Добірка наукової літератури з теми "Théorie de Floer"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Théorie de Floer".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Théorie de Floer"
Kornreich, C. "Utilité de la dépression : une approche évolutionniste." European Psychiatry 28, S2 (November 2013): 13–14. http://dx.doi.org/10.1016/j.eurpsy.2013.09.032.
Повний текст джерелаJ.M QABAGA, Sawsan. "THE PSYCHOLOGY OF TAWFIQ AL – HAKIM FROM THE PERSPECTIVE OF THE HUMANIST THEORY OF CARL ROGERS IN MY AUTOBIOGRAPHICAL NOVEL FLOWER OF AGE AND THE PRISON OF AGE – A MODEL." RIMAK International Journal of Humanities and Social Sciences 04, no. 02 (March 1, 2022): 582–93. http://dx.doi.org/10.47832/2717-8293.16.37.
Повний текст джерелаVillanueva, Antonio, and Jacques Imbernon. "Réalité et contraintes d'un corridor biologique dans la zone centrale du Mexique." BOIS & FORETS DES TROPIQUES 318, no. 318 (December 1, 2013): 41. http://dx.doi.org/10.19182/bft2013.318.a20517.
Повний текст джерелаAndonovska, Hristina, Katarina-Antonia Boras, Kristina Lešić, Pierre-Guillaume Paris, Ivan Silobrčić, and Chiara Simone. "Une nouvelle cosmopolitique pour faire face à l’anthropocène." Studia Romanica et Anglica Zagrabiensia 69 (July 18, 2024): 31–45. http://dx.doi.org/10.17234/sraz.69.3.
Повний текст джерелаNotícias, Transfer. "Noticias." Transfer 10, no. 1-2 (October 4, 2021): 138–48. http://dx.doi.org/10.1344/transfer.2015.10.138-148.
Повний текст джерелаQuan, Nguyen Van. "Contribution to a New Approach of Legal Liability under the Aspect of the General Theory of Law." VNU Journal of Science: Legal Studies 34, no. 1 (March 23, 2018). http://dx.doi.org/10.25073/2588-1167/vnuls.4138.
Повний текст джерелаДисертації з теми "Théorie de Floer"
Gallais, Étienne. "CONTRIBUTIONS À LA THÉORIE DE MORSE DISCRÈTE ET À L'HOMOLOGIE DE HEEGAARD-FLOER COMBINATOIRE." Phd thesis, Université de Bretagne Sud, 2007. http://tel.archives-ouvertes.fr/tel-00265283.
Повний текст джерелаDans une première partie, on s'intéresse au problème de relèvement de signe pour l'homologie de Heegaard-Floer combinatoire. On montre que la construction originale faite par Manolescu, Ozsváth, Szabó et D. Thurston peut être refaite de manière plus conceptuelle. On donne ensuite le lien entre ces deux constructions puis finalement on décrit un algorithme qui permet de calculer les signes.
La seconde partie porte sur la théorie de Morse discrète définie par Forman. Après avoir fait le lien entre l'algèbre sur les complexes de chaînes et la théorie de Morse discrète, on montre que le complexe de Thom-Smale donné par une fonction de Morse lisse sur variété lisse close peut être réalisé par une triangulation et une fonction de Morse discrète sur celle-ci. On utilise cela pour obtenir une représentation particulière sous forme de couplage complet de toute structure d'Euler sur une variété de dimension 3 close orientée.
Audoux, Benjamin. "Généralisation de l'homologie de Heegaard-Floer aux entrelacs singuliers & raffinement de l'homologie de Khovanov aux entrelacs restreints." Toulouse 3, 2007. http://thesesups.ups-tlse.fr/145/.
Повний текст джерелаA categorification of a polynomial link invariant is an homological invariant which contains the polynomial one as its graded Euler characteristic. This field has been initiated by Khovanov categorification of the Jones polynomial. Later, P. Ozsvath and Z. Szabo gave a categorification of Alexander polynomial. Besides their increased abilities for distinguishing knots, this new invariants seem to carry many geometrical informations. On the other hand, Vassiliev works gives another way to study link invariant, by generalizing them to singular links i. E. Links with a finite number of rigid transverse double points. The first part of this thesis deals with a possible relation between these two approaches in the case of the Alexander polynomial. To this purpose, we extend grid presentation for links to singular links. Then we use it to generalize Ozsvath and Szabo invariant to singular links. Besides the consistency of its definition, we prove that this invariant is acyclic under some conditions which naturally make its Euler characteristic vanish. This work can be considered as a first step toward a categorification of Vassiliev theory. In a second part, we give a refinement of Khovanov homology to restricted links. .
Morabito, Francesco. "Braids in Low-Dimensional Hamiltonian Dynamics." Electronic Thesis or Diss., Institut polytechnique de Paris, 2024. https://theses.hal.science/tel-04735336.
Повний текст джерелаIn this thesis we study Hamiltonian systems using the topology of their closed orbits. The results we present deal, on the one hand, with properties of the generating functions associated with a particular Hamiltonian diffeomorphism, and on the other hand, with the Hofer distance between two diffeomorphisms that realise braids of different types. In the first context, we will rely on results by Patrice Le Calvez to show that any (up to stabilisation) generating function of a Hamiltonian diffeomorphism with compact support in the plane admits a filtration into the second tensor power of the Morse complex. By “linking filtration” we mean a filtration which associates an integer with any pair of critical points, and such when the two points are distinct the associatedvalue is exactly the linking number of the two orbits corresponding to the critical points. It is possible to define such filtration in the context of Hamiltonian Floer theory as well, and to study its behaviour with respect to the product in homology. The author’s results in this direction are still unpublished. On the other hand, we consider the set of Hamiltonian diffeomorphisms with compact support of a surface with boundary which preserves a predetermined configuration of circles. We give estimates of the Hofer energy of such a diffeomorphism based on the complexity of a type of braid that we assign to each diffeomorphism in this class. The tool we use here is quantitative Heegaard-Floer theory, recently developed by Cristofaro-Gardiner, Humilière, Mak, Seyfaddini andSmith. The results in this direction are already contained in a work by the author, and in one in collaboration with Ibrahim Trifa
Mennesson, Pierre. "Homologie symplectique Tⁿ-équivariante pour les variétés toriques hamiltoniennes". Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS315/document.
Повний текст джерелаThis thesis establishes the existence of a version of Floer homology in a Morse-Bottcontext. Given a toric manifold (Wⁿ, ω, µ) and a hamiltonian H : W × S¹ → ℝ invariant bythe action of the torus Tⁿ, the periodical orbits of H are stable by the toric action.The latter admits fix points in W and hence it not free, neither one induced on the spaceof the loops of W and it is, a priori, impossible to establish a equivariant infinite-dimensionalMorse-Bott theory on C∞(S¹, W)/Tⁿ. We deal with this problem using Borel’s construction : we choose a space contractible E witha free action from the torus and look at the infinite-dimensional Morse-Bott homology of thespace (C∞(S¹, W) × E)/Tⁿ where Tⁿ act in a diagonal way on the product.We obtain an invariant for symplectic toric manifold and computes it for a closed manifold
Spano, Gilberto. "Knot invariants in embedded contact homology." Nantes, 2014. https://archive.bu.univ-nantes.fr/pollux/show/show?id=fd4e7f5d-6094-444e-b12a-043f6c632eb5.
Повний текст джерелаGiven a contact 3-manifold (Y; α), let HF(Y ) and \ECH(Y; ) be the associated Heegaard Floer and, respectively, embedded contact homologies. In a series of papers Colin, Ghiggini and Honda proved that there exists a chain map that induces an isomorphism : HF(Y ) → ECH(Y; α) in homology. Given a knot K in Y , in [13] a hat embedded contact knot homology ECK(K; Y; α) is defined and an isomorphism with the hat Heegaard Floer knot homology HFK(K; Y ) is conjectured. These two homologies can be defined as first pages of spectral sequences arising from filtrations induced by K on chain complexes for ECH(Y; α) and HF(Y ). The aim of this thesis is to provide some evidences about the veracity of this conjecture. We define a full ECK homology and we generalize the definitions of ECK and ECK to any link. We compute then the Euler characteristics of these homologies for knots and links in homology three-spheres (endowed with a suitable contact form) and we prove that in S3 the ECK homology is a categorification of the multivariable Alexander polynomial. This fact, together with a well known analogous result in HFK, implies that the conjecture is true at the level of Euler characteristics in S3. Finally we show that, up to chain homotopies, the chain map Φ preserves the knot filtrations. This can be considered as a first step of a proof of the conjecture for fibered knots
Vichery, Nicolas. "Homogénéisation symplectique et Applications de la théorie des faisceaux à la topologie symplectique." Phd thesis, Ecole Polytechnique X, 2012. http://pastel.archives-ouvertes.fr/pastel-00780016.
Повний текст джерелаCazassus, Guillem. "Homologie instanton-symplectique : somme connexe, chirurgie de Dehn, et applications induites par cobordismes." Thesis, Toulouse 3, 2016. http://www.theses.fr/2016TOU30043/document.
Повний текст джерелаSymplectic instanton homology is an invariant for closed oriented three-manifolds, defined by Manolescu and Woodward, which conjecturally corresponds to a symplectic version of a variant of Floer's instanton homology. In this thesis we study the behaviour of this invariant under connected sum, Dehn surgery, and four-dimensional cobordisms. We prove a Künneth-type formula for the connected sum: let Y and Y' be two closed oriented three-manifolds, we show that the symplectic instanton homology of their connected sum is isomorphic to the direct sum of the tensor product of their symplectic instanton homology, and a shift of their torsion product. We define twisted versions of this homology, and then prove an analog of the Floer exact sequence, relating the invariants of a Dehn surgery triad. We use this exact sequence to compute the rank of the groups associated to branched double covers of quasi-alternating links, some plumbings of disc bundles over spheres, and some integral Dehn surgeries along certain knots. We then define invariants for four dimensional cobordisms as maps between the symplectic instanton homology of the two boundaries. We show that among the three morphisms in the surgery exact sequence, two are such maps, associated to the handle-attachment cobordisms. We also give a vanishing criteria for such maps associated to blow-ups
Cochard, Arnaud. "Influence des facteurs paysagers sur la flore des habitats herbacés sous influence urbaine : approche taxonomiques et fonctionnelles." Thesis, Rennes, Agrocampus Ouest, 2017. http://www.theses.fr/2017NSARH102/document.
Повний текст джерелаThe process of urbanisation leads to a series of transformations and disturbances that may have consequences for wild plant communities. This thesis presents a study of the plant communities of ordinary grasslands distributed among three cities of western France: Angers, Nantes and La Roche-sur-Yon. Using both taxonomical and functional approaches, the aim is to analyse the variation in plant diversity and composition along landscape gradients, in particular those of urbanisation and habitat connectivity. Such grassland habitats appear to be diverse, despite a low number of exotic species. The urban-rural gradient structures such communities, in particular by strongly modifying species composition; and this despite an absence of variation in species richness or of homogenisation. These modifications in community structure are linked to traits for ecological requirements (for habitat, pH, humidity or light)or for adaptation to higher levels of disturbance in towns. These relationships vary according to species’ local or regional abundance, suggesting that other mecanisms accompany the filtering process. Taking into account three functional traits (height, SLA and phenology) measured in situ shows that the filtering process also has consequences at intraspecific level. Taken together, the results show how common species are assembled in response to ecological processes operating in urban environments and open up new perspectives and applications for the integration of grassland plant communities into biodiversity conservation objectives in urban areas
Cebanu, Radu Andrei. "A generalisation of property "R"." Thèse, 2013. http://www.archipel.uqam.ca/5767/1/D2473.pdf.
Повний текст джерелаКниги з теми "Théorie de Floer"
Audin, Michèle, and Damian Mihai. Théorie de Morse et homologie de Floer. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-0921-9.
Повний текст джерелаMihai, Damian, and Michèle Audin. Théorie de Morse et Homologie de Floer. EDP Sciences, 2021.
Знайти повний текст джерелаBurger, Edward B. Heart of Mathematics: An Invitation to Effective Thinking 3rd Edition Binder Ready Version with Binder Ready Survey Flyer Set. Wiley & Sons, Incorporated, John, 2010.
Знайти повний текст джерелаЧастини книг з теми "Théorie de Floer"
"10. De Floer à Morse." In Théorie de Morse et homologie de Floer, 325–46. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-0921-9-013.
Повний текст джерела"11. Homologie de Floer : invariance." In Théorie de Morse et homologie de Floer, 347–412. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-0921-9-014.
Повний текст джерела"11. Homologie de Floer : invariance." In Théorie de Morse et homologie de Floer, 347–412. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-0921-9.c014.
Повний текст джерела"10. De Floer à Morse." In Théorie de Morse et homologie de Floer, 325–46. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-0921-9.c013.
Повний текст джерела"6. La conjecture d’Arnold et l’équation de Floer." In Théorie de Morse et homologie de Floer, 131–68. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-0921-9-009.
Повний текст джерела"12. La régularité elliptique de l’opérateur de Floer." In Théorie de Morse et homologie de Floer, 413–32. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-0921-9-015.
Повний текст джерела"6. La conjecture d’Arnold et l’équation de Floer." In Théorie de Morse et homologie de Floer, 131–68. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-0921-9.c009.
Повний текст джерела"12. La régularité elliptique de l’opérateur de Floer." In Théorie de Morse et homologie de Floer, 413–32. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-0921-9.c015.
Повний текст джерела"Introduction de la première partie." In Théorie de Morse et homologie de Floer, 3–6. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-0921-9-002.
Повний текст джерела"13. Les lemmes sur la dérivée seconde de l’opérateur de Floer et autres technicités." In Théorie de Morse et homologie de Floer, 433–68. EDP Sciences, 2020. http://dx.doi.org/10.1051/978-2-7598-0921-9-016.
Повний текст джерела