Добірка наукової літератури з теми "Ternary Blend Organic Solar Cells"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Ternary Blend Organic Solar Cells".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Ternary Blend Organic Solar Cells"

1

Weng, Kangkang, Chao Li, Pengqing Bi, Hwa Sook Ryu, Yikun Guo, Xiaotao Hao, Dahui Zhao, Weiwei Li, Han Young Woo, and Yanming Sun. "Ternary organic solar cells based on two compatible PDI-based acceptors with an enhanced power conversion efficiency." Journal of Materials Chemistry A 7, no. 8 (2019): 3552–57. http://dx.doi.org/10.1039/c8ta12034j.

Повний текст джерела
Анотація:
The introduction of perylene diimide (PDI)-based polymer acceptor (PDI-V) into the ternary blends not only broadens the absorption of blend films but also increases the electron mobilities. As a result, a high efficiency of 9.43% was obtained for PDI-based ternary organic solar cells.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Nam, Minwoo, Jaehong Yoo, Yunjae Park, Hye Yeon Noh, Yongkook Park, Junhee Cho, Jung-A. Kim, et al. "Ternary blend organic solar cells with improved morphological stability." Journal of Materials Chemistry A 7, no. 16 (2019): 9698–707. http://dx.doi.org/10.1039/c9ta00382g.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Doumon, Nutifafa Y., Félix V. Houard, Jingjin Dong, Panagiotis Christodoulis, Mikhail V. Dryzhov, Giuseppe Portale, and L. Jan Anton Koster. "Improved photostability in ternary blend organic solar cells: the role of [70]PCBM." Journal of Materials Chemistry C 7, no. 17 (2019): 5104–11. http://dx.doi.org/10.1039/c8tc06621c.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Yang, Jianzhong, Wenhan He, Kimberly Denman, Ying-Bing Jiang, and Yang Qin. "A molecular breakwater-like tetrapod for organic solar cells." Journal of Materials Chemistry A 3, no. 5 (2015): 2108–19. http://dx.doi.org/10.1039/c4ta05405a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Xu, Weidong, and Feng Gao. "The progress and prospects of non-fullerene acceptors in ternary blend organic solar cells." Materials Horizons 5, no. 2 (2018): 206–21. http://dx.doi.org/10.1039/c7mh00958e.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Li, Hongfei, Zhenhua Yang, Cheng Pan, Naisheng Jiang, Sushil K. Satija, Di Xu, Dilip Gersappe, Chang-Yong Nam, and Miriam H. Rafailovich. "A new strategy to engineer polymer bulk heterojunction solar cells with thick active layers via self-assembly of the tertiary columnar phase." Nanoscale 9, no. 32 (2017): 11511–22. http://dx.doi.org/10.1039/c7nr03789a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Xiao, Liangang, Ke Gao, Yangdong Zhang, Xuebin Chen, Lintao Hou, Yong Cao, and Xiaobin Peng. "A complementary absorption small molecule for efficient ternary organic solar cells." Journal of Materials Chemistry A 4, no. 14 (2016): 5288–93. http://dx.doi.org/10.1039/c6ta00783j.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Benten, Hiroaki, Takaya Nishida, Daisuke Mori, Huajun Xu, Hideo Ohkita, and Shinzaburo Ito. "High-performance ternary blend all-polymer solar cells with complementary absorption bands from visible to near-infrared wavelengths." Energy & Environmental Science 9, no. 1 (2016): 135–40. http://dx.doi.org/10.1039/c5ee03460d.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Farinhas, Joana, Ricardo Oliveira, Quirina Ferreira, Jorge Morgado, and Ana Charas. "Enhanced Efficiency of PTB7 : PC61BM Organic Solar Cells by Adding a Low Efficient Polymer Donor." International Journal of Photoenergy 2017 (2017): 1–8. http://dx.doi.org/10.1155/2017/4501758.

Повний текст джерела
Анотація:
Ternary blend polymer solar cells combining two electron-donor polymers, poly[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl] (PTB7) and poly[2,5-bis(3-dodecylthiophen-2-yl)thieno[3,2-b]thiophene] (pBTTT) and [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM), as electron-acceptor, were fabricated. The power conversion efficiency of the ternary cells was enhanced by 18%, with respect to the reference binary cells, for a blend composition with 25% (wt%) of pBTTT in the polymers content. The optimized device performance was related to the blend morphology, nonrevealing pBTTT aggregates, and improved charge extraction within the device.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Liao, Chentong, Ming Zhang, Xiaopeng Xu, Feng Liu, Ying Li, and Qiang Peng. "Green solvent-processed efficient non-fullerene organic solar cells enabled by low-bandgap copolymer donors with EDOT side chains." Journal of Materials Chemistry A 7, no. 2 (2019): 716–26. http://dx.doi.org/10.1039/c8ta10882j.

Повний текст джерела
Анотація:
By a combination of side chain and ternary blend strategies, novel BDT-TT-based copolymer donors were developed to improve the green solvent solubility, crystallinity, energy level, carrier mobility and blend morphology. Non-fullerene binary and ternary blend devices based on PTB-EDOTS exhibited high PCEs of 10.18% and 12.26%, respectively.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Ternary Blend Organic Solar Cells"

1

Kraft, Thomas. "Ternary blend ink formulations for fabricating organic solar cells via inkjet printing." Thesis, Limoges, 2015. http://www.theses.fr/2015LIMO0027.

Повний текст джерела
Анотація:
L’objectif final de la thèse est l'impression de la couche photo-active ternaire d'une cellule solaire organique en utilisant deux approches: l'une concerne l'apport de nanotubes de carbone (SWCNT) pour améliorer les propriétés de transport, l'autre concerne la préparation de mélanges ternaires de matériaux pour contrôler la couleur des cellules. Les encres pour la couche active incluant des SWCNT fonctionnalisés sont composées d’un donneur d'électron (polymère) (poly(3-hexylthiophène), [P3HT]) et d’un accepteur d'électron ( [6,6]-phényl C61-butyrique ester méthylique d'acide [PCBM]) et ont été développées pour la fabrication de cellules inversées. Ces cellules sont réalisées sur substrats de verre pour l'optimisation de leurs performances, puis sur substrats plastiques pour les applications. Diverses couches d'interfaces ont été testées, qui incluent l'oxyde de zinc (ZnO, couches obtenues par pulvérisation ionique (IBS) ou à partir de solutions de nanoparticules) pour la couche de transport d'électrons et le PEDOT:PSS, le P3MEET, le V2O5 et le MoO3 pour la couche de transport de trous. Des essais ont été effectués avec et sans CNT afin d’étudier leur impact sur les performances. Des résultats similaires sont obtenus dans les deux cas. Il était attendu que les CNT améliorent les performances, ce qui n’a pas été observé pour le moment. Des travaux supplémentaires sont donc nécessaires au niveau de la formulation de la couche active.Avec trois polymères de couleur rouge (P3HT), bleu (B1) et vert (G1), nous avons préparé des mélanges ternaires efficaces permettant l'obtention de couleurs jusque là indisponibles . Nous avons fait une étude sur le piégeage et les mécanismes de diodes parallèles associés aux mélanges. En général, nous avons constaté que les mélanges ternaires de polymères bleu et vert peuvent être décrits par une mécanisme de diodes parallèles, sans entrainer de perte de performances, ce qui n'est pas possible pour les systèmes P3HT:B1 :PCBM et P3HT:G1:PCBM qui se piègent mutuellement. L’objectif final du projet est l'impression de la couche photo-active ternaire d'une cellule solaire organique, composites ternaires (polymère:polymères:acceptor) ou dopés avec les SWCNT. Cette étape nécessite encore des développements futurs
Two approaches were followed to achieve increased control over properties of the photo-active layer (PAL) in solution processed polymer solar cells. This was accomplished by either (1) the addition of functionalized single-walled carbon nanotubes (SWCNTs) to improve the charge transport properties of the device or (2) the realization of dual donor polymer ternary blends to achieve colour-tuned devices.In the first component of the study, P3HT:PC61BM blends were doped with SWCNTs with the ambition to improve the morphology and charge transport within the PAL. The SWCNTs were functionalized with alkyl chains to increase their dispersive properties in solution, increase their interaction with the P3HT polymer matrix, and to disrupt the metallic characteristic of the tubes, which ensures that the incorporated SWCNTs are primarily semi-conducting. P3HT:PCBM:CNT composite films were characterized and prepared for use as the photoactive layer within the inverted solar cell. The CNT doping acts to increase order within the active layer and improve the active layer’s charge transport properties (conductivity) as well as showed some promise to increase the stability of the device. The goal is that improved charge transport will allow high level PSC performance as the active layer thickness and area is increased, which is an important consideration for large-area inkjet printing. The use of ternary blends (two donor polymers with a fullerene acceptor) in bulk-heterojunction (BHJ) photovoltaic devices was investigated as a future means to colour-tune ink-jet printed PSCs. The study involved the blending of two of the three chosen donor polymers [red (P3HT), blue (B1), and green (G1)] with PC61BM. Through EQE measurements, it was shown that even devices with blends exhibiting poor efficiencies, caused by traps, both polymers contributed to the PV effect. However, traps were avoided to create a parallel-like BHJ when two polymers were chosen with suitable physical compatibility (harmonious solid state mixing), and appropriate HOMO-HOMO energy band alignment. The parallel diode model was used to describe the PV circuit of devices with the B1:G1:PC61BM ternary blend
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Wang, Yanbin. "Exciton Harvesting in Ternary Blend Polymer Solar Cells." 京都大学 (Kyoto University), 2014. http://hdl.handle.net/2433/192193.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Anselmo, Ana Sofia. "The morphology of polyfluorene : fullerene blend films for photovoltaic applications." Licentiate thesis, Karlstads universitet, Avdelningen för maskin- och materialteknik, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-7950.

Повний текст джерела
Анотація:
Polymer photovoltaic systems whose photoactive layer is a blend of a semiconducting polymer with a fullerene derivative in a bulk heterojunction configuration are amongst the most successful organic photovoltaic devices nowadays. The three-dimensional organization in these layers (the morphology) plays a crucial role in the performance of the devices. Detailed characterization of this organization at the nanoscale would provide valuable information for improving future material and architectural design and for device optimization. In this thesis, the results of morphology studies of blends of several polyfluorene copolymers (APFOs) blended with a fullerene derivative are presented. Near-Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy was combined with dynamic Secondary Ion Mass Spectrometry (dSIMS) for surface and in-depth characterization of the blend films. NEXAFS was performed using two different electron detection methods, partial (PEY) and total (TEY) electron yield, which provide information from different depth regimes. Quantitative compositional information was obtained by fitting the spectra of the blend films with a linear combination of the spectra of films of the pure components. In blends of APFO3 with PCBM in two different blend ratios (1:1 and 1:4 of polymer:fullerene) NEXAFS data show the existence of compositional gradients in the vertical direction for both blend ratios, with clear polymer enrichment of the free surface. A series of APFOs with systematic changes in the side-chains was studied and it was shown that those small modifications can affect polymer:fullerene interaction and induce vertical phase separation. Polymer-enrichment of the free surface was clearly identified, in accordance with surface energy minimization mechanisms, and a compositional gradient was revealed already in the first few nanometers of the surface of the blend films. dSIMS showed that this vertical phase separation propagates throughout the film. It was possible to determine that as the polar character of the polymer increases, and thus the polymer:fullerene miscibility is improved, the tendency for vertical phase separation becomes stronger.

Paper II was not published at the time of the licentiate defence and had the title: NEXAFS spectroscopy study of the surface composition in APFO3:PCBM blend films

Стилі APA, Harvard, Vancouver, ISO та ін.
4

Szymanski, Robin. "Vers l’industrialisation des cellules solaires organiques ternaires." Thesis, Bordeaux, 2020. http://www.theses.fr/2020BORD0298.

Повний текст джерела
Анотація:
L’énergie solaire photovoltaïque organique (OPV) est une technologie émergente exempte de matériaux rares et à faibles coûts énergétiques de production. Ces modules, composés de plusieurs couches minces empilées, peuvent être souples, semi-transparents et de différentes formes et couleurs, permettant de les intégrer dans le paysage urbain ou aux objets du quotidien. A l’échelle laboratoire, les rendements de conversion énergétique reportés en OPV n’ont cessé de croitre d’année en année, grâce en particulier à l’émergence de nouvelles couches actives, classiquement composées de deux semi-conducteurs organiques, l’un donneur d’électrons, l’autre accepteur d’électrons (système binaire). Il a été montré qu’il est possible d’en ajouter un troisième pour former un mélange ternaire afin d’améliorer les performances tout en gardant les mêmes coûts de production. Le but de cette thèse est donc de comprendre l’impact du troisième composé et de développer des solutions innovantes tout en intégrant les contraintes liées à leur industrialisation. Dans un premier temps, des couches binaires à base des polymères DT-PDPP2T-TT et PTQ10 ont été mises au point en respectant ces contraintes. Leurs performances prometteuses ont servi de socle à l’étude des mélanges ternaires. Le premier raisonnement s’est basé sur l’augmentation de la densité de courant de court-circuit en ajoutant un composé présentant un spectre d’absorption solaire complémentaire. Cette démarche n’a pas été concluante car le facteur de forme diminuait fortement. Il a alors été décidé de se concentrer sur ce paramètre en ajoutant du PC61BM, accepteur à forte mobilité d’électrons. Cette stratégie a permis de porter les rendements de conversion jusqu’à 10.3% en conditions semi-industrielles avec un solvant non toxique et jusqu’à 14.7% avec un solvant halogéné. Cette amélioration a été attribuée à des changements morphologiques impactant le transport de charge. De plus, lorsque les accepteurs sont miscibles, la tension en circuit ouvert est proportionnelle au ratio entre les deux accepteurs. Une approche prédictive basée sur les énergies de surface a ensuite été menée pour mesurer la compatibilité des matériaux entre eux. Les dispositifs ternaires à base de PTQ10 : 4TIC-4F : PC61BM ont montré une meilleure photostabilité. Pour finir, une étude de pré-industrialisation s’est avérée concluante en vue d’essais à plus grande échelle
Organic photovoltaics (OPV) is a promising solar energy technology excluding the usage of rare elements and with low production costs. These multilayer OPV modules can be flexible, semi-transparent and with various colors enabling innovative usage in the urban landscape and on our everyday technological items. At lab scale, over the years, the power conversion efficiency of OPV cells grew up dramatically, especially thanks to the development of novel active layers, blends of two organic semiconductors, one electron donor and one electron acceptor (binary system). Recently, it has been shown that adding a third material in the active layer, forming a ternary blend, increases the performances. This strategy is of interest for the OPV industry by maintaining the low production costs of the modules. Therefore, this work aims to understand the role of this third component and to develop innovative active layers while respecting the industrial requirements for large-scale production. First, we focused on binary blends with PTQ10 and DT-PPDT2T-TT as polymeric donors. Promising efficiencies were achieved on these binary systems as a base for our ternary studies. We tried to increase the short circuit current by adding a third organic semiconductor with complementary light absorption. This approach was not successful because the fill factor dropped drastically. Thus, we focused on improving this parameter by adding the well-known fullerene acceptor PC61BM. This strategy enabled to increase the efficiency up to 10.3% in semi-industrial conditions with a non-toxic solvent and up to 14.7% in halogenated solvent. Morphological changes were responsible of charge transport improvement, which has proven to be one of the key factor in ternary blends. In addition, the open circuit voltage has been shown proportional to the weight ratio between both acceptors when they form an alloy. Based on these studies, we developed a predictive approach to assess the compatibility between the materials. Finally, ternary PTQ10:4TIC-4F:PC61BM devices turned out to be the most promising in terms of pre-industrialization and photostability
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Mori, Daisuke. "Development of Polymer Blend Solar Cells Composed of Conjugated Donor and Acceptor Polymers." 京都大学 (Kyoto University), 2015. http://hdl.handle.net/2433/199331.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Hyung, Do Kim. "Development of Highly Efficient Organic-Inorganic Hybrid Solar Cells." 京都大学 (Kyoto University), 2017. http://hdl.handle.net/2433/225630.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Coffey, David C. "Exploring organic solar cells with scanning probe microscopy new high-resolution techniques to characterize and control organic blend films." Saarbrücken VDM Verlag Dr. Müller, 2007. http://d-nb.info/988568799/04.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Gasparini, Nicola [Verfasser], and Christoph J. [Gutachter] Brabec. "Controlling charge carrier recombination in ternary organic solar cells / Nicola Gasparini ; Gutachter: Christoph J. Brabec." Erlangen : Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2017. http://d-nb.info/1136473254/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Beyer, Beatrice. "Architectural Approaches for the Absorption Layer and their Impact on Organic Solar Cells." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-133594.

Повний текст джерела
Анотація:
This study focuses on the architectural modification of pin-type small-molecule organic solar cells, in particular on the absorption layer and its influence on the key solar cell parameters, such as short circuit current density, fill factor and open circuit voltage. Three different approaches have been applied to improve the match between the solar spectrum and the spectral sensitivity of organic solar cells. In the first part, deposition parameters such as substrate temperature, gradient strength and (graded) absorption layer thickness are evaluated and compared to organic solar cells with homogeneously deposited absorption layers. Moreover, the gradient-like distribution of the absorption layer is characterized optically and morphological effects have been extensively studied. In order to isolate the origin of the efficiency improvement due to the graded architecture, voltage-dependent spectral response measurements have been performed and gave new insights. The second part concentrates on the efficient in-coupling of converted UV light, which is usually lost because of the cut off properties of organic light in-coupling layers. Via Förster resonance energy transfer, the absorbed UV light is re-emitted as red light and contributes significantly to higher short circuit current densities. The correlation between doping concentration, simple stack architecture modifications and the performance improvement is duly presented. In the third and last part, the impact of tri-component bulk heterojunction absorption layers is investigated, as these have potential to broaden the sensitivity spectrum of organic solar cells without chemical modification of designated absorber molecules. Along with the possibility to easily increase the photocurrent, an interesting behavior of the open circuit voltage has been observed. Knowledge about the impact of slight modifications within the solar stack architecture is important in order to be able to improve the device efficiency for the production of cheap and clean energy.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Fischer, Janine. "Density of States and Charge Carrier Transport in Organic Donor-Acceptor Blend Layers." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-184493.

Повний текст джерела
Анотація:
In the last 25 years, organic or "plastic" solar cells have gained commercial interest as a light-weight, flexible, colorful, and potentially low-cost technology for direct solar energy conversion into electrical power. Currently, organic solar cells with a maximum power conversion effciency (PCE) of 12% can compete with classical silicon technology under certain conditions. In particular, a variety of strongly absorbing organic molecules is available, enabling custom-built organic solar cells for versatile applications. In order to improve the PCE, the charge carrier mobility in organic thin films must be improved. The transport characterization of the relevant materials is usually done in neat layers for simplicity. However, the active layer of highly efficient organic solar cells comprises a bulk heterojunction (BHJ) of a donor and an acceptor component necessary for effective charge carrier generation from photo-generated excitons. In the literature, the transport properties of such blend layers are hardly studied. In this work, the transport properties of typical BHJ layers are investigated using space-charge limited currents (SCLC), conductivity, impedance spectroscopy (IS), and thermally stimulated currents (TSC) in order to model the transport with numerical drift-diffusion simulations. Firstly, the influence of an exponential density of trap states on the thickness dependence of SCLCs in devices with Ohmic injection contacts is investigated by simulations. Then, the results are applied to SCLC and conductivity measurements of electron- and hole-only devices of ZnPc:C60 at different mixing ratios. Particularly, the field and charge carrier density dependence of the mobility is evaluated, suggesting that the hole transport is dominated by exponential tail states acting as trapping sites. For comparison, transport in DCV5T-Me33:C60, which shows better PCEs in solar cells, is shown not to be dominated by traps. Furthermore, a temperature-dependent IS analysis of weakly p-doped ZnPc:C60 (1:1) blend reveals the energy-resolved distribution of occupied states, containing a Gaussian trap state as well as exponential tail states. The obtained results can be considered a basis for the characterization of trap states in organic solar cells. Moreover, the precise knowledge of the transport-relevant trap states is shown to facilitate modeling of complete devices, constituting a basis for predictive simulations of optimized device structures
Organische oder "Plastik"-Solarzellen haben in den letzten 25 Jahren eine rasante Entwicklung durchlaufen. Kommerziell sind sie vor allem wegen ihres geringen Gewichts, Biegsamkeit, Farbigkeit und potentiell geringen Herstellungskosten interessant, was zukünftig auf spezielle Anwendungen zugeschnittene Solarzellen ermöglichen wird. Die Leistungseffzienz von 12% ist dabei unter günstigen Bedingungen bereits mit klassischer Siliziumtechnologie konkurrenzfähig. Um die Effzienz weiter zu steigern und damit die Wirtschaftlichkeit zu erhöhen, muss vor allem die Ladungsträgerbeweglichkeit verbessert werden. In organischen Solarzellen werden typischerweise Donator-Akzeptor-Mischschichten verwendet, die für die effziente Generation freier Ladungsträger aus photo-induzierten Exzitonen verantwortlich sind. Obwohl solche Mischschichten typisch für organische Solarzellen sind, werden Transportuntersuchungen der relevanten Materialien der Einfachheit halber meist in ungemischten Schichten durchgeführt. In der vorliegenden Arbeit wird der Ladungstransport in Donator-Akzeptor-Mischschichten mithilfe raumladungsbegrenzter Ströme (space-charge limited currents, SCLCs), Leitfähigkeit, Impedanzspektroskopie (IS) und thermisch-generierter Ströme (thermally stimulated currents, TSC) untersucht und mit numerischen Drift-Diffusions-Simulationen modelliert. Zunächst wird mittels Simulation der Einfluss exponentiell verteilter Fallenzustände auf das schichtdickenabhängige SCLC-Verhalten unipolarer Bauelemente mit Ohmschen Kontakten untersucht. Die Erkenntnisse werden dann auf Elektronen- und Lochtransport in ZnPc:C60-Mischschichten mit verschiedenen Mischverhältnissen angewendet. Dabei wird die Beweglichkeit als Funktion von elektrischem Feld und Ladungsträgerdichte dargestellt, um SCLC- und Leitfähigkeitsmessungen zu erklären, was mit einer exponentiellen Fallenverteilung gelingt. Zum Vergleich werden dieselben Untersuchungen in DCV2-5T-Me33:C60, dem effizientesten der bekannten Solarzellenmaterialien dieser Art, wiederholt, ohne Anzeichen für fallendominierten Transport. Des weiteren werden erstmals schwach p-dotierte ZnPc:C60-Mischschichten mit temperaturabhängiger IS untersucht, um direkt die Dichte besetzter Lochfallenzustände zu bestimmen. Dabei werden wiederum exponentielle Fallenzustände sowie eine Gaußförmige Falle beobachtet. Insgesamt tragen die über Fallenzustände in Mischschichten gewonnenen Erkenntnisse zum Verständnis von Transportprozessen bei und bilden damit eine Grundlage für die systematische Identifizierung von Fallenzuständen in Solarzellen. Außerdem wird gezeigt, dass die genaue Beschreibung der transportrelevanten Fallenzustände die Modellierung von Bauelementen ermöglicht, auf deren Grundlage zukünftig optimierte Probenstrukturen vorhergesagt werden können
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Ternary Blend Organic Solar Cells"

1

Ameri, Tayebeh, Michael Forster, Ullrich Scherf, and Christoph J. Brabec. "Near-Infrared Sensitization of Polymer/Fullerene Solar Cells: Controlling the Morphology and Transport in Ternary Blends." In Elementary Processes in Organic Photovoltaics, 311–26. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-28338-8_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ekiz, Seyma, and Barry C. Thompson. "Ternary Blend Bulk Heterojunction Solar Cells." In World Scientific Handbook of Organic Optoelectronic Devices, 349–404. World Scientific, 2018. http://dx.doi.org/10.1142/9789813239517_0009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ma, Xiaoling, and Fujun Zhang. "Ternary organic solar cells." In Solar Cells and Light Management, 59–106. Elsevier, 2020. http://dx.doi.org/10.1016/b978-0-08-102762-2.00003-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Inganäs, Olle, Fengling Zhang, Xiangjun Wang, Abay Gadisa, Nils-Krister Persson, Mattias Svensson, Erik Perzon, Wendimagegn Mammo, and Mats R. Andersson. "Alternating Fluorene Copolymer–Fullerene Blend Solar Cells." In Organic Photovoltaics, 387–402. CRC Press, 2017. http://dx.doi.org/10.1201/9781420026351-20.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Sbei, M. A., and H. Derouiche. "Ternary Bulk Heterojunction Photoactive Layer for Organic Solar Cells." In New Ideas Concerning Science and Technology Vol. 4, 88–93. Book Publisher International (a part of SCIENCEDOMAIN International), 2021. http://dx.doi.org/10.9734/bpi/nicst/v4/6791d.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Sharma, Shyam Sunder, Atul Kumar Dadhich, and Subodh Srivastava. "Organic Solar Cells: Fundamentals, Working Principle and Device Structures." In Advanced Materials and Nano Systems: Theory and Experiment - Part 2, 199–236. BENTHAM SCIENCE PUBLISHERS, 2022. http://dx.doi.org/10.2174/9789815049961122020014.

Повний текст джерела
Анотація:
New photovoltaic energy technologies are helping to provide ecologically acceptable renewable energy sources while also lowering carbon dioxide emissions from fossil fuels and biomass. Organic photovoltaic (OPV) technology is a novel type of solar technology based on conjugated polymers and small molecules. These solar cells have enticed triable attention in recent years due to their potential of providing mechanical flexible, light weight, low cost and environmental friendly solar cells with highly tunable electrical and chemical properties. In particular, bulk-heterojunction organic solar cells (OSCs) made up of a blend of a p-type conjugated polymer as a donor and an n-type semiconductor as an acceptor is thought to be a viable method. The fundamental physics of OSCs, their operating mechanism, novel materials used and device architectures are discussed in this chapter. The technological development for large-area fabrication and the studies on stability issues of the flexible OSCs will be the main focus of the researchers in the next step. The chapter also reviews the present state of OSC production and the problems that it faces, as well as issues of stability and deterioration.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kazerouni, Negar, Marcella Guenther, Barry C. Thompson, and Tayebeh Ameri. "Ternary Sensitization of Organic Solar Cells: A Multifunctional Concept to Boost Power Conversion Efficiency." In Emerging Photovoltaic Technologies, 57–120. Jenny Stanford Publishing, 2019. http://dx.doi.org/10.1201/9780429295256-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Ternary Blend Organic Solar Cells"

1

Ohkita, Hideo, Ryosuke Shimizu, and Yasunari Tamai. "Ternary blend polymer solar cells with wide-range light harvesting (Conference Presentation)." In Organic, Hybrid, and Perovskite Photovoltaics XVIII, edited by Kwanghee Lee, Zakya H. Kafafi, and Paul A. Lane. SPIE, 2017. http://dx.doi.org/10.1117/12.2272661.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Gu, Yu, Cheng Wang, Feng Liu, Jihua Chen, and Thomas P. Russell. "Morphology study on ternary blend polymer solar cell to achieve improved device performance." In SPIE Organic Photonics + Electronics, edited by Zakya H. Kafafi and Paul A. Lane. SPIE, 2013. http://dx.doi.org/10.1117/12.2026621.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Avalos Quiroz, Yatzil, Renaud Demadrille, Yann Kervella, Cyril Aumaître, Lydia Cabau, Olivier Bardagot, Olivier Margeat, et al. "New Non-Fullerene Acceptors with an Extended Pi-Conjugated Core in Binary and Ternary Blends for High-Efficiency Organic Solar Cells." In nanoGe Fall Meeting 2021. València: Fundació Scito, 2021. http://dx.doi.org/10.29363/nanoge.nfm.2021.191.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Li, Yongxi, and Stephen Forrest. "Ternary organic solar cells with small voltage losses (Conference Presentation)." In Organic, Hybrid, and Perovskite Photovoltaics XIX, edited by Kwanghee Lee, Zakya H. Kafafi, and Paul A. Lane. SPIE, 2018. http://dx.doi.org/10.1117/12.2320832.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Madduri, Suresh, Vaibhavi G. Kodange, Sai Santosh Kumar Raavi, and Shiv Govind Singh. "Optimization of thermally evaporated small molecule ternary organic solar cells." In 2021 IEEE 48th Photovoltaic Specialists Conference (PVSC). IEEE, 2021. http://dx.doi.org/10.1109/pvsc43889.2021.9518836.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Gagliardi, Alessio, and Tim Albes. "Investigation of the blend morphology in bulk-heterojunction organic solar cells." In 2015 IEEE 15th International Conference on Nanotechnology (IEEE-NANO). IEEE, 2015. http://dx.doi.org/10.1109/nano.2015.7388947.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Abada, Z., and A. Mellit. "Optical optimization of organic solar cells based on P3HT: PCBM interpenetrating blend." In 2017 5th International Conference on Electrical Engineering - Boumerdes (ICEE-B). IEEE, 2017. http://dx.doi.org/10.1109/icee-b.2017.8191966.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Ermachikhin, A. V., A. D. Maslov, Yu V. Vorobyov, V. V. Gudzev, and T. A. Kholomina. "Investigation of electophysical characteristics of organic solar cells based on P3HT:PEDOT blend." In 2017 6th Mediterranean Conference on Embedded Computing (MECO). IEEE, 2017. http://dx.doi.org/10.1109/meco.2017.7977224.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Yuan, Yingying, Geng Feng, Qinxue Li, Junhe Zheng, and Jian Zhou. "A thermally activated delayed fluorescence material for efficient ternary organic solar cells." In Optoelectronic Materials and Devices for Sensing and Imaging, edited by Mingbo Pu, Xue Feng, Yadong Jiang, Xiong Li, Xiaoliang Ma, and Bernard Kippelen. SPIE, 2019. http://dx.doi.org/10.1117/12.2508129.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Balderrama, V. S., M. Estrada, P. Formentin, B. Iniguez, J. Ferre-Borrull, J. Pallares, J. C. Nolasco, E. Palomares, A. Sanchez, and L. F. Marsal. "Performance and degradation of organic solar cells with different P3HT:PCBM[70] blend composition." In 2011 Spanish Conference on Electron Devices (CDE). IEEE, 2011. http://dx.doi.org/10.1109/sced.2011.5744224.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії