Статті в журналах з теми "The current distribution"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: The current distribution.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "The current distribution".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

CHAN, STEVEN H., and HUK Y. CHEH. "THE CURRENT DISTRIBUTION IN THROUGH-HOLE ELECTRODEPOSITION.II: TERTIARY CURRENT DISTRIBUTION." Chemical Engineering Communications 191, no. 7 (July 2004): 881–908. http://dx.doi.org/10.1080/00986440490276029.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Renčo, M. "Current occurrence and distribution of heterodera avenae in the Slovak Republic." Plant Protection Science 41, No. 2 (February 23, 2010): 80–85. http://dx.doi.org/10.17221/2740-pps.

Повний текст джерела
Анотація:
During 2003 and 2004 the occurrence and distribution of <i>Heterodera avenae</i> (Woll.) in the cereal growing areas of the Slovak Republic was studied. 188 soil samples from 27 districts throughout the country were analysed; <i>Heterodera avenae</i> was present in 56.4% of the samples, at an incidence of 2–81 cysts in 100 g soil. At 87 localities the incidence of the parasite was low, at 15 it was medium, and high at 4 localities.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Gavilán, Rosario G., Daniel Sánchez Mata, Beatriz Vilches, and Gabriela Entrocassi. "Modeling current distribution of Spanish Quercus pyrenaica forests using climatic parameters." Phytocoenologia 37, no. 3-4 (December 1, 2007): 561–81. http://dx.doi.org/10.1127/0340-269x/2007/0037-0561.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kwak, S. I., K. M. Jeong, S. K. Kim, and H. J. Sohn. "Current Distribution and Current Efficiency in Pulsed Current Plating of Nickel." Journal of The Electrochemical Society 143, no. 9 (September 1, 1996): 2770–76. http://dx.doi.org/10.1149/1.1837105.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Liu, Zhixiang, Zongqiang Mao, Bing Wu, Lisheng Wang, and Volkmar M. Schmidt. "Current density distribution in PEFC." Journal of Power Sources 141, no. 2 (March 2005): 205–10. http://dx.doi.org/10.1016/j.jpowsour.2004.10.003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Bellina, F., T. Bonicelli, M. Breschi, M. Ciotti, A. Della Corte, A. Formisano, Yu Ilyin, et al. "Superconductive cables current distribution analysis." Fusion Engineering and Design 66-68 (September 2003): 1159–63. http://dx.doi.org/10.1016/s0920-3796(03)00311-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kettunen, L., T. Tarhasaari, and J. Kaisjoki. "Current distribution in massive conductors." IEEE Transactions on Magnetics 36, no. 4 (July 2000): 1440–43. http://dx.doi.org/10.1109/20.877709.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

McCormick, M. "Current Distribution in Electrochemical Cells." Transactions of the IMF 71, no. 4 (January 1993): 161–65. http://dx.doi.org/10.1080/00202967.1993.11871011.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Smith, H. J. T., and V. Keith. "Current distribution in a highTcsuperconductor." Review of Scientific Instruments 65, no. 6 (June 1994): 2070–74. http://dx.doi.org/10.1063/1.1144814.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Lilavivat, V., S. Shimpalee, J. W. Van Zee, H. Xu, and C. K. Mittelsteadt. "Current Distribution Mapping for PEMFCs." Electrochimica Acta 174 (August 2015): 1253–60. http://dx.doi.org/10.1016/j.electacta.2015.06.081.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Zhu, Qing Jun, Alin Cao, Ji Wen Song, and Sheng Li Chen. "Distribution of Stray Current in Buried Pipeline." Advanced Materials Research 433-440 (January 2012): 6579–82. http://dx.doi.org/10.4028/www.scientific.net/amr.433-440.6579.

Повний текст джерела
Анотація:
Electrochemical corrosion happens when stray currents leak out of buried pipeline. This will threaten the safety of pipeline operation and operators. The distribution of stray current was studied by simulation system. The results indicate that stray current intensities have the same distribution with potential gradient Esx which parallel to the metallic pipeline. The distribution curves of stray current show regular symmetry. The stray currents increase gradually along the buried metallic pipeline. It reaches maximum at the pipeline midpoint. The potential gradient Esy distribution curves in y-direction show a hyperbolic shape. For the exits of faradic electric field, stray current intensity is maximum in the beginning and it flows into the pipeline. It flow along the pipeline and parallel to the pipeline at middle. After that, the stray currents begin to flow back to cathode and the stray current intensity reaches maximum at the end of pipeline.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Гололобов, Петр, Peter Gololobov, Прокопий Кривошапкин, Prokopy Krivoshapkin, Гермоген Крымский, Germogen Krymsky, Владислав Григорьев, Vladislav Grigoryev, Сардаана Герасимова, and Sardaana Gerasimova. "Distribution of tensor anisotropy of cosmic rays near the neutral current sheet." Solar-Terrestrial Physics 3, no. 2 (August 9, 2017): 16–19. http://dx.doi.org/10.12737/stp-3220173.

Повний текст джерела
Анотація:
We analyze time profiles of isotropic intensity, components of vector and tensor anisotropies of cos-mic rays (CR) when Earth crosses the neutral sheet of the interplanetary magnetic field (IMF) in solar activity cycles 23–24. The moments of the crossings are de-termined from Wilcox Observatory synoptic charts and IMF data. Periods of Forbush decreases and ground level enhancements are excluded from the analysis. The events are analyzed for the epochs of positive and negative signs of the Sun’s general magnetic field. During each epoch, the crossings from the positive sector to the negative one and vice versa are separated. In total, 213 crossing events have been selected. The first two spherical harmonics of the angular CR-distribution are obtained using the global survey method. In each case, the average number of stations is equal to 32. The analysis shows that the temporal change of the isotropic component is caused by a magnetic mirror. For the first time, the zonal harmonics are reliably distinguished, and the existence of the antisymmetric diurnal CR-variation in a low energy range, which is oriented along IMF, is recognized. We compare our results with those obtained earlier.
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Smyrl, William H., and John Newman. "Current Distribution at Electrode Edges at High Current Densities." Journal of The Electrochemical Society 136, no. 1 (January 1, 1989): 132–39. http://dx.doi.org/10.1149/1.2096572.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Miranda, Pedro Cavaleiro, Mikhail Lomarev, and Mark Hallett. "Modeling the current distribution during transcranial direct current stimulation." Clinical Neurophysiology 117, no. 7 (July 2006): 1623–29. http://dx.doi.org/10.1016/j.clinph.2006.04.009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Chen, Guolong. "Two Novel Information Entropy Indices for Analysis of the Eddy Current Distribution." Entropy 20, no. 9 (September 12, 2018): 699. http://dx.doi.org/10.3390/e20090699.

Повний текст джерела
Анотація:
The Koch curve exciting coil eddy current sensor is a kind of novel flexible planar eddy current probe. In this study, an intersection angle spectrum entropy index and a radial direction energy spectrum entropy were proposed to evaluate the eddy current distribution. Eddy current distributions induced by one turn of a circular coil and one turn of a second order Koch curve coil feed with different exciting frequency alternative currents and at different lift-off distances, were simulated and the eddy current distributions varying with lift-off distance in different exciting frequencies were compared by the two proposed indices. With the increase of the lift-off distance or the decrease of exciting frequency, the similarity between the shape of the Koch curve and the eddy current distribution became weakened and the degree of the concentration of the eddy current distribution in the specimen under the exciting coil was loosened.
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Sytnikov, V. E., G. G. Svalov, V. N. Pervov, and Y. V. Prismakov. "Currents and coupling losses distribution in superconducting cables carrying transport current." IEEE Transactions on Magnetics 28, no. 1 (1992): 858–61. http://dx.doi.org/10.1109/20.120013.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Gnatіuk, A. M., O. S. Dyatlova, and S. Y. Dyatlov. "The distribution and current state of populations of Colchicum fominii Bordz. in Ukraine." Geo&Bio 2018, no. 16 (December 12, 2018): 41–47. http://dx.doi.org/10.15407/gb.2018.16.041.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Slizhе, M. O., A. B. Semergei-Chumachenko, and El Hadri Youssef. "Current distribution of wind in Morocco." Ukrainian hydrometeorological journal, no. 17 (October 29, 2017): 61–69. http://dx.doi.org/10.31481/uhmj.17.2016.07.

Повний текст джерела
Анотація:
Information about wind is widely used in many sectors of the economy. Wind also causes many dangerous and extreme weather events. Modern climate changes require a certain revision of weather patterns previously accepted for the area. This article provides information on the current space and time distribution of wind characteristics within the territory of Morocco. During the period of 2005-2014 some monthly average wind speed values and data on repeatability of wind directions by gradations were obtained on the basis of physical and statistical analysis of results of observations of wind speed and directions performed at 26 stations. The authors defined the character of distribution of monthly averages of wind speed within the territory and its seasonal changes. Most of the territory is covered by mountains of Morocco which encourages development of local winds. At central and northern regions of Morocco predominance of weak winds due to complex orography of terrain is observed. In the central part of Morocco there is a region with the lowest values of wind speed. Formation of the wind regime at the coastal stations takes place in a developed breeze circulation. Wind speed and direction are significantly different at the nearby stations, such as Larache and Chefchaouen, Meknes and Fez. Increase of wind during the warmer half of a year was revealed at all stations. Nature of annual variation of average wind speed at the stations allows us to split the stations into two groups. The first group includes the stations where the average wind speed increases in summer and decreases in winter. The second group includes the stations where the average wind speed increases in spring and decreases in autumn. In the southern part and along the coast, where the terrain is flat, an increase of wind speed is observed. On open plains of the southern part of Atlantic coast during all seasons wind has a direction corresponding to direction of trade winds of the Northern hemisphere. It should be noted that the main factor forming air circulation within the territory of Morocco is represented by trade winds the intensity of which nearly doubles from summer to winter. Formation of wind directions at the stations takes place mainly under the influence of terrain of the area. At many stations predominant wind direction in January changes by 180º in comparison to the respective July values. Therefore, characteristics of the wind regime of Morocco in 2005-2014 consist in increase of wind speed in the coastal zone and decrease thereof in mountain areas together with presence of two types of annual variation of wind speed depending on physical and geographical conditions.
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Kay, L., and H. Bay Nielsen. "Distribution of Current During Transurethral Resection." Scandinavian Journal of Urology and Nephrology 19, no. 4 (January 1985): 257–59. http://dx.doi.org/10.3109/00365598509180266.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Espinoza Ortiz, J. S., and Gemunu H. Gunaratne. "Current distribution in fused electrical networks." Brazilian Journal of Physics 33, no. 2 (June 2003): 363–70. http://dx.doi.org/10.1590/s0103-97332003000200039.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Yamamoto, Kazuo. "Current Distribution Characteristics of CFRP Panels." IEEJ Transactions on Power and Energy 132, no. 3 (2012): 276–83. http://dx.doi.org/10.1541/ieejpes.132.276.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Mueller, Hans, Frank Hornung, Astrid Rimikis, and Theo Schneider. "Critical Current Distribution in Composite Superconductors." IEEE Transactions on Applied Superconductivity 17, no. 2 (June 2007): 3757–60. http://dx.doi.org/10.1109/tasc.2007.897430.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Straley, Joseph P. "Current distribution in random resistor networks." Physical Review B 39, no. 7 (March 1, 1989): 4531–35. http://dx.doi.org/10.1103/physrevb.39.4531.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Carrera, M., X. Granados, J. Amorós, T. Puig, and X. Obradors. "Current Distribution in Wide YBCO Tapes." Physics Procedia 36 (2012): 1625–30. http://dx.doi.org/10.1016/j.phpro.2012.06.319.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Umeda, Masaichi. "Critical Current Distribution ofIn SituNb3Sn Wires." Japanese Journal of Applied Physics 32, Part 1, No. 2 (February 15, 1993): 778–82. http://dx.doi.org/10.1143/jjap.32.778.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Dong, Qing Feng, and Fa Chao Zhang. "Current Development of Urban Distribution Network." Applied Mechanics and Materials 494-495 (February 2014): 1876–79. http://dx.doi.org/10.4028/www.scientific.net/amm.494-495.1876.

Повний текст джерела
Анотація:
With the rapid development of Chinese urban construction and economic, the electricity load grows quickly. Power cuts have occurred from time to time at the highest load peak especially in the urban and rural that economic grows fast. There are many problems of power supply. Through the analysis of the Mianchi County, this paper puts forward measures to solve the problem. Taking the measures and According to the requirements of the plan, we will build a strong distribution network. It can provide high quality and reliable power resources for economic development, urban construction and people's living.
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Czarnecki, Andrzej. "Current distribution in an infinite plate." Canadian Journal of Physics 92, no. 11 (November 2014): 1297–300. http://dx.doi.org/10.1139/cjp-2014-0136.

Повний текст джерела
Анотація:
Distribution of the electric potential in a very long plate (for example, a long metal ruler) is determined. This is achieved by conformally mapping the plate into a plane, simplifying the geometry of the boundary conditions. Singularities of the potential are discussed as well as their regularization by the final size of electrical contacts. An analogy with renormalization is pointed out. Results are compared with previous studies.
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Texier, Christophe, and Pascal Degiovanni. "Charge and current distribution in graphs." Journal of Physics A: Mathematical and General 36, no. 50 (December 1, 2003): 12425–52. http://dx.doi.org/10.1088/0305-4470/36/50/005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Kumar, Ankush, N. S. Vidhyadhiraja, and Giridhar U. Kulkarni. "Current distribution in conducting nanowire networks." Journal of Applied Physics 122, no. 4 (July 28, 2017): 045101. http://dx.doi.org/10.1063/1.4985792.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Belabed, Christian A., Thomas Theobald, and Till van Treeck. "Income distribution and current account imbalances." Cambridge Journal of Economics 42, no. 1 (July 25, 2017): 47–94. http://dx.doi.org/10.1093/cje/bew052.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Krylova, Elena M., and Heiko Sahling. "Vesicomyidae (Bivalvia): Current Taxonomy and Distribution." PLoS ONE 5, no. 4 (April 1, 2010): e9957. http://dx.doi.org/10.1371/journal.pone.0009957.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Wakabayashi, Kazuki, Pasomphone Hemthavy, Shigeki Saito, and Kunio Takahashi. "Density distribution of point-contact current." IOP Conference Series: Materials Science and Engineering 61 (August 1, 2014): 012030. http://dx.doi.org/10.1088/1757-899x/61/1/012030.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Beech, R. S., J. M. Daughton, and W. B. Kude. "Current distribution in spin-valve structures." IEEE Transactions on Magnetics 30, no. 6 (1994): 4557–59. http://dx.doi.org/10.1109/20.334147.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Yamamoto, Kazuo. "Current distribution characteristics of CFRP panels." Electronics and Communications in Japan 96, no. 6 (May 10, 2013): 32–40. http://dx.doi.org/10.1002/ecj.11457.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Penczek, Marcin, and Zbigniew Stojek. "Current distribution at a submicrodisc electrode." Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 227, no. 1-2 (July 1987): 271–74. http://dx.doi.org/10.1016/0022-0728(87)80084-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Bakhanova, E. S., and V. M. Genkin. "Current distribution in the superconducting strip." Physica C: Superconductivity 193, no. 3-4 (April 1992): 463–64. http://dx.doi.org/10.1016/0921-4534(92)90971-e.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Papagiannopoulos, I., G. De Mey, and V. Chatziathanasiou. "Current distribution in circular planar coil." Engineering Analysis with Boundary Elements 37, no. 4 (April 2013): 747–56. http://dx.doi.org/10.1016/j.enganabound.2013.02.005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Behringer, Jan, and Till van Treeck. "Income distribution and the current account." Journal of International Economics 114 (September 2018): 238–54. http://dx.doi.org/10.1016/j.jinteco.2018.06.006.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Hornung, F., A. Rimikis, and Th Schneider. "Current Sharing and Critical Current Distribution in Bi-2223 Tapes." IEEE Transactions on Applied Superconductivity 20, no. 3 (June 2010): 1589–92. http://dx.doi.org/10.1109/tasc.2010.2040722.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Son, P. C. van, and T. M. Klapwijk. "Current Contacts and Current Distribution in the Quantum Hall Effect." Europhysics Letters (EPL) 12, no. 5 (July 1, 1990): 429–34. http://dx.doi.org/10.1209/0295-5075/12/5/009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Antohi, Paul, and Daniel A. Scherson. "Current Distribution at a Disk Electrode during a Current Pulse." Journal of The Electrochemical Society 153, no. 2 (2006): E17. http://dx.doi.org/10.1149/1.2140681.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Amemiya, N., K. Inaho, H. Ishigami, O. Tsukamoto, and I. Hlasnik. "Current distribution in multifilamentary superconductors and their quench current degradation." IEEE Transactions on Magnetics 30, no. 4 (July 1994): 2277–80. http://dx.doi.org/10.1109/20.305729.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

de Folter, Joost, and Ian A. Sutherland. "Universal counter-current chromatography modelling based on counter-current distribution." Journal of Chromatography A 1216, no. 19 (May 2009): 4218–24. http://dx.doi.org/10.1016/j.chroma.2008.11.088.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Yan, Zhen Hua, Xiang Ren, Hang Ren, and Wei Dong Ding. "Simulation of Temperature Distribution in Current Transformers with Current Flow." Applied Mechanics and Materials 313-314 (March 2013): 882–86. http://dx.doi.org/10.4028/www.scientific.net/amm.313-314.882.

Повний текст джерела
Анотація:
On-site experience suggests the possibility of condensation of the moisture in Current transformers (CTs) which is impossible theoretically if temperature distribution in the CT is uniform. In order to study the temperature distribution in a typical CT, finite element analysis software (COMSOL Multiphysics) is used to obtain the temperature distribution of the outer surface and inside of SF6 in CT in different ambient temperatures (20 °C to-10 °C). Besides, experiments are conducted to obtain the temperature of different positions on the CT surface that correspond to conductor, shell, spacer and porcelain bushing that are inside the CT with different ambient temperature. Both simulation and experiments show that temperature distribution in the CT is non-uniform, and the closer the part is to the conductor, the higher the temperature. Furthermore, maximum temperature difference remains about 35 °C in both simulation and experiments with different ambient temperatures from 20 °C to-10 °C.
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Onda, Kazuo, Takuto Araki, Takuya Taniuchi, Daisuke Sunakawa, Kenji Wakahara, and Mitsuyuki Nagahama. "Analysis of Current Distribution at PEFCs Using Measured Membrane Properties and Comparison with Measured Current Distribution." Journal of The Electrochemical Society 154, no. 2 (2007): B247. http://dx.doi.org/10.1149/1.2405736.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Kristensson, Gerhard. "The current distribution on a circular disc." Canadian Journal of Physics 63, no. 4 (April 1, 1985): 507–16. http://dx.doi.org/10.1139/p85-080.

Повний текст джерела
Анотація:
In this paper we derive the surface-current distribution on a perfectly conducting circular disc. The current is obtained by calculating the limit of the surface currents on an oblate spheroid as the thickness goes to zero. The null-field approach is used. We show that it is possible to calculate all quantities in terms of the spherical basis functions, thus avoiding the cumbersome spheroidal basis functions. Furthermore, it is shown that the correct edge behaviour appears very naturally within the formulation. We compute the surface field on the disc for a plane incident wave, the surface current (eigencurrents) at the complex resonances of the disc, and the induced current on a subterranean disc excited by a circular antenna loop on the ground.
Стилі APA, Harvard, Vancouver, ISO та ін.
47

MEDVEĎ, Dušan, and Ján PRESADA. "THERMAL ANALYSIS OF HIGH-CURRENT ELECTRIC CONTACT." Acta Electrotechnica et Informatica 21, no. 3 (December 20, 2021): 38–42. http://dx.doi.org/10.15546/aeei-2021-0018.

Повний текст джерела
Анотація:
This paper deals with mathematical modelling of the temperature distribution in the vicinity of a direct electrical high-current contact under the action of a nominal current of 3000 A. High-current electrical contacts belong among the elements by which a large number of electrical devices are connected. They play an important role especially in the transmission and distribution system, where they have to withstand adverse weather conditions that have a significant impact on their degradation.
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Hwang, Su-jin, and Chul H. Jo. "Tidal Current Energy Resource Distribution in Korea." Energies 12, no. 22 (November 18, 2019): 4380. http://dx.doi.org/10.3390/en12224380.

Повний текст джерела
Анотація:
Korea is a very well-known country for having abundant tidal current energy resources. There are many attractive coastal areas for the tidal current power that have very strong currents due to the high tidal range and the acceleration through the narrow channels between islands in the west and south coasts of the Korean peninsula. Recently, the Korean government announced a plan that aims to increase the portion of electricity generated from renewable energy to 20% by 2030. Korea has abundant tidal current energy resources; however, as reliable resource assessment results of tidal current energy are not sufficient, the portion of tidal current power is very small in the plan. Therefore, a reliable resource assessment should be conducted in order to provide a basis for the development plan. This paper describes the resource assessment of tidal current energy in Korea based on the observational data provided by KHOA (Korean Hydrographic and Oceanographic Agency) and numerical simulation of water circulation. As the observational data were unable to present the detailed distribution of the complicated tidal current between islands, numerical simulation of water circulation was used to describe the detailed distribution of tidal current in Incheon-Gyeonggi and Jeollanam-do, where the tidal energy potentials are abundant. The west and south coastal areas of Korea were divided into seven regions according to the administrative district, and the theoretical tidal current potential was calculated using average power intercepted. The results of this research can provide the insight of the tidal current energy development plan in Korea.
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Qiu, Hongbo, Xiaobin Fan, Ran Yi, Jianqin Feng, Jie Wu, Cunxiang Yang, and Haiyang Zhao. "Eddy current density asymmetric distribution of damper bars in bulb tubular turbine generator." Archives of Electrical Engineering 66, no. 3 (September 1, 2017): 571–81. http://dx.doi.org/10.1515/aee-2017-0043.

Повний текст джерела
Анотація:
AbstractThe major reasons that cause the damage of damper bars in the leeward side are found in this paper. It provides a route for the structure optimization design of a hydro generator. Firstly, capacity of a 24 MW bulb tubular turbine generator is taken as an example in this paper. The transient electromagnetic field model is established, and the correctness of the model is verified by the comparison of experimental results and simulation data. Secondly, when the generator is operated at rated condition, the eddy current density distributions of damper bars are studied. And the asymmetric phenomenon of the eddy current density on damper bars is discovered. The change laws of the eddy currents in damper bars are determined through further analysis. Thirdly, through the study of eddy current distributions under different conditions, it is confirmed that the stator slots and armature reaction are the main factors to affect the asymmetric distribution of the eddy current in damper bars. Finally, the studies of the magnetic density distribution and theoretical analysis revealed the asymmetric distribution mechanism of eddy current density.
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Lira-Morales, Juan Daniel, Nancy Varela-Bojórquez, Magaly Berenice Montoya-Rojo, and J. Adriana Sañudo-Barajas. "The role of ZIP proteins in zinc assimilation and distribution in plants: current challenges." Czech Journal of Genetics and Plant Breeding 55, No. 2 (May 22, 2019): 45–54. http://dx.doi.org/10.17221/54/2018-cjgpb.

Повний текст джерела
Анотація:
Soils with mineral deficiencies lead to nutritional imbalance in crops worldwide. Zinc (Zn) is a micronutrient that is fundamental for plant growth and development, being essential for the proper functioning of a range of enzymes and transcription factors. Zn transporters tightly regulate Zn homeostasis. Plants contain a large number of Zn-responsive genes that are specifically expressed under Zn deficiency to ensure the coordination of assimilatory pathways and meet the physiological requirements. This review brings together a range of studies that have been undertaken to investigate the effects of Zn status on the regulatory mechanisms involved in plant mineral nutrition. The ZIP (ZRT, IRT-like Protein) family is especially implicated in Zn transport and in the maintenance of cellular Zn homeostasis. Regulation of expression in relation to plant tissue, mineral concentration, and species has been determined for several ZIP family members. In the omic era, genomic and proteomic approaches have facilitated a rapid increase in our understanding of the roles of ZIP family members and their regulation, though significant knowledge gaps remain. A comprehensive understanding of ZIP proteins could lead to many potential molecular applications to improve crop management and food quality.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії