretical problems. We determine exactly what minimum degree a graph $G$ must have to guarantee that, for any two-colouring of $E(G)$, we can partition $V(G)$ into two parts where each part induces a connected monochromatic subgraph. This completely resolves a conjecture of Bal and Debiasio. We also prove a `covering' version of this result. Finally, we study another variant of these problems which deals with coverings of a graph by monochromatic components of distinct colours. The following saturation problem proposed by Barrus, Ferrara, Vandenbussche, and Wenger is considered in Chapter~$5$. Given a graph $H$ and a set of colours $\{1,2,\ldots,t\}$ (for some integer $t\geq |E(H)|$), we define $sat_{t}(n, R(H))$ to be the minimum number of $t$-coloured edges in a graph on $n$ vertices which does not contain a rainbow copy of $H$ but the addition of any non-edge in any colour from $\{1,2,\ldots,t\}$ creates such a copy. We prove several results concerning these extremal numbers. In particular, we determine the correct order of $sat_{t}(n, R(H))$, as a function of $n$, for every connected graph $H$ of minimum degree greater than $1$ and for every integer $t\geq e(H)$. In Chapter~$6$, we consider the following question: under what conditions does a Hamiltonian graph on $n$ vertices possess a second cycle of length at least $n-o(n)$? We prove that the `weak' assumption of a minimum degree greater or equal to $3$ guarantees the existence of such a long cycle. We solve two problems related to majority colouring in Chapter~$7$. This topic was recently studied by Kreutzer, Oum, Seymour, van der Zypen and Wood. They raised the problem of determining, for a natural number $k$, the smallest positive integer $m = m(k)$ such that every digraph can be coloured with $m$ colours, where each vertex has the same colour as at most a proportion of $\frac{1}{k}$ of its out-neighbours. Our main theorem states that $m(k) \in \{2k-1, 2k\}$. We study the following problem, raised by Caro and Yuster, in Chapter~$8$. Does every graph $G$ contain a `large' induced subgraph $H$ which has $k$ vertices of degree exactly $\Delta(H)$? We answer in the affirmative an approximate version of this question. Indeed, we prove that, for every $k$, there exists $g(k)$ such that any $n$ vertex graph $G$ with maximum degree $\Delta$ contains an induced subgraph $H$ with at least $n-g(k)\sqrt{\Delta}$ vertices such that $V(H)$ contains at least $k$ vertices of the same degree $d \ge \Delta(H)-g(k)$. This result is sharp up to the order of $g(k)$. %Subsequently, we investigate a concept called $\textit{path-pairability}$. A graph is said to be path-pairable if for any pairing of its vertices there exist a collection of edge-disjoint paths routing the the vertices of each pair. A question we are concerned here asks whether every planar path pairable graph on $n$ vertices must possess a vertex of degree linear in $n$. Indeed, we answer this question in the affirmative. We also sketch a proof resolving an analogous question for graphs embeddable on surfaces of bounded genus. Finally, in Chapter~$9$, we move on to examine $k$-linked tournaments. A tournament $T$ is said to be $k$-linked if for any two disjoint sets of vertices $\{x_1,\ldots ,x_k\}$ and $\{y_1,\dots,y_k\}$ there are directed vertex disjoint paths $P_1,\dots, P_k$ such that $P_i$ joins $x_i$ to $y_i$ for $i = 1,\ldots, k$. We prove that any $4k$ strongly-connected tournament with sufficiently large minimum out-degree is $k$-linked. This result comes close to proving a conjecture of Pokrovskiy.
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Heckman, Christopher Carl. "Independent sets in bounded degree graphs." Diss., Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/29163.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Lo, Allan. "Cliques in graphs." Thesis, University of Cambridge, 2010. https://www.repository.cam.ac.uk/handle/1810/237438.

Повний текст джерела
Анотація:
The main focus of this thesis is to evaluate .k_r(n,\delta)., the minimal number of $r$-cliques in graphs with $n$ vertices and minimum degree~$\delta$. A fundamental result in Graph Theory states that a triangle-free graph of order $n$ has at most $n 2/4$ edges. Hence, a triangle-free graph has minimum degree at most $n/2$, so if $k_3(n,\delta) =0$ then $\delta \le n/2$. For $n/2 \leq \delta \leq 4n/5$, I have evaluated $k_r(n,\delta)$ and determined the structures of the extremal graphs. For $\delta \ge 4n/5$, I give a conjecture on $k_r(n,\delta)$, as well as the structures of these extremal graphs. Moreover, I have proved various partial results that support this conjecture. Let $k_r �(n, \delta)$ be the analogous version of $k_r(n,\delta)$ for regular graphs. Notice that there exist $n$ and $\delta$ such that $k_r(n, \delta) =0$ but $k_r �(n, \delta) >0$. For example, a theorem of Andr{\'a}sfai, Erd{\H}s and S{\'o}s states that any triangle-free graph of order $n$ with minimum degree greater than $2n/5$ must be bipartite. Hence $k_3(n, \lfloor n/2 \rfloor) =0$ but $k_3 �(n, \lfloor n/2 \rfloor) >0$ for $n$ odd. I have evaluated the exact value $k_3 �(n, \delta)$ for $\delta$ between $2n/5+12 \sqrt{n}/5$ and $n/2$ and determined the structure of these extremal graphs. At the end of the thesis, I investigate a question in Ramsey Theory. The Ramsey number $R_k(G)$ of a graph $G$ is the minimum number $N$, such that any edge colouring of $K_N$ with $k$ colours contains a monochromatic copy of $G$. The constrained Ramsey number $f(G,T)$ of two graphs $G$ and $T$ is the minimum number $N$ such that any edge colouring of $K_N$ with any number of colours contains a monochromatic copy of $G$ or a rainbow copy of $T$. It turns out that these two quantities are closely related when $T$ is a matching. Namely, for almost all graphs $G$, $f(G,tK_2) =R_{t-1}(G)$ for $t \geq 2$.
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Norine, Serguei. "Matching structure and Pfaffian orientations of graphs." Diss., Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/7232.

Повний текст джерела
Анотація:
The first result of this thesis is a generation theorem for bricks. A brick is a 3-connected graph such that the graph obtained from it by deleting any two distinct vertices has a perfect matching. The importance of bricks stems from the fact that they are building blocks of a decomposition procedure of Kotzig, and Lovasz and Plummer. We prove that every brick except for the Petersen graph can be generated from K_4 or the prism by repeatedly applying certain operations in such a way that all the intermediate graphs are bricks. We use this theorem to prove an exact upper bound on the number of edges in a minimal brick with given number of vertices and to prove that every minimal brick has at least three vertices of degree three. The second half of the thesis is devoted to an investigation of graphs that admit Pfaffian orientations. We prove that a graph admits a Pfaffian orientation if and only if it can be drawn in the plane in such a way that every perfect matching crosses itself even number of times. Using similar techniques, we give a new proof of a theorem of Kleitman on the parity of crossings and develop a new approach to Turan's problem of estimating crossing number of complete bipartite graphs. We further extend our methods to study k-Pfaffian graphs and generalize a theorem by Gallucio, Loebl and Tessler. Finally, we relate Pfaffian orientations and signs of edge-colorings and prove a conjecture of Goddyn that every k-edge-colorable k-regular Pfaffian graph is k-list-edge-colorable. This generalizes a theorem of Ellingham and Goddyn for planar graphs.
Стилі APA, Harvard, Vancouver, ISO та ін.
46

White, M. D. "Cycles in edge-coloured graphs and subgraphs of random graphs." Thesis, University of Oxford, 2011. http://ora.ox.ac.uk/objects/uuid:95ef351e-acb1-442c-adf5-970487e30a4d.

Повний текст джерела
Анотація:
This thesis will study a variety of problems in graph theory. Initially, the focus will be on finding minimal degree conditions which guarantee the existence of various subgraphs. These subgraphs will all be formed of cycles, and this area of work will fall broadly into two main categories. First to be considered are cycles in edge-coloured graphs and, in particular, two questions of Li, Nikiforov and Schelp. It will be shown that a 2-edge-coloured graph with minimal degree at least 3n/4 either is isomorphic to the complete 4-partite graph with classes of order n/4, or contains monochromatic cycles of all lengths between 4 and n/2 (rounded up). This answers a conjecture of Li, Nikiforov and Schelp. Attention will then turn to the length of the longest monochromatic cycle in a 2-edge-coloured graph with minimal degree at least cn. In particular, a lower bound for this quantity will be proved which is asymptotically best possible. The next chapter of the thesis then shows that a hamiltonian graph with minimal degree at least (5-sqrt7)n/6 contains a 2-factor with two components. The thesis then concludes with a chapter about X_H, which is the number of copies of a graph H in the random graph G(n,p). In particular, it will be shown that, for a connected graph H, the value of X_H modulo k is approximately uniformly distributed, provided that k is not too large a function of n.
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Ali, Seema. "Colouring generalized Kneser graphs and homotopy theory." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape15/PQDD_0014/MQ34938.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Dickson, James Odziemiec. "An Introduction to Ramsey Theory on Graphs." Thesis, Virginia Tech, 2011. http://hdl.handle.net/10919/32873.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Brody, Justin. "On the model theory of random graphs." College Park, Md. : University of Maryland, 2009. http://hdl.handle.net/1903/9291.

Повний текст джерела
Анотація:
Thesis (Ph.D.) -- University of Maryland, College Park, 2009.
Thesis research directed by: Dept. of Mathematics. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Montgomery, Richard Harford. "Minors and spanning trees in graphs." Thesis, University of Cambridge, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.709278.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії