Дисертації з теми "Tertiary lymphoid structure"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-16 дисертацій для дослідження на тему "Tertiary lymphoid structure".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Devi, Priyanka. "Role and prognostic importance of regulatory T cells in lung cancer patients, according to the presence of tertiary lymphoid structures." Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066345/document.
Повний текст джерелаTumor comprise complex niche of the immune and non-immune components. The complex interaction between the tumor cells with its environment turns into either eradication or the growth and metastasis of the tumors. We have previously demonstrated the role of TLS (tertiary lymphoid structures) in lung tumors, in protective anti-tumor responses. Despite of this, tumors do develop via exploiting the regulatory mechanisms, particularly includes, infiltration of the Tregs (regulatory T cells). The aim of thesis was to study the putative role of Tregs in regulating the immune responses in lung cancer. This study strongly demonstrates the presence of FoxP3+ Tregs in the TLS as well as non-TLS areas of the lung tumors. Tregs mainly exhibit central and effector memory phenotype expressing vast repertoire of the activation and immune checkpoint molecules. The gene expression and flow cytometry data showed that Tregs express the co-stimulatory and inhibitory markers which are known to be involved in the their activation and immune suppression. The high density of the Ti-Tregs either in TLS or in nonTLS areas is associated with the poor survival of the NSCLC patients. When combined with the density of TLS mature DC or B cells or CD8+ T cells, a group of patients with the low DC, B cells and CD8+ T cells but high Tregs densities, had the worst clinical outcome. This allowed, to identify the NSCLC patients with highest risk of death. Thus, it be concluded that the Tregs create the immunosuppressive environment in the lung tumors by acting in both TLS and nonTLS areas of the tumors and thus could be possible reason for the reduced survival of the lung cancer patients
Kaplon, Hélène. "Rôle des lymphocytes B associés aux structures lymphoïdes tertiaires dans la réponse clinique des patients atteints d’un cancer pulmonaire Cancer-Associated Tertiary Lymphoid Structures, from Basic Knowledge Toward Therapeutic Target in Clinic Tertiary lymphoid structures, drivers of the anti-tumor responses in human cancers." Thesis, Sorbonne université, 2018. http://www.theses.fr/2018SORUS565.
Повний текст джерелаThe tumor microenvironment plays a major role in the immune control of the tumor development. This control starts at a distance from the tumor cells, in the tumor stroma, within structures called tertiary lymphoid structures (TLS), composed of a B-cell zone where B lymphocytes (LB) are mainly found, and a T-cell area that is adjacent to the B-cell zone. Our previous results in non-small cell lung cancer patients (NSCLC) showed that the TLS-associated B-cell zone could be a site of B cell differentiation into memory B cells and IgA and IgG secreting plasma cells (PC). We therefore hypothesized that these IgA and IgG PC could be involved in the generation of the anti-tumor immune response. We demonstrated that high densities of IgA and IgG PC are associated with increased survival of NSCLC patients. A co-localization between PC and stromal CD8+ T cells was observed in the tumor stroma, strongly suggesting the presence of a crosstalk between these immune cell types which positively influences patient survival. Furthermore, we reported that the combination of high density of PC and stromal CD8+ T cell determines the group of patients with the lowest risk of death. Altogether, this study gives new insights in the role of tumor-infiltrating plasma cells in the tumor microenvironment of NSCLC patients
Houel, Ana. "Étude de l’induction de structures lymphoïdes tertiaires, par virothérapie oncolytique, pour stimuler l’immunité antitumorale endogène." Electronic Thesis or Diss., Sorbonne université, 2024. http://www.theses.fr/2024SORUS232.
Повний текст джерелаTertiary lymphoid structures (TLS) are organized aggregates of immune cells that develop in non-lymphoid tissues as a result of chronic inflammation. Mature TLS, which resemble lymph nodes in their organization, are associated with favorable prognoses in solid tumor cancers and serve as effective predictors of patient responses to immunotherapy. Our objective was to investigate oncolytic virotherapy as a strategy to induce TLS in the tumor microenvironment (TME) to enhance anti-tumor responses.Oncolytic viruses (OV) have the ability to specifically infect and replicate within cancer cells, inducing their direct lysis as well as their destruction by the immune system through immunogenic cell death. We hypothesize that the modulation of the TME following OV infection, along with the local production of chemokines expressed by these viruses, could promote TLS neogenesis and amplify anti-tumor responses.My work involved generating and characterizing recombinant oncolytic vaccinia viruses (oVV) armed with three chemokines, CCL20, CCL21, and CXCL13, which we hypothesize are involved in TLS neogenesis.I observed that the expression of chemokines by the recombinant oVVs did not affect their oncolytic properties and that the chemokines were functional in vitro. Although the replication of the oVVs was reduced in syngeneic murine models, I detected the murine chemokines in tumors infected with the armed oVVs and observed the formation of immune aggregates in hot tumor models. However, no therapeutic improvement was observed with the chemokine-armed oVV compared to the non-armed virus.I then studied the ability of TLS induced by an oVV to establish anti-tumor responses in the hot orthotopic TC-1 luc model. In this model, I observed that intranasal administration of the oVV induced more TLS than administration of a non-oncolytic vaccinia virus, MVA. Furthermore, I observed that TLS induced by MVA infection were not associated with an anti-tumor response, whereas I detected long-term presence of tumor-specific T lymphocytes and tumor control in the lungs of a mouse infected with oVV. Thus, we hypothesize that the oncolytic properties of oVVs can induce TLS that are effective against tumors.To promote oVV replication and chemokine expression, as well as to facilitate the observation of late anti-tumor responses with slower tumor growth kinetics, we evaluated the efficacy of a recombinant strain armed with the three human chemokines (oVV-3hCK) in a HIS-NXG humanized mouse model grafted with human tumors.In this model, the oVVs (oVV-3hCK and non-armed oVV) were particularly effective, making it difficult to observe differences in therapeutic efficacy between the two strains. Nonetheless, a significant increase in the infiltration of CXCR5+ immune cells and naïve T and B lymphocytes was observed in tumors infected with oVV-3hCK, confirming the chemotactic activity of the chemokines and suggesting the presence of TLS in the tumors.In conclusion, my thesis work confirmed that the three chemokines CCL20, CCL21, and CXCL13 expressed by an oVV are capable of inducing immune aggregates (or TLS) in the TME, and demonstrated the relevance of this strategy to improve long-term anti-tumor responses
Le, Rochais Marion. "Cancer colorectal : apport pronostique de l’étude pathomique du microenvironnement tumoral. Focus sur les structures lymphoïdes tertiaires." Electronic Thesis or Diss., Brest, 2024. http://www.theses.fr/2024BRES0044.
Повний текст джерелаColorectal cancer has become a major challenge for healthcare systems today due to its increasing prevalence and its impact on patients' quality of life. The anatomopathological analysis of colorectal cancer specimens, now enriched with molecular pathology data, is crucial for guiding patient treatment. However, despite advances in prognostic tools and treatments, interactions between tumor and immune cells in the tumor microenvironment are often not thoroughly evaluated in daily diagnostic practice. This thesis addresses the importance of studying the tumor microenvironment in colorectal cancer, particularly the need to better understand the role of residing structures, tertiary lymphoid structures (TLS). New techniques such as digital pathology and multiplex immunostaining offer perspectives for a more in-depth and accessible analysis of this microenvironment. Therefore, this thesis focused on characterizing TLS through multiplex imaging, developing pathomic analysis strategies, and exploring their clinical correlations to propose a clinically applicable score. This work aims to provide robust diagnostic and prognostic criteria, implementable in digitized pathology services to guide therapeutic decisions in colorectal cancer, thereby contributing to better patient management
Lucchesi, Davide. "Development and description of a novel inducible model of salivary gland inflammation in C57BL/6 mice characterised by tertiary lymphoid structures, autoimmunity and exocrine dysfunction." Thesis, Queen Mary, University of London, 2015. http://qmro.qmul.ac.uk/xmlui/handle/123456789/8565.
Повний текст джерелаMigliori, Edoardo. "The importance of CD4+ follicular helper T cells and tertiary lymphoid structures in the anti-tumor immune response to breast cancer." Doctoral thesis, Universite Libre de Bruxelles, 2017. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/258252.
Повний текст джерелаDoctorat en Sciences biomédicales et pharmaceutiques (Médecine)
info:eu-repo/semantics/nonPublished
Geyer, Elisabeth. "Akkumulation infiltrierender 6-sulfo LacNAc+ dendritischer Zellen im Kolonkarzinom." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-226707.
Повний текст джерелаColorectal cancer as an immunogenic tumor is characterized by a marked infiltration of different immune cell populations. Especially CD8+ T-lymphocytes and CD4+ T helper cells type 1 seem to influence tumor growth and therefore play an increasing role as prognostic markers. Thus, it has been shown that high densities of these T cell subsets are associated with improved survival of colorectal cancer patients. These new insights could become part of the classification of colorectal cancer and influence therapeutic decisions. Despite these studies, little is known about the frequency and properties of native human dendritic cells (DCs) in colon cancer tissues and their potential role in antitumor immunity. DCs as professional antigen-presenting cells are critical for the induction and maintenance of antitumor immunity and can essentially influence tumor progression. Thus, the frequency, distribution, maturation, and cytokine expression of 6-sulfo LacNAc+ (slan) DCs in colon cancer tissues as well as in corresponding tumor-free colon specimens were investigated. SlanDCs represent a subset of human blood DCs that secrete large amounts of proinflammatory cytokines upon activation. Furthermore slanDCs are able to efficiently activate CD4+ T cells, tumor-reactive CD8 + T cells, and natural killer cells. Due to these functional properties, slanDCs may contribute to antitumor immunity and may influence tumor growth. Within this doctoral thesis the presence of slanDCs in primary colon cancer samples was immunohistochemically verified. In this context, a higher frequency of slanDCs in colon cancer tissues (mean: 16,69 slanDCs/mm2, n=38) in comparison to the corresponding tumor-free specimens (mean: 9,25 slanDCs/mm2, n=38) could be detected. Moreover, higher frequencies of infiltrating slanDCs in colon cancer tissues (mean: 18,85 slanDCs/mm2, n=20) were detectable compared to plasmacytoid DCs (mean: 4,86 pDCs/mm2, n=20), representing another human blood DC-subset. Based on these results, various immunofluorescence stainings were performed to investigate maturation and cytokine expression of the infiltrating slanDCs. SlanDCs expressing the maturation marker CD83 were detected in all 10 analyzed colon cancer tissues (mean: 46,7% CD83+ slanDCs). In addition, IL-23-expressing slanDCs were present at varying percentages in 10 of 11 evaluated colon cancer samples (mean: 33,8% IL-23+ slanDCs). Interestingly, in several tissues slanDCs represented a marked proportion of all IL-23-expressing cells. However, slanDCs expressing tumor necrosis factor could only be detected in low frequencies in the analyzed colon cancer specimens. Further studies revealed that slanDCs are a novel component of the T-cell zone of colon cancer-associated tertiary lymphoid structures (TLS). A proportion of these TLS-associated slanDCs displays a mature phenotype or express IL-23. These novel findings indicate that slanDCs may modulate adaptive immune responses in the T-cell zone of colon cancer-associated TLS and may contribute to the regulation of tumor progression. Furthermore the IL-23-expressing slanDCs in the tumor-surrounding stroma and the TLS may promote the generation of IL-17-producing cells and may participate in inflammation-related cancer progression mediated by the IL-23/IL-17 axis. These novel observations can help to decipher the role of human native DCs in colon cancer and may have implications for the design of therapeutic strategies against this tumor entity
Giraldo-Castillo, Nicolas. "The Immune Microenvironment in Clear Cell Renal Cell Carcinoma : The heterogeneous immune contextures accompanying CD8+ T cell infiltration in clear cell Renal Cell Carcinoma." Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066321/document.
Повний текст джерелаTo decipher the potential mechanisms linking increased CD8+ T cell infiltration with an adverse clinical outcome in ccRCC, in this study we determined: 1) the prognosis associated with the expression of immune checkpoints and its coordination with dendritic cell (DC) and CD8+ cell infiltration, and 2) the phenotypic traits of CD8+ tumor infiltrating lymphocytes. The prognosis associated with CD8+ and DC infiltrations, in addition to the expression of immune checkpoints were investigated in a cohort of 135 ccRCC by quantitative immunohistochemistry. We found that the densities of CD8+, PD-1+ and LAG-3+ cells were closely correlated, and independently associated with decreased PFS and OS. In addition, patients whose tumors presented both high densities of PD-1+ cells and PD-L1+ and/or L2+ tumor cells, displayed the worst clinical outcome. High densities of immature DC isolated in the tumour stroma were associated with high expression of immune checkpoints and patients’ poor clinical outcome. In contrast, the presence of mature DC within Tertiary Lymphoid Structures identified, among the tumours with high CD8+-TIL densities, those with low expression of immune checkpoints and prolonged survival. We also investigated the phenotype of freshly isolated CD8+TIL in 21 ccRCC by flow cytometry. We found a group tumors (8/21) characterised by the over-expression of inhibitory (PD-1 and TIM-3) and activation markers (CD69 and CD38), the expansion of the effector memory cell subpopulation (CCR7-CD45RA-), and a trend toward more aggressive features. In summary, we demonstrated that the infiltration with CD8+ TIL in ccRCC is accompanied by the enhanced expression of immune checkpoints and a poorly coordinated immune response in a subgroup of aggressive tumors
Kurtinović, Andrea. "Exploring the tumor microenvironment to improve immunotherapy for bladder cancer." Thesis, Uppsala universitet, Institutionen för medicinsk biokemi och mikrobiologi, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-366582.
Повний текст джерелаGu-Trantien, Chunyan. "Gene expression profiling of CD4+ T cells infiltrating human breast carcinomas identified CXCL13-producing T follicular helper cells associated with tertiary lymphoid structures and better patient outcome." Doctoral thesis, Universite Libre de Bruxelles, 2012. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/209474.
Повний текст джерелаOver the past decade, studies using murine models have led to the demonstration that CD4+ T helper (Th) cells play a critical role in the control of cancer progression. Additional support for their importance comes from the growing body of recent clinical/translational research data demonstrating the importance of tumor-infiltrating T and B lymphocytes in long-term patient survival for various types of cancer, including breast cancer (BC). As the key population coordinating adaptive immune responses, the role(s) played by individual Th subsets in cancer immunity remains largely controversial. The Th1 subset has uniquely been shown to have a clear anti-tumor effect, guiding CD8+ cytotoxic T cells-mediated direct tumor cell lysis through IFN-γ secretion. Although the negative regulatory role played by Treg cells has been extensively studied in cancer, its prognostic value along with that of Th2 and Th17 cells have not been clearly demonstrated in patients. T follicular helper (Tfh) cells, a recently characterized Th subset that plays a primary role in the generation of B cell memory in secondary lymphoid organs, have not been previously described infiltrating solid tumors. The principal objective of this thesis was to perform an in-depth characterization of tumor-infiltrating CD4+ T cells (TIL) and Th subsets in human BC, where very little is currently known.
Using whole genome microarrays, we analyzed the gene expression profiles of TIL relative to their counterparts from the axillary lymph nodes and peripheral blood. Applying a novel approach, we compared TIL profiles with public microarray data for Th subsets, demonstrating: 1) the presence of all major Th subsets (Th1, Th2, Th17, Treg as well as Tfh) in the TIL, 2) the TIL are effector memory rather than central memory cells, 3) the TIL are concomitantly activated and suppressed and 4) TIL from tumors with extensive lymphoid infiltrates are more activated/less suppressed in the TCR/CD3 signaling pathway, producing higher levels and a wider panel of Th cytokines than TIL from minimally-infiltrated tumors.
We also performed in vitro experiments to study tumor microenvironment effects on TIL by treating normal CD4+ T cells from healthy donor blood with primary tumor supernatants (SN). Tumor SN largely reproduces the TIL profile in normal Th cells, totally suppressing their activation and inhibiting their cytokine production. Intriguingly, the highly restricted number of cytokines induced by tumor SN included several tumor-promoting factors, such as IL-8 and TNF. SN from an extensively-infiltrated tumor was found to be less immune-suppressive than SN from minimally-infiltrated tumors. In line with this, TIL from minimally-infiltrated tumors are closer to SN-treated (suppressed) activated donor cells whereas TIL from extensively-infiltrated tumors are more similar to activated cells without SN treatment.
These results led us to further investigate the observed differences between TIL from extensive and minimally-infiltrated tumors. Genes characterizing Th1 and Tfh cells were enriched in the extensively-infiltrated tumors. PD-1hiCD200hi Tfh cells were specifically detected in extensively-infiltrated tumors by flow cytometry and these cells were determined to be the major source of the chemokine CXCL13. Immunohistochemical analysis demonstrated highly-organized tertiary lymphoid structures (TLS) within the tumor, containing a CD4+/CD8+ T cell zone and a B cell zone with reactive germinal centers where Tfh cells and follicular dendritic cells (FDC) are resident. Their presence suggests the origin of an effective memory anti-tumor immune response.
Finally, we generated Tfh- and Th1-specific gene signatures reflecting differences between extensive and minimal TIL and tested their prognostic value in large-patient-scale public data sets. Our Tfh signature predicts better 10-year disease-free survival for all BC subtypes, outperforming the Th1 signature, suggesting that Tfh cells play a more central role than Th1 cells in anti-tumor immunity. CXCL13 is the determinant gene of our Tfh signature, showing particularly strong prognostic power for the HER2+ subtype. Additionally, these signatures also predict a better response to neoadjuvant chemotherapy.
This thesis research has demonstrated that a previously undetected Th subset, Tfh cells, infiltrates solid tumors and shown that their presence signals enhanced anti-tumor immunity.
Durant cette dernière décennie, des travaux menés dans des modèles murins ont permis de mettre en évidence le rôle crucial joué par les lymphocytes T auxiliaires CD4+ (Th) dans le contrôle de la progression des cancers. De plus, de nombreuses études cliniques et/ou translationnelles récentes corroborent ces observations en montrant une corrélation entre l’importance de l’infiltration intra-tumorale par les lymphocytes T et B et la survie à long terme des patients atteints de différents types de cancer, dont le cancer du sein. En tant que chefs d’orchestre de la réponse immune adaptative, les rôles spécifiques des sous-populations des cellules Th restent controversés. Les Th1 sont la seule population exerçant une claire réponse anti-tumorale, qui est liée à la sécrétion d’IFN-γ, une cytokine primordiale à l’action des lymphocytes T cytotoxiques CD8+. Bien que le rôle néfaste des T régulateurs (Treg) a été largement étudié dans le cancer, leur implication pronostique ainsi que celle des Th2 et Th17 n’ont pas encore été clairement démontrées. La présence d’une sous-population de CD4, les T auxiliaires folliculaires (Tfh), cellules clés dans la différenciation des lymphocytes B mémoires au sein des organes lymphoïdes secondaires, n’a jamais été décrite dans les cancers solides. Le but principal de ce travail est de caractériser les sous-populations des lymphocytes T CD4+ infiltrant la tumeur (TIL) en prenant comme modèle le cancer du sein humain. A l’heure actuelle, il existe très peu de données sur les TIL CD4 dans ce type de cancer.
Nous avons d’abord établi le profil génique des TIL en les comparant avec ceux provenant des ganglions axillaires ou du sang périphérique. En appliquant une nouvelle approche, nous avons comparé les profils des TIL avec les données publiques de sous-populations de Th et démontré que :1) toutes les sous-populations de cellules Th (Th1, Th2, Th17, Treg et Tfh) infiltrent la tumeur, 2) les TIL ont un phénotype plus proche de celui des cellules mémoires effectrices que des cellules mémoires centrales, 3) les TIL sont simultanément activés et supprimés et 4) les TIL provenant des tumeurs massivement infiltrées («extensives») par des lymphocytes sont mieux activés et moins supprimés que les TIL des tumeurs peu infiltrées («minimales») dans la voie de signalisation TCR et produisent des cytokines d’une quantité plus élevée et d’une répertoire plus large.
Nous avons également effectué des expériences in vitro pour étudier l’effet de l’environnement tumoral sur les TIL en traitant des CD4 normaux (provenant des donneuses saines) par le surnageant (SN) extrait des tumeurs fraiches. Le SN tumoral induit un profil génique proche de celui des TIL en inhibant l’activation et la production de cytokines de ces cellules stimulées. Curieusement, parmi le peu de cytokines induites par le SN tumoral, des facteurs pro-tumoraux comme IL-8 et TNF sont détectés. Le surnageant provenant d’une tumeur «extensive» est moins immunosuppresseur que ceux des tumeurs «minimales». Conformément, les TIL provenant des tumeurs «minimales» ont un profil génique proche des cellules normales activées et traitées (supprimées) par le SN tumoral tandis que les TIL des tumeurs «extensives» ressemblent aux cellules activées non traitées.
Ces résultats nous avaient guidés à investiguer plus profondément les différences observées entre les TIL des tumeurs «extensives» et «minimales». Les gènes caractéristiques des Th1 et Tfh sont enrichis dans les tumeurs «extensives». Les cellules Tfh PD1hiCD200hi sont spécifiquement détectées par cytométrie de flux dans les tumeurs «extensives» et sont identifiées comme les producteurs principaux de la chimiokine CXCL13. L’examen par immunohistochimie a permis de détecter des structures lymphoïdes tertiaires (TLS) dans la tumeur, composées d’une zone T (CD4 et CD8) et d’une zone B au sein de laquelle se trouve parfois un centre germinatif actif contenant des Tfh et des cellules dendritiques folliculaires (FDC). La présence de ces structures suggère l’origine d’une réponse immune mémoire anti-tumorale.
Finalement, nous avons établi des signatures géniques spécifiques aux Tfh et Th1 et recherché leur impact pronostique dans deux bases de données publiques à grande échelle. Notre signature Tfh est positivement corrélée avec la survie à 10 ans des patientes de tous les sous-types de cancer du sein, et est plus performante que la signature Th1. Ceci suggère que les Tfh pourraient jouer un rôle plus crucial que les Th1 dans la réponse immune anti-tumorale. CXCL13 est le gène déterminant de notre signature Tfh et son expression est fortement associée à une meilleure survie chez les patientes du sous-type HER2+. De plus, ces signatures prévoient également une meilleure réponse à la chimiothérapie néoadjuvante (préopératoire).
Cette étude a démontré qu’une nouvelle sous-population de CD4, les Tfh, infiltre la tumeur solide et leur présence indique l’existence d’une immunité anti-tumorale renforcée.
Doctorat en Sciences biomédicales et pharmaceutiques
info:eu-repo/semantics/nonPublished
Petitprez, Florent. "Integrated analysis and clinical impact of immune and stromal microenvironments in solid tumors Quantitative analyses of the tumor microenvironment composition and orientation in the era of precision medicine Transcriptomic analysis of the tumor microenvironment to guide prognosis and immunotherapies Tumor microenvironment quantification tool draws a comprehensive map of the tumor microenvironment of non-hematologic human cancers The mMCP-counter method to estimate abundance of tissue-infiltrating immune and stromal cell populations using gene expression in murine samples Immune sub-classes in sarcoma predict survival and immunotherapy response Intra-tumoral tertiary lymphoid structures are associated with a low risk of hepatocellular carcinoma early recurrence Association of IL-36γ with tertiary lymphoid structures and inflammatory immune infiltrates in human colorectal cancer Immune-based identification of cancer patients at high risk of progression Tumor-infiltrating and peripheral blood T-cell immunophenotypes predict early relapse in localized clear cell renal cell carcinoma PD-L1 expression and CD8+ T-cell infiltrate are associated with clinical progression in patients with node-positive prostate cancer Intratumoral classical complement pathway activation promotes cancer progression". Thesis, Sorbonne Paris Cité, 2018. http://www.theses.fr/2018USPCB104.
Повний текст джерелаTumors are composed not only of malignant cells but also contain a vast variety of non-malignant cells, notably immune cells forming the tumor microenvironment (TME). The composition of the TME was shown to be associated with clinical outcome for cancer patients, in terms of survival and therapeutic responses. With the relatively recent development of immunotherapies targeting specific elements of the TME, tumor immunology has risen a strong interest and holds a strong therapeutic potential. Several methodologies have been developed to study the composition of the TME with an increased precision. Notably, some methods such as MCP-counter enable the use of the tumor bulk transcriptome to quantify cell populations composing the TME. The methodological aspect of this PhD project consisted in setting up an enhanced version of MCP-counter that can be readily applied to RNA-Seq data, as well as propose an adaptation of the method for mouse models. Using MCP-counter, the TME of large series of tumors can be easily analyzed. The application part of this PhD work consisted of applying MCP-counter to establish an immune-based classification of soft-tissue sarcoma, a rare, aggressive and heterogeneous cancer type. The immune classification notably allowed to identify immune low and high groups, and a group characterized by a strong vasculature. Interestingly, the classification was notably found to be predictive of the patients' response to immunotherapies. It also highlighted an important role of tertiary lymphoid structures (TLS). TLS are lymph-node-like structures composed of T and B cells that form within the tumor or in close proximity. They are a site of formation and maturation of antitumoral immune responses. TLS are raising a growing interest in many malignancies. In most cancer types, a strong infiltration by T cells, in particular CD8+ T cells, is associated with a favorable clinical outcome. However, clear-cell renal cell carcinoma and prostate cancer are exceptions to this general rule. Indeed, in these urological cancers, an increased infiltration by T cells is associated with a decreased patient survival and with earlier relapse and disease progression. In a third part of this thesis, these exceptions are investigated with more details by scrutinizing the TME, and questioning the implication of the complement system. Overall, this thesis presents how the combination of several analysis methods, in silico, in situ and in vivo, can help achieve an extremely precise description of the TME. Knowing accurately what cell populations and what their functional orientation can help guide patients care and improve clinical outcome. Complete description of the TME opens the way towards personalized medicine for cancer patients
Morcrette, Guillaume. "GEPELIN : genomics of pediatric liver neoplasms APC germline hepatoblastomas demonstrate cisplatin induced intratumor tertiary lymphoid structures and good prognosis Molecular classification of hepatocellular adenoma associates with risk factors, bleeding, and malignant transformation." Thesis, Sorbonne Paris Cité, 2018. http://www.theses.fr/2018USPCB225.
Повний текст джерелаMichot, Audrey. "Projet PériSARC : identification de facteurs morphologiques et moléculaires prédictifs de rechute dans les sarcomes des tissus mous des membres et de la paroi du tronc." Electronic Thesis or Diss., Bordeaux, 2023. http://www.theses.fr/2023BORD0239.
Повний текст джерелаIdentification of morphological and molecular predictive factors of recurrence in soft tissue sarcomas of the limbs and trunk wallSarcomas are rare malignant mesenchymal tumors that represent 2/100,000 new cases per year. They represent a heterogeneous group of tumors, generally associated with a poor prognosis. Surgical resection remains the only curative treatment. These tumors can recur even after optimal surgery, classified R0, i.e. without microscopic residue (in about 10% of cases). Different pathological prognostic factors are known, including initial tumor size, FNCLCC histological grade scheme and deep tumor location. At present, there is no available marker to predict the risk of recurrence following curative surgical resection of a sarcoma, which complicates the clinical decision making.So far, studies have focused on the features of tumor cells but the features of tissue margins surrounding sarcoma cells are unknown. The margin constitutes the interface between the tumor tissue and the healthy tissue, it is a remodeled tissue located in direct contact with the tumor cells. The mode of tumor cell infiltration differs from one tumor to another and could modulate or reflect the risk of local relapse. Interestingly, a molecular signature predictive of local relapse has been identified in hepatocellular carcinoma by studying of the “healthy tissue”, but no data is available in sarcomas. This thesis project aims at identifying predictive factors of local tumor relapse by systematically and comparatively studying the tumor and its peripheral zones, including the central tumor zone (Tc), peripheral tumor zone (Tp), healthy peritumoral tissue in contact tumor cells (HT-R1) and remote healthy tissue (HT) in a retrospective series of 144 soft tissue sarcomas.In a first part, we have characterized the immune infiltrate associated with sarcomas by systematically studying the tissue margin with a focus on tertiary lymphoid structures (TLS), a predictive factor of response to immunotherapy in sarcomas using microscopy and immunohistochemistry. The distribution of TLS predominates in the tumor margin and seems to be correlated with a better prognosis.The second part studied by deep learning (DL) the different tumor areas using scanned slides to highlight new unknown predictive morphological factors correlated with relapse and to establish a predictive Deep learning (DL) signature of local relapse. The DL score exceeds the survival curves associated with the FNCLCC grade; the current gold standard used to assess patient risk in clinical practice.A third approach compared the transcriptome of the different tumor areas determined by whole RNA-sequencing to identify deregulated biomarkers in the different areas and to determine the immunological signatures in the different territories. Genes of interest have been highlighted in the marginal zone that may be associated with the risk of relapse. Finally, a spatial transcriptomic analysis by Visium technique was carried out on a few cases on an exploratory basis.Our study has evidenced biomarkers correlated with a higher risk of relapse that could allow in the future to identify high risk patients to personalize their follow-up and validate complementary therapeutic modalities
Riffard, Clémence. "Rôle des ILC3 et de l'innervation sympathique dans l'induction des structures lymphoïdes tertiaires au cours de l'inflammation pulmonaire." Electronic Thesis or Diss., Sorbonne université, 2023. http://www.theses.fr/2023SORUS492.
Повний текст джерелаTertiary lymphoid structures (TLS) are organized lymphoid aggregates forming in non-lymphoid tissues under inflammatory conditions, and a priming site for cellular and humoral immune responses. The positive prognostic value of TLS has been reported in a variety of diseases such as viral or bacterial infections, and solid tumors. Our team deciphers the formation of such structures within the inflamed lung parenchyma. The main axis of my work was dedicated to elucidating the role of pulmonary ILC3 in the induction of TLS neogenesis. To this extent, I have contributed to the development of a murine model of pulmonary inflammation triggering TLS formation, relying on repeated intranasal instillations of bacterial lipopolysaccharide (LPS). First, I established the kinetics of TLS appearance and involution within lung tissue, followed by the characterization and quantification of these structures. I have then thoroughly characterized the evolution of ILC3 throughout pulmonary inflammation. I have studied their transcriptomic profile and assessed their lymphoid tissue inducing capacities, both in vitro and in vivo. Our data showed that ILC3 proportions are increased in mouse lungs in parallel to TLS neogenesis, and these cells expressed numerous transcripts of genes encoding major molecules involved in the very first steps of lymphoid organogenesis. Adoptive transfer of isolated LPS-induced eGFP+ ILC3 showed that these cells can migrate to the lungs of recipient mice and boost pulmonary TLS formation following low dose LPS treatment. Thus, this work unravelled a promising cellular target to be explored for pulmonary TLS induction. Moreover, considering the lungs’ dense innervation, our laboratory had started investigating how sympathetic nerve signalling impacts pulmonary TLS formation. Using selective 6-OHDA-mediated sympathetic nerve fibers depletion, I showed that decreased numbers and density of TLS are formed in the absence of sympathetic innervation in the LPS model. Moreover, following 6-OHDA treatment, I reported a significant decrease in pulmonary naive B cells proportion after LPS treatment, as well as in the primary antibody response to ovalbumin immunization. These data prompted me to hypothesize that sympathetic innervation participates in TLS formation within inflamed pulmonary tissue, through the modulation of the B cell compartment. Overall, my thesis work has aimed at a better understanding of the mechanisms underlying pulmonary TLS formation, and identified ILC3 as a cellular target that could be manipulated to enhance TLS formation, thus improving the prognosis of patients with infections or cancers
Fontugne, Jacqueline. "Basal/Squamous Subtype of Bladder Cancer : Mechanisms of Progression, Transcriptional Regulators and New Therapeutic Strategies A Consensus Molecular Classification of Muscle-invasive Bladder Cancer Gene Expression Dynamics During Progression to Basal/Squamous Bladder Cancer in the BBN Mouse Model Reveals a Switch From EGFR to FGFR1 Dependency in Sarcomatoid Tumors Enhancer Profiling of Bladder Cancer Reveals a Candidate Basal/Squamous-Specific Core Regulatory Circuitry Tertiary Lymphoid Structures Marker CXCL13 Is Associated With 1 Better Survival for 2 Patients With Advanced-Stage Bladder Cancer Treated With Immunotherapy." Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASL030.
Повний текст джерелаBladder cancer is frequent, with poor prognosis at the muscle-invasive stage (MIBC). The basal/squamous (Ba/Sq) subtype of MIBC can progress to the sarcomatoid variant and has very poor outcome.Owing to their aggressive phenotype, Ba/Sq tumors are often diagnosed at advanced stages, hampering the study of disease progression in humans. In a first part, we thus utilized a carcinogen-induced mouse model of Ba/Sq MIBC to explore the molecular changes occurring from pre-invasive stages, to Ba/Sq MIBC, to the sarcomatoid variant. We determined that pre-invasive stages already harbor Ba/Sq features and identified clusters of genes with co-expression changes during progression, with relevance to human disease. A focus on sarcomatoid cases revealed their close resemblance to the human sarcomatoid counterpart. We identified an EGFR/FGFR1 switch during sarcomatoid dedifferentiation, correlated with epithelial-mesenchymal transition (EMT). This finding indicates that patients with sarcomatoid, EMT- or FGFR1-high tumors may benefit from FGFR inhibitors.Additionally, the master transcription factors (TFs) controlling the Ba/Sq phenotype are poorly understood. One approach to identify such TFs is to pinpoint to those forming a core regulatory circuitry (CRC) driven by super-enhancers (SE), i.e., large genomic regulatory domains with a major role in cell identity. In a second part, we identified such SEs by performing ChIP-seq for H3K27ac, a typical histone modification found in SE regions, in bladder cancer primary tumors and cells lines, including of Ba/Sq subtype. We determined that distinct H3K27ac profiles are associated with molecular subtypes and identified subtype-specific SEs. CRC analysis using the CRCmapper algorithm nominated potential master TFs driving the Ba/Sq phenotype, including RUNX2 and KLF7. Further functional validation of these candidates in bladder cancer cell lines is necessary.Overall, this work furthers our understanding of Ba/Sq MIBC and provides potential new therapeutic strategies
Geyer, Elisabeth. "Akkumulation infiltrierender 6-sulfo LacNAc+ dendritischer Zellen im Kolonkarzinom." Doctoral thesis, 2016. https://tud.qucosa.de/id/qucosa%3A30390.
Повний текст джерелаColorectal cancer as an immunogenic tumor is characterized by a marked infiltration of different immune cell populations. Especially CD8+ T-lymphocytes and CD4+ T helper cells type 1 seem to influence tumor growth and therefore play an increasing role as prognostic markers. Thus, it has been shown that high densities of these T cell subsets are associated with improved survival of colorectal cancer patients. These new insights could become part of the classification of colorectal cancer and influence therapeutic decisions. Despite these studies, little is known about the frequency and properties of native human dendritic cells (DCs) in colon cancer tissues and their potential role in antitumor immunity. DCs as professional antigen-presenting cells are critical for the induction and maintenance of antitumor immunity and can essentially influence tumor progression. Thus, the frequency, distribution, maturation, and cytokine expression of 6-sulfo LacNAc+ (slan) DCs in colon cancer tissues as well as in corresponding tumor-free colon specimens were investigated. SlanDCs represent a subset of human blood DCs that secrete large amounts of proinflammatory cytokines upon activation. Furthermore slanDCs are able to efficiently activate CD4+ T cells, tumor-reactive CD8 + T cells, and natural killer cells. Due to these functional properties, slanDCs may contribute to antitumor immunity and may influence tumor growth. Within this doctoral thesis the presence of slanDCs in primary colon cancer samples was immunohistochemically verified. In this context, a higher frequency of slanDCs in colon cancer tissues (mean: 16,69 slanDCs/mm2, n=38) in comparison to the corresponding tumor-free specimens (mean: 9,25 slanDCs/mm2, n=38) could be detected. Moreover, higher frequencies of infiltrating slanDCs in colon cancer tissues (mean: 18,85 slanDCs/mm2, n=20) were detectable compared to plasmacytoid DCs (mean: 4,86 pDCs/mm2, n=20), representing another human blood DC-subset. Based on these results, various immunofluorescence stainings were performed to investigate maturation and cytokine expression of the infiltrating slanDCs. SlanDCs expressing the maturation marker CD83 were detected in all 10 analyzed colon cancer tissues (mean: 46,7% CD83+ slanDCs). In addition, IL-23-expressing slanDCs were present at varying percentages in 10 of 11 evaluated colon cancer samples (mean: 33,8% IL-23+ slanDCs). Interestingly, in several tissues slanDCs represented a marked proportion of all IL-23-expressing cells. However, slanDCs expressing tumor necrosis factor could only be detected in low frequencies in the analyzed colon cancer specimens. Further studies revealed that slanDCs are a novel component of the T-cell zone of colon cancer-associated tertiary lymphoid structures (TLS). A proportion of these TLS-associated slanDCs displays a mature phenotype or express IL-23. These novel findings indicate that slanDCs may modulate adaptive immune responses in the T-cell zone of colon cancer-associated TLS and may contribute to the regulation of tumor progression. Furthermore the IL-23-expressing slanDCs in the tumor-surrounding stroma and the TLS may promote the generation of IL-17-producing cells and may participate in inflammation-related cancer progression mediated by the IL-23/IL-17 axis. These novel observations can help to decipher the role of human native DCs in colon cancer and may have implications for the design of therapeutic strategies against this tumor entity.:Abbildungsverzeichnis IV Tabellenverzeichnis VI Abkürzungsverzeichnis VII 1 Einleitung 1 1.1 Das humane Immunsystem 1 1.2 Dendritische Zellen 2 1.2.1 Phänotyp und Funktion dendritischer Zellen 3 1.2.2 Aktivierung von T-Lymphozyten durch dendritische Zellen 4 1.2.3 Subpopulationen humaner dendritischer Zellen 6 1.3 Interaktion von Immunsystem und Tumor 8 1.4 Infiltration von Tumoren durch Immunzellen 10 1.5 Kolonkarzinome 11 1.5.1 Entwicklung, Charakteristika und Klassifikation kolorektaler Karzinome 12 1.5.2 Therapieansätze des Kolonkarzinoms 14 1.6 Zielstellung 17 2 Material und Methoden 19 2.1 Material 19 2.1.1 Chemikalien und Reagenzien 19 2.1.2 Lösungen und Puffer 19 2.1.3 Testkitsysteme 19 2.1.4 Antikörper zur Detektion von Oberflächenmolekülen 20 2.1.5 Seren 20 2.1.6 Geräte 21 2.1.7 Sonstige Materialien 21 2.1.8 Gewebeproben 21 2.2 Methoden 23 2.2.1 Vorbereitung der Gewebeproben zur Immunmarkierung 23 2.2.2 Immunhistochemischer Nachweis von slanDCs und pDCs in Kolonkarzinom-Geweben und tumorfreien Kolon-Geweben 24 2.2.3 Untersuchung der Zytokinexpression von slanDCs in Kolonkarzinom-Geweben und tumorfreien Kolon-Geweben mit Fluoreszenzfärbungen 25 2.2.4 Nachweis der Expression von CD83 durch slanDCs in Kolonkarzinom-Geweben mit einer Fluoreszenzfärbung 26 2.2.5 Analyse einer Kolokalisation von slanDCs und CD3+ T-Lymphozyten in Kolonkarzinom-Geweben 26 2.2.6 Detektion von slanDCs in tertiären lymphoiden Strukturen von Kolonkarzinom-Geweben 26 2.2.7 Nachweis der Expression von CD83 und Interleukin-23 durch slanDCs in TLS von Kolonkarzinom-Geweben 28 2.2.8 Auswertung der immunhistochemischen Färbungen von slanDCs und pDCs in Kolonkarzinom-Geweben und in tumorfreien Kolon-Geweben 29 2.2.9 Statistik 30 3 Ergebnisse 31 3.1 Nachweis von slanDCs in Kolonkarzinom-Geweben 31 3.2 Assoziation der ermittelten Frequenz infiltrierender slanDCs mit der TNM-Klassifikation des Kolonkarzinoms 37 3.3 Nachweis von pDCs in Kolonkarzinom-Geweben 39 3.4 Expression von CD83 durch slanDCs in Kolonkarzinom-Geweben 42 3.5 Expression von Interleukin-23 durch slanDCs in Kolonkarzinom-Geweben 44 3.6 Expression von Tumornekrosefaktor durch slanDCs in Kolonkarzinom-Geweben 47 3.7 Kolokalisation von slanDCs und CD3+ T-Lymphozyten in Kolonkarzinom-Geweben 50 3.8 Detektion von slanDCs in tertiären lymphoiden Strukturen von Kolonkarzinom-Geweben 51 3.9 Expression von CD83 durch slanDCs in TLS von Kolonkarzinom-Geweben 54 3.10 Expression von IL-23 durch slanDCs in TLS von Kolonkarzinom-Geweben 56 4 Diskussion 57 4.1 DCs als zentrale Mediatoren einer Tumor-gerichteten Immunantwort 57 4.2 DCs als Komponente des Immunzellinfiltrats im Kolonkarzinom 58 4.2.1 Immunhistochemischer Nachweis von DCs in Kolonkarzinom-Geweben 58 4.2.2 Zielstrukturen eingesetzter Antikörper in immunhistochemischen Färbungen von DCs 60 4.2.3 SlanDCs als DC-Subpopulation in Kolonkarzinom-Geweben 61 4.3 Phänotyp infiltrierender slanDCs im Kolonkarzinom 64 4.3.1 Expression von CD83 durch slanDCs 64 4.3.2 Expression von Interleukin-23 durch slanDCs 67 4.3.3 Expression von Tumornekrosefaktor durch slanDCs 69 4.4 SlanDCs als Komponente von tertiären lymphoiden Strukturen im Kolonkarzinom 71 5 Zusammenfassung 75 6 Summary 77 7 Literaturverzeichnis 79 Anlage 1 91 Anlage 2 92 Danksagung 93