Добірка наукової літератури з теми "Théories des équations intégrales"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Théories des équations intégrales".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Théories des équations intégrales"
Appell, Jürgen, and Espedito de Pascale. "Theoremes de Bornage Pour L'Operateur de Nemyckii Dans Les Espaces Ideaux." Canadian Journal of Mathematics 38, no. 6 (December 1, 1986): 1338–55. http://dx.doi.org/10.4153/cjm-1986-068-3.
Повний текст джерелаLederer, Guy, Marc Bonnet, and Habibou M. Maitournam. "Modélisation par équations intégrales du frottement sur un demi-espace élasto-plastique." Revue Européenne des Éléments Finis 7, no. 1-3 (January 1998): 131–47. http://dx.doi.org/10.1080/12506559.1998.11690470.
Повний текст джерелаCOSTE, O., J. C. PATRAT, and R. HENRY. "APPLICATION DES ÉQUATIONS INTÉGRALES D'HELMHOLTZ À L'OPTIMISATION D'UNE SONDE INTENSIMÉTRIQUE 3D SPHÉRIQUE." Le Journal de Physique IV 02, no. C1 (April 1992): C1–669—C1–672. http://dx.doi.org/10.1051/jp4:19921145.
Повний текст джерелаDesprés, Bruno. "Fonctionnelle quadratique et équations intégrales pour les problèmes d'onde harmonique en domaine extérieur." ESAIM: Mathematical Modelling and Numerical Analysis 31, no. 6 (1997): 679–732. http://dx.doi.org/10.1051/m2an/1997310606791.
Повний текст джерелаChristiansen, Snorre Harald, and Jean-Claude Nédélec. "Des préconditionneurs pour la résolution numérique des équations intégrales de frontière de l'acoustique." Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 330, no. 7 (April 2000): 617–22. http://dx.doi.org/10.1016/s0764-4442(00)00225-1.
Повний текст джерелаChristiansen, Snorre Harald, and Jean-Claude Nédélec. "Des préconditionneurs pour la résolution numérique des équations intégrales de frontière de l'électromagnétisme." Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 331, no. 9 (November 2000): 733–38. http://dx.doi.org/10.1016/s0764-4442(00)01717-1.
Повний текст джерелаBERTHON, A., and J. C. HOUDEBINE. "DIFFUSION DES CORPS À SYMÉTRIE DE RÉVOLUTION PAR LA MÉTHODE DES ÉQUATIONS INTÉGRALES." Le Journal de Physique Colloques 51, no. C3 (September 1990): C3–101—C3–110. http://dx.doi.org/10.1051/jphyscol:1990311.
Повний текст джерелаBoulon, M., P. Garnica, and M. Eissautier. "Simulation numérique 3D du frottement sol-inclusion en chambre d'étalonnage par équations intégrales aux frontières." Revue Française de Géotechnique, no. 73 (1995): 35–52. http://dx.doi.org/10.1051/geotech/1995073035.
Повний текст джерелаFries, P. H., and M. Cosnard. "Résolution des équations intégrales des fluides à potentiels intermoléculaires anisotropes par l'algorithme Général de Minimisation du RESte." Journal de Physique 48, no. 5 (1987): 723–31. http://dx.doi.org/10.1051/jphys:01987004805072300.
Повний текст джерелаCasale, Guy, Lucia Di Vizio, and Jean-Pierre Ramis. "Volume à la mémoire de Hiroshi Umemura: “Équations de Painlevé et théories de Galois différentielles”." Annales de la Faculté des sciences de Toulouse : Mathématiques 29, no. 5 (April 12, 2021): i—v. http://dx.doi.org/10.5802/afst.1654.
Повний текст джерелаДисертації з теми "Théories des équations intégrales"
Wax, Jean-François. "Détermination de la structure des métaux liquides : comparaison entre théories analytiques, simulation numérique et expérience pour les alcalins." Metz, 1994. http://docnum.univ-lorraine.fr/public/UPV-M/Theses/1994/Wax.Jean_Francois.SMZ9444.pdf.
Повний текст джерелаPhysics of the structure of liquid metals boasts about a double diversity. Firstly, numerous potentials exist to describe the interactions between particles. Secondly, a large number of approaches have been proposed to deduce the structure from the effective potential. In this work, we study the structure of liquid alkali metals. It is developed around two ideas, attributing a central role to molecular dynamics results. In a first part, the quality of the potential implemented is discussed through a comparison between experimental and simulation results. We used Shaw's model potential and both the Vashishta-Singwi and the Ichimaru-Utsumi local field corrections. It appears that this ab initio potential describes correctly the structure of each alkali metal, including lithium. Molecular dynamic's results seem quite insensitive to the choice of the dielectric function. This confirms the predominant role played by short range forces in determining the structure. The second idea, this study is built on, is an evaluation of different methods available for the description of the structure. By comparison with molecular dynamics, qualities and defaults of both perturbation schemes (ORPA-WCA, ORPA-JA) and integral equations (SMSA) are discussed. In the cases of Na, K, Rb and Cs, these methods produce results near simulation ones. However, the SMSA equation does not show the characteristic drawbacks of perturbation methods. Lithium is particular since any of these analytical methods achieves in matching, even approximately, simulation results. The reasons are not clearly understood. Screening influences S(o) and we underline that its value depends on the way long range interactions are taken into account
Allouch, Chafik. "Approximation par des quasi-interpolants splines et applications aux équations intégrales." Rennes 1, 2011. http://www.theses.fr/2011REN1S059.
Повний текст джерелаIn a linear integral equation of second kind (Fredhom), the kernel function k is continuous on D, or may have algebraic or logarithmic singularities. The aim of this study is the numerical approximation of the solution u by using methods which reduce the problem to solving a system of linear equations. The work presented in this thesis aims on the one hand, to resume existing numerical lmethods in the literature by using spline quasi-interpolants and on the other hand, to develop new superconvergent collocation methods based on interpolants at Gauss points. To highlight our approach, we compare it with other analogous methods and enrich it by numerical tests and illustrative figures
Roturier, Benoît. "Hybridation de formulations différentielles, intégrales et asymptotiques en électromagnétisme." Toulouse, INPT, 1995. http://www.theses.fr/1995INPT107H.
Повний текст джерелаTahrichi, Mohamed. "Formules de quadrature basées sur des quasi-interpolants splines et applications aux équations intégrales." Rennes 1, 2011. http://www.theses.fr/2011REN1S060.
Повний текст джерелаWe are concerned with studying and applying quadrature formulas based on discrete spline quasi-interpolants. Indeed, we have studied, analyzed and constructed new quadrature formulas based on these operators. Then, we applied these formulas to the numerical solution of Fredholm integral equations of the second kind by Nyström method. In order to improve the convergence of this method, we introduced a new method called a superconvergent Nyström method. This latter method is based on quasi-interpolants and the convergence order of its iterated version is twice that of the Nyström method. We extend the Nyström method to the case when the kernel function in the Fredholm integral equation has algebraic or logarithmic singularities. Thus, we solve this equation using a product integration method based on quasi-interpolants and we also solve the associated eigenvalue problem with the help of a change of variables. We also discuss in this thesis one of the most basic problems in geometric modelling : to fit a smooth curve through a sequence of points in Rd, by using quasi-interpolating splines. Finally, we generate and study new cubature formulas based on spline quasi-interpolants in the space of quadratic Powell-Sabin splines on nonuniform triangulations of a polygonal domain in R²
Jakse, Noël. "Contribution à l'étude de la structure et de la thermodynamique des métaux liquides par la théorie des équations intégrales." Metz, 1993. http://docnum.univ-lorraine.fr/public/UPV-M/Theses/1993/Jakse.Noel.SMZ9330.pdf.
Повний текст джерелаNowadays, the integral equation theory is one of the most powerful semi-analytic methods to obtain the pair correlation function of a liquid. A detailed study of self-consistent integral equations gives rise to a numerical procedure suitable for liquid metals. Once the effective pair potentiel is derived on the basis of the pseudopotential theory, the structure and thermodynamical properties of alkali metals as well as of the 3D transition metal series are obtained. The use of some recent electron-ion interaction models leads to results in good agreement with experimental data. When performing the isothermal compressibility calculations of the metals under study, it appears that the pair potential deerivatives with respect to density can be neglected. Therefore, the scheme employed here successfully might be extented to alloys as well as be applied to the inverse problem. It is also shown that the nature of the pair potential changes gradually from metallic to non-metallic state when the critical point is approached along the liquid-vapour coexistence curve
Guebbai, Hamza. "Approximation de problèmes fonctionnels : pseudospectre d'un opérateur différentiel et équations intégrales faiblement singulières." Phd thesis, Université Jean Monnet - Saint-Etienne, 2011. http://tel.archives-ouvertes.fr/tel-00693249.
Повний текст джерелаDaquin, Priscillia. "Méthodes quasi-optimales pour la résolution des équations intégrales de frontière en électromagnétisme." Phd thesis, Toulouse, INPT, 2017. http://oatao.univ-toulouse.fr/19291/1/DAQUIN_Priscillia.pdf.
Повний текст джерелаWargnier, Hervé. "Étude des structures fissurées par la méthode des équations intégrales : développement d'un code de calcul." Toulouse, ENSAE, 1990. http://www.theses.fr/1990ESAE0007.
Повний текст джерелаDemaldent, Edouard. "Etude de schémas de discrétisation d'ordre élevé pour les équations de Maxwell en régime harmonique." Paris 9, 2009. https://bu.dauphine.psl.eu/fileviewer/index.php?doc=2009PA090028.
Повний текст джерелаThis thesis deals with numerical simulation issues, and concerns the study of time- harmonic electromagnetic scattering problems. We are mainly interested in integral re-presentation methods and in simulations that need the use of a direct solver. Their range of application is rapidly limited with classical approximation schemes, since they require a large number of unknowns to achieve accurate results. To overcome this problem, we intend to adapt the spectral finite element method to electromagnetic integral equa-tions, then to the hybrid boundary element - finite element method (BE-FEM). The main advantage of our approach is that the Hdivconforming property (Hdiv-Hcurl within the BE-FEM) is enforced, meanwhile it can be interpreted as a point-based scheme. This al-lows a significant increase of the approximation order, that yields to a dramatical decrease of both the number of unknowns and computational costs, while ensuring the accuracy of the result. Another originality of our study lies in the development of high-order ani-sotropic hexahedral elements, to deal with conducting scatterers coated with a thin layer of material. Key words :computational electromagnetics, Maxwell equations, integral equations, hybrid boundary element - finite element method, method of moments, spectral finite element method, high-order approximation
Phan, Quang Anh. "Contribution à la modélisation des courants de Foucault par la méthode des équations intégrales de frontière." Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAT080.
Повний текст джерелаIn recent decades, the numerical modelling of electromagnetic devices in the presence of eddy currents has been the subject of a significant number of developments based on different formulations and numerical methods.Among these, integral methods are methods based on the evaluation of remote interactions of active parts via Green's kernels. They thus have the particularity of not requiring the discretization of the air region. In addition to the fact that the number of degrees of freedom to be handled only concerns active regions, these methods show good behaviour in terms of accuracy.The boundary element method is a very competitive numerical method because, unlike volume approaches, it only requires the discretization of the boundary of the domain. However, it is limited to isotropic, homogeneous and linear materials, which is an important limitation. It may still be attractive for some applications where such a hypothesis can be formulated.In this thesis, we will focus on the modeling of the eddy current problem by the method of integral boundary equations subjected to harmonic excitation. This report provides a synthesis of these formulations, including a detailed comparison of the formulations in the literature. Several new formulations are then proposed and developed, with the objective of comparing the integral boundary equations method with other numerical methods (coupled finite element - integral boundary equations method, volume integral method with a surface impedance boundary conditions)
Книги з теми "Théories des équations intégrales"
Petrovskii, I. G. Théorie des équations différentielles ordinaires et des équations intégrales. Moscou: Mir, 1988.
Знайти повний текст джерелаVaĭnikko, G. Multidimensional weakly singular integral equations. Berlin: Springer-Verlag, 1993.
Знайти повний текст джерелаRamis, E. Cours de mathématiques spéciales: Classes préparatoires et enseignement supérieur (1er cycle) : séries équations différentielles et intégrales multiples. Paris: Masson, 1993.
Знайти повний текст джерелаXie, Mukherjee Yu, ed. Boundary methods: Elements, contours, and nodes. Boca Raton: Dekker/CRC Press, 2005.
Знайти повний текст джерелаV, Manzhirov A., ed. Handbook of integral equations. 2nd ed. Boca Raton: Chapman & Hall/CRC, 2008.
Знайти повний текст джерела(Aloknath), Chakrabarti A., ed. Applied singular integral equations. Enfield, NH: Science Publishers, 2011.
Знайти повний текст джерелаDouchet, Jacques. Analyse: Recueil d'exercices et aide-mémoire. Lausanne: Presses polytechniques et universitaires romandes, 2004.
Знайти повний текст джерелаHromadka, Theodore V. Stochastic integral equations and rainfall-runoff models. Berlin: Springer-Verlag, 1989.
Знайти повний текст джерелаR, Glowinski, and Zolésio J. P, eds. Free and moving boundries: Analysis, simulation, and control. Boca Raton: Taylor & Francis, 2007.
Знайти повний текст джерела1947-, Rajakumar C., ed. Boundary element method: Application in sound and vibration. Exton, PA: A. A. Balkema Publishers, 2004.
Знайти повний текст джерелаЧастини книг з теми "Théories des équations intégrales"
"17. INITIATION AUX PROBLÈMES MAL POSES : ÉQUATIONS INTÉGRALES. SYSTÈMES LINÉAIRES MAL CONDITIONNÉS ET ÉQUATIONS DE CONVOLUTION." In Manuel de calcul numérique appliqué, 273–86. EDP Sciences, 1999. http://dx.doi.org/10.1051/978-2-7598-0252-4.c018.
Повний текст джерела