Добірка наукової літератури з теми "Terahertz time-domain spectroscopy system"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Terahertz time-domain spectroscopy system".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Terahertz time-domain spectroscopy system":

1

Hongfei, ZHANG, SU Bo, HE Jingsuo, and ZHANG Cunlin. "Ultra-fast terahertz time domain spectroscopy system." Journal of Applied Optics 40, no. 2 (2019): 41–45. http://dx.doi.org/10.5768/jao201940.0201008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ung, Benjamin S. Y., Jining Li, Hungyen Lin, Bernd M. Fischer, Withawat Withayachumnankul, and Derek Abbott. "Dual-Mode Terahertz Time-Domain Spectroscopy System." IEEE Transactions on Terahertz Science and Technology 3, no. 2 (March 2013): 216–20. http://dx.doi.org/10.1109/tthz.2013.2241427.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Luo, Guofang, Xiaochuan Wei, Ping’an Liu, Wenping Li, Yingze Li, Zhixiang Zhang, Kuan Zhou, Zuoshan Shao, and Dong Wang. "Transformer Oil Temperature Variation Based on Terahertz Time-domain Spectroscopy." Journal of Physics: Conference Series 2564, no. 1 (August 1, 2023): 012012. http://dx.doi.org/10.1088/1742-6596/2564/1/012012.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract The transmission terahertz time-domain spectroscopy system is used to measure the transformer oil terahertz spectrum at different temperatures, the time and frequency domain, time delay, and refractive information of transformer oil with different temperatures are tested. The terahertz wave of the time-domain delay of transformer oil at different temperatures is obtained, the variation of time-domain delay and refractive index with different temperatures in the terahertz band were calculated and the linear variation trend was fitted.
4

Shi, Wei, Chengang Dong, Lei Hou, Zhiyang Xing, Qian Sun, and Lihao Zhang. "Investigation of aging characteristics in explosive using terahertz time-domain spectroscopy." International Journal of Modern Physics B 33, no. 24 (September 30, 2019): 1950272. http://dx.doi.org/10.1142/s0217979219502722.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The terahertz absorption spectrum of the five aging explosive samples (PETN, RDX, HMX, LLM-105 and TATB) was measured and calculated by Terahertz time-domain spectroscopy system (THz-TDS) and air-biased coherent detection system (ZAP-ABCD), respectively. In this paper, compared with the unaging explosive, each aging explosive sample’s terahertz time-domain spectra were obtained and the terahertz absorption spectra were calculated by using Fourier transform and Lambert’s law. The results show that there are several terahertz absorption peaks which were called “fingerprint spectra” for different aging explosive samples in the range of 0.3–6.0 THz spectrum. Meanwhile, the results also show that the locations of the characteristic absorption peaks are not the same. Moreover, the unaging and aging explosive samples have obviously different terahertz absorption spectra.
5

Chengzhen Lu, Chengzhen Lu, Chen Liu Chen Liu, Erliang Cui Erliang Cui, Jia Li Jia Li, Wei Liu Wei Liu, and Ping Sun Ping Sun. "Analysis on the characteristics of animal tissues based on the Terahertz time domain spectroscopy system." Chinese Optics Letters 10, s1 (2012): S13201–313204. http://dx.doi.org/10.3788/col201210.s13201.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Baron, C. A., and A. Y. Elezzabi. "A 360° angularly ranging time-domain terahertz spectroscopy system." Measurement Science and Technology 19, no. 6 (May 19, 2008): 065602. http://dx.doi.org/10.1088/0957-0233/19/6/065602.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Liu Wenquan, 刘文权, 鲁远甫 Lu Yuanfu, 冯广智 Feng Guangzhi, 龚小竞 Gong Xiaojing, 杨珺 Yang Jun, 张艳东 Zhang Yandong, and 金雷 Jin Lei. "Research Progress of Rapid Scan Terahertz Time Domain Spectroscopy System." Laser & Optoelectronics Progress 48, no. 12 (2011): 123001. http://dx.doi.org/10.3788/lop48.123001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Molis, G., R. Adomavičius, A. Krotkus, K. Bertulis, L. Giniūnas, J. Pocius, and R. Danielius. "Terahertz time-domain spectroscopy system based on femtosecond Yb:KGW laser." Electronics Letters 43, no. 3 (2007): 190. http://dx.doi.org/10.1049/el:20073168.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Guan, Yu, Manabu Yamamoto, Toshiyuki Kitazawa, Saroj R. Tripathi, Kei Takeya, and Kodo Kawase. "A Concealed Barcode Identification System Using Terahertz Time-domain Spectroscopy." Journal of Infrared, Millimeter, and Terahertz Waves 36, no. 3 (December 11, 2014): 298–311. http://dx.doi.org/10.1007/s10762-014-0128-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Globisch, Björn, Roman J. B. Dietz, Thorsten Göbel, Martin Schell, Werner Bohmeyer, Ralf Müller, and Andreas Steiger. "Absolute terahertz power measurement of a time-domain spectroscopy system." Optics Letters 40, no. 15 (July 24, 2015): 3544. http://dx.doi.org/10.1364/ol.40.003544.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Terahertz time-domain spectroscopy system":

1

Ait, Assou Manal. "Synthetic aperture imaging and spectroscopy in the terahertz range using time domain spectroscopy system." Electronic Thesis or Diss., Limoges, 2024. https://aurore.unilim.fr/theses/nxfile/default/437c1676-13e9-4b65-9ff5-95b93ac02ca3/blobholder:0/2024LIMO0008.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les techniques d'imagerie et de spectroscopie térahertz offrent de vastes applications dans le contrôle non destructif ou le contrôle de qualité dans la manufacture industrielle, la pharmaceutique et la biologie, l'archéologie ou encore le monde de l’art. Pour ces applications, la technique de spectroscopie térahertz dans le domaine temporel (THz-TDS) permet une analyse sur une bande passante instantanée très large (0.1-6 THz), mais nécessite généralement de déplacer mécaniquement l’échantillon à imager dans le plan focal du faisceau THz. Le travail de cette thèse porte sur l’adaptation d’un banc THz-TDS pour l’imagerie et la spectroscopie des échantillons fixes, en se basant sur le principe d’un radar à synthèse d’ouverture (SAR), en transmission. En utilisant cette technique, on démontre une reconstruction d'image en 3D avec une résolution inférieure au millimètre de plusieurs échantillons différents. Pour remédier aux temps d'acquisition prolongés, un échantillonnage spatial lacunaire est proposé, réduisant les éléments du réseau synthétique et améliorant la vitesse d'acquisition. De plus, les données reconstruites ne sont pas uniquement utilisées pour l'imagerie mais permettent également la caractérisation des paramètres optiques matériaux (l'indice de réfraction et le coefficient d'absorption) constituant l'objet imagé dans la bande de fréquence de reconstruction. Ainsi, la technique proposée permet la cartographie spectrale 2D de l'indice de réfraction à diverses fréquences térahertz. Enfin, la méthodologie proposée est appliquée à l'imagerie de sortie de guide d'ondes térahertz, illustrant sa grande flexibilité et ses vastes domaine potentielles d’utilisation
Les techniques d'imagerie et de spectroscopie térahertz offrent de vastes applications dans le control non destructif ou le contrôle de qualité dans la manufacture industrielle, la pharmaceutique et la biologie, l'archéologie ou encore le monde de l’art. Pour ces applications, la technique de spectroscopie térahertz dans le domaine temporel (THz-TDS) permet une analyse sur une bande passante instantanée très large (0.1-6 THz), mais nécessite généralement de déplacer mécaniquement l’échantillon à imager dans le plan focal du faisceau THz. Le travail de cette thèse porte sur l’adaptation d’un banc THz-TDS pour l’imagerie et la spectroscopie des échantillons fixes, en se basant sur le principe d’un radar à synthèse d’ouverture (SAR), en transmission. En utilisant cette technique, on démontre une reconstruction d'image en 3D avec une résolution inférieure au millimètre de plusieurs échantillons différents. Pour remédier au temps d'acquisition prolongés, un échantillonnage spatial lacunaire est proposé, réduisant les éléments du réseau synthétique et améliorant la vitesse d'acquisition. De plus, les données reconstruites ne sont pas uniquement utilisées pour l'imagerie mais permettent également la caractérisation des paramètres optiques matériaux (l'indice de réfraction et le coefficient d'absorption) constituant l'objet imagé dans la bande de fréquence de reconstruction. Ainsi, la technique proposée permet la cartographie spectrale 2D de l'indice de réfraction à diverses fréquences térahertz. Enfin, la méthodologie proposée est appliquée à l'imagerie de sortie de guide d'ondes térahertz, illustrant sa grande flexibilité et ses vastes domaine potentielles d’utilisation
2

Theuer, Michael. "Terahertz time-domain spectroscopy systems for fundamental and industrial applications." Göttingen Cuvillier, 2008. http://d-nb.info/996276696/04.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Yeng, Zang. "A fundamental critical assessment of efficiencies in terahertz time-domain spectroscopy systems." Thesis, Queen Mary, University of London, 2017. http://qmro.qmul.ac.uk/xmlui/handle/123456789/24855.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The electric properties of materials in the THz spectrum are of significant interest for scientific research in the past two decades thanks to the development of THz-TDS systems. However, the measurement capability of the system is still bound by the low efficiency and instability of the system. In this work, a thorough assessment of the THz-TDS system is carried out in order to enhance the measurement capability of the system and provide guidelines for accurate and repeatable measurements. In Chapter 2, the operation fundamentals of THz-TDS systems including the generation and detection are reviewed. The limitations of THz-TDS systems are evaluated in the aspects of dynamic range, signal-to-noise ratio, and spectral resolution. The influence of systematic parameters are addressed and examined. In Chapter 3, a systematic characterisation of the performance of PCAs is performed. The performance of THz PCA is evaluated with respect to the intrinsic and extrinsic excitation parameters, as well as the power collection efficiency within the THz-TDS system. Performance evaluation is carried out in combination of experimental measurements and numerical modellings. Chapter 4 extensively investigates the sensitivity of the THz-TDS system regarding on misalignment of the components. An EM simulation model is built for the evaluation. Point E-field respond in frequency domain and time-domain are examined corresponding directly to the detection signal, and compared with lab measurements. The model is then extended to study the field distribution inside the system. Mode analysis of the field is conducted to discover the pattern of energy coupling related to misalignment. Chapter 5 aims to further enhance the efficiency and radiation characteristics of THz PCAs by adapting the concept of antenna array. The influence of array configuration is assessed by array factor analysis. Coupling conditions of array parameters are established. Performance dependences of THz PCAs on the array geometrics are extensively studied in theory, and tested against experiment. Chapter 6 assess the implementation of plasmonoic structures for the improvement of efficiency and power at the THz generation process. Fundamentals are discussed and structures are designed accordingly. Optimisation principles in consideration of the carrier properties are proposed and practised. Photoconductive antennas with plasmonic structures are fabricated and tested in a THz-TDS system, and the results are compared with simulation.
4

Bockelt, Alexander Stefan. "Fiber-based Terahertz Time-Domain Spectroscopy Systems Operated in the Telecom Band." Doctoral thesis, Universitat Politècnica de València, 2017. http://hdl.handle.net/10251/86148.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The aim of the doctoral thesis is the study of Terahertz time domain spectrometers relying on telecommunication fiber technology. Optical fiber offers low losses, high stability and compactness, features that ease the deployment of this kind of sensing instruments in industrial scenarios. The development of terahertz signal sources working at telecom wavelengths has enabled the employment of mature, telecom-related photonic components that allowed a transition within THz research from being mainly object of scientific interest to an application-oriented technology. In this thesis, fiber terahertz systems utilizing ultrafast photoconductors with integrated antenna structures have been investigated at different levels, including the control of the photoconductor structure, as well as at instrument and system levels. The carrier transport in InGaAs-InAlAs multilayer hetero-structures, present in the employed photoconductive antennas, has been investigated under the additional injection of a continuous optical wave. By varying the amplitude level of the respective optical signal injected into either the emitter or the receiver, it has been shown that the amplitude of the detected photocurrent could be controlled without affecting its bandwidth. Unlike increasing the optical power of the pulsed signal, raising the continuous optical power results in a reduction of the measured photocurrent. This lowering of the conductivity is related to changes in the instantaneous carrier momentum relaxation time in the photoactive material, rather than to variations of the free carrier density level. This behavior affects systems including continuous-wave optical components, as, for instance, optical amplifiers. The effect has been further exploited to modulate the operation conditions of photoconductive antennas, enabling an all-optical control of the THz amplitude. This represents a method to implement a signal modulation, necessary, for instance, for lock-in signal detection. Different industrial applications and THz imaging systems require fast data acquisition. Slow, stepwise working mechanical optical delay lines are about to be replaced by faster schemes. A fast THz-time-domain spectroscopy system using a coil-based rapid mechanic delay line has been set up and analyzed. A convenience of usage of optical fibers is the simplicity of signal multiplication and distribution. It can be exploited to allow centralized operation of a set of parallel terahertz sensing units. A centralized architecture with optical source sharing simplifies the implementation as well as the cost of nondestructive inspection platforms, where several sensing units would have to work in the same facility, for example at quality control in factories or security checkpoints. The cost of such a distribution system is evaluated, its feasibility experimentally demonstrated, and key features relevant to the system performance are discussed. The present document is formally structured in a brief introduction, Chapter 2, which review common terahertz technology as a whole, with the focus on optoelectronic schemes and respective technology in the telecom band. Chapter 3 includes work carried out dealing with the carrier dynamics under continuous optical wave irradiation of the photoconductive antenna modules and the application of the effect as modulation method. Chapter 4 deals with the implementation of the fast delay in the system and Chapter 5 describes and analyses architecture for parallel, remotely controlled sensing. Finally, Chapter 6 provides conclusion and future work perspectives.
El objetivo de la presente Tesis Doctoral es el estudio de espectroscopios temporales de Terahercios basados en tecnología de fibra óptica para telecomunicaciones. La fibra óptica ofrece bajas pérdidas de propagación, alta estabilidad y la capacidad de implementar sistemas robustos y compactos, características que facilitan el despliegue de este tipo de instrumentos de sensado en escenarios industriales. El desarrollo de fuentes de THz que operan en la banda infrarroja empleada en telecomunicaciones permite el uso de componentes maduros de la industria de las comunicaciones ópticas, lo que a su vez se ha traducido en una transición desde el uso de la banda de THz básicamente para intereses científicos al desarrollo de sistemas para aplicaciones industriales. En la presente tesis se investigan sistemas de THz basados en antenas fotoconductivas y fibra óptica a distintos niveles: control de la estructura fotoconductiva, instrumento y sistema. El transporte de portadores en heteroestructuras multicapa InGaAs-InAlAs, empleadas actualmente en antenas fotoconductivas, se ha investigado bajo la inyección de una onda óptica continua. Se ha observado que variando el nivel de amplitud de esta onda continua tanto en el emisor como en el receptor es posible controlar la fotocorriente detectada sin afectar a su ancho de banda. A diferencia de un incremento en la potencia óptica de la señal pulsada, elevar el nivel de continua resulta en una reducción de la fotocorriente medida. Esta reducción de la conductividad se relaciona con cambios en el tiempo de relajación del momento de los portadores en el material fotoactivo en lugar de variaciones de la densidad de portadores libres. Este comportamiento puede tener un efecto en sistemas que introduzcan componentes ópticos continuos como por ejemplo sistemas de sensado que empleen amplificadores ópticos. Este efecto puede ser usado para modular las condiciones de operación de las antenas fotoconductivas permitiendo el control todo-óptico del sistema. Este método permite modular la señal, lo que resulta necesario por ejemplo para realizar detección lock-in. Tanto diferentes aplicaciones industriales como los sistemas de imagen en THz requieren sistemas rápidos de captura. Para ello es necesario sustituir las líneas de retardo ópticas tradicionales basadas en motores paso-a-paso por otros sistemas de mayor velocidad. Se ha implementado y caracterizado un sistema THz-TDS usando una línea de retardo rápida basada en bobinas de voz. Una característica fundamental de la fibra óptica es su extraordinaria simplicidad para realizar la distribución de señales ópticas. Esta característica puede ser explotada para permitir la operación centralizada de un conjunto paralelo de sensores de THz. Una arquitectura centralizada en la que la fuente óptica se comparte entre muchos sensores simplifica la implementación y reduce el coste de sistemas de inspección no destructiva que requieran de múltiples sensores en paralelo, como, por ejemplo, en control de calidad industrial o en controles de seguridad. Se ha evaluado el coste de estos sistemas distribuidos, se ha validado experimentalmente su viabilidad y se han identificado y estudiado sus prestaciones. El documento de la tesis doctoral se estructura formalmente en una breve introducción, el capítulo 2, en el que se revisa la tecnología de THz en su conjunto, los esquemas optoelectrónicos y el uso de tecnologías ópticas basadas en la banda de las telecomunicaciones. El capítulo 3 incluye el estudio realizado sobre la dinámica de los portadores bajo la irradiación dela antena fotoconductiva con una onda óptica continua y su uso como técnica de modulación. El capítulo 4 trata con la implementación de un sistema THz-TDS rápido mientras que el capítulo 5 describe y analiza una arquitectura de sensado paralela para reducir costes. Finalmente el capítulo 6 recoge las conclusiones y futuras líneas de actuación.
L'objectiu de la present Tesi Doctoral és l'estudi d'espectroscopis temporals de terahertzs basats en tecnologia de fibra òptica per a telecomunicacions. La fibra òptica ofereix baixes pèrdues de propagació, alta estabilitat i la capacitat d'implementar sistemes robustos i compactes, característiques que faciliten el desplegament d'aquest tipus d'instruments de sensat en escenaris industrials. El desenvolupament de fonts de THz que operen a la banda infraroja emprada en telecomunicacions permet l'ús de components madurs de la indústria de les comunicacions òptiques, el que al seu torn s'ha traduït en una transició des de l'ús de la banda de THz bàsicament per interessos científics al desenvolupament de sistemes per a aplicacions industrials. En la present tesi s'investiguen sistemes de THz basats en antenes fotoconductivas i fibra òptica a diferents nivells: control de l'estructura fotoconductiva, instrument i sistema. El transport de portadors en heteroestructures multicapa InGaAs-InAlAs, emprades actualment en antenes fotoconductivas, s'ha investigat sota la injecció d'una ona òptica contínua. S'ha observat que variant el nivell d'amplitud d'aquesta ona contínua tant en l'emissor com en el receptor és possible controlar la fotocorriente detectada sense afectar el seu ample de banda. A diferència d'un increment en la potència òptica del senyal polsada, elevar el nivell de contínua resulta en una reducció de la fotocorrent mesurada. Aquesta reducció de la conductivitat es relaciona amb canvis en el temps de relaxació del moment dels portadors en el material fotoactiu en lloc de variacions de la densitat de portadors lliures. Aquest comportament pot tenir un efecte en sistemes que introdueixin components òptics continus com ara sistemes de sensat que utilitzen amplificadors òptics. Aquest efecte pot ser usat per modular les condicions d'operació de les antenes fotoconductivas permetent el control tot-òptic del sistema. Aquest mètode permet modular el senyal, el que resulta necessari per exemple per realitzar detecció lock-in. Tant diferents aplicacions industrials com els sistemes d'imatge en THz requereixen sistemes ràpids de captura. Per a això és necessari substituir les línies de retard òptiques tradicionals basades en motors pas-a-pas per altres sistemes de major velocitat. S'ha implementat i caracteritzat un sistema THz-TDS usant una línia de retard ràpida basada en bobines de veu. Una característica fonamental de la fibra òptica és la seua extraordinària simplicitat per realitzar la distribució de senyals òptiques. Aquesta característica pot ser explotada per a permetre l'operació centralitzada d'un conjunt paral·lel de sensors de THz. Una arquitectura centralitzada en la qual la font òptica es comparteix entre molts sensors simplifica la implementació i redueix el cost de sistemes d'inspecció no destructiva que requereixin de múltiples sensors en paral·lel, com, per exemple, en control de qualitat industrial o en controls de seguretat . S'ha avaluat el cost d'aquests sistemes distribuïts, s'ha validat experimentalment la seua viabilitat i s'han identificat i estudiat les seues prestacions. El document de la tesi doctoral s'estructura formalment en una breu introducció, capítol 2, en el qual es revisa la tecnologia de THz en el seu conjunt, els esquemes optoelectrònics i l'ús de tecnologies òptiques basades en la banda de les telecomunicacions. El capítol 4 inclou l'estudi realitzat sobre la dinàmica dels portadors sota la irradiació de la antena fotoconductiva amb una ona òptica contínua i el seu ús com a tècnica de modulació. El capítol 5 tracta la implementació d'un sistema THz-TDS ràpid mentre que el capítol 6 descriu i analitza una arquitectura de sensat paral·lela per reduir costos. Finalment, el capítol 7 recull les conclusions i futures línies d'actuació.
Bockelt, AS. (2017). Fiber-based Terahertz Time-Domain Spectroscopy Systems Operated in the Telecom Band [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/86148
TESIS
5

Nandi, Uttam [Verfasser], Sascha [Akademischer Betreuer] Preu, and Clara [Akademischer Betreuer] Saraceno. "ErAs:In(Al)GaAs photoconductors for 1550 nm-based Terahertz time domain spectroscopy systems / Uttam Nandi ; Sascha Preu, Clara Saraceno." Darmstadt : Universitäts- und Landesbibliothek, 2021. http://d-nb.info/124124832X/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Bičiūnas, Andrius. "Semiconductor materials for components of optoelectronic terahertz systems activated by femtosecond 1 µm wavelength laser pulses." Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2012. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2012~D_20121107_091148-13422.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The aim of dissertation was to develop and explore the semiconductor material terahertz (THz) pulse emitters, for Terahertz time–domain spectroscopy (THz–TDS) systems using a 1 μm wavelength femtosecond laser radiation. THz pulse generation and detection using optoelectronic semiconductor components in THz–TDS excited by femtosecond laser pulses become these days a powerful experimental technique. Traditionally, mode-locked Ti:sapphire lasers emitting at the wavelengths ~800 nm are used. However Ti:sapphire lasers require many-stage optical pumping arrangement, the system is quite bulky and complicated. The solution could be the lasers emitting in 1 – 1.55 µm, which can be directly pumped by diode laser bars. Recently, several compact, efficient and cost-effective solid-state and fiber laser systems that generate femtosecond pulses at near-infrared wavelengths have been developed and employed for activating THz–TDS systems. The main obstacle of these systems is the lack of material with appropriate bandgap, high dark resistivity and short (~ ps) carrier lifetimes.
Disertacijos darbo tikslas buvo sukurti ir ištirti puslaidininkinius terahercinių (THz) impulsų emiterius ir detektorius, skirtus sistemoms, naudojančioms 1 μm bangos ilgio femtosekundinę lazerinę spinduliuotę. THz impulsų generavimo ir detektavimo sistema, kurios optoelektroninius puslaidininkinius komponentus aktyvuoja femtosekundiniai lazerio impulsai, yra plačiai taikoma terahercinėje laikinės srities spektroskopijoje. Tradiciškai tokiose sistemose naudojami Ti:safyre femtosekundiniai lazeriai, kurių spinduliuotės bangos ilgis yra ~800 nm. Šios sistemos nėra patogios dėl jų matmenų, nes lazeriai turi sudėtingą kelių pakopų kaupinimo sistemą. Pastaruoju metu THz impulsų generavimui vis dažniau naudojami femtosekundiniai kietakūniai ir šviesolaidiniai lazeriai, kurių spinduliuotės bangos ilgis patenka į artimosios IR spinduliuotės sritį. Tačiau šios sistemos vis dar neturi tinkamos medžiagos fotolaidiems elementams gaminti, kurie būtų žadinami 1 – 1,55 µm bangos ilgio lazeriais. Tokios medžiagos, visų pirmą, turi būti jautrios optinei spinduliuotei, o jų draustinės energijos tarpas turi atitikti žadinamos spinduliuotės fotonų energiją, be to sluoksniai turi pasižymėti didele tamsine varža bei labai trumpomis krūvininkų gyvavimo trukmėmis (~ 1 ps). Šioje disertacijoje yra pateikiami THz impulsų generavimo panaudojus puslaidininkių paviršius ir fotolaidžias antenas rezultatai, žadinant 1 µm bangos ilgio femtosekundiniais lazerio impulsais.
7

Skjeie, Hans Christian Bakken. "Terahertz Time-Domain Spectroscopy." Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for elektronikk og telekommunikasjon, 2012. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-19214.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The field of terahertz time-domain spectroscopy (THz-TDS) is still far from reaching its full potential, but is a very promising utility for a wide range of applications. Principle experiments have been performed in fields of drug screening, pharmaceutical, medical diagnostics, security imaging and detection of explosives. Optimized and adapted THz-TDS systems holds great promise for driving this technology further.The purpose of this thesis was to build a THz-TDS system, explore possibilities for improving this system and to perform THz-TDS measurements on semiconductors and wood. The aim of the experimental work was to build a stable and reliable system with an electric field strength of THz radiation in the order of kV/cm. The THz-TDS system used in this thesis was based upon the principles of optical rectification and free-space electro-optic sampling in zinc telluride (ZnTe) crystals using a femtosecond Ti:Sapphire amplified laser.Theoretical studies were performed on the principles of generation and detection of THz radiation. The experimental work was based on publications of similar experiments. Theoretical and experimental studies lead to several modifications and improvements of the setup first built in this thesis. Experiments were performed on disparate materials to find suitable materials for THz transmission. Results from measurements performed on semiconductors and wood, obtained by THz-TDS, were analysed to find the absorption coefficient and the refractive index of the materials. The spectroscopic information obtained by THz-TDS can also be used to find the conductivity and the mobility of these materials. THz-TDS measures the electric field and therefore provides information of both the amplitude and the phase of the THz wave. A Fourier transformation was used to obtain the frequency spectrum of the detected signal. The improvements were done by analysing the results of the detected signal to see which adjustments and modifications to the setup that had positive effects on the results. The pump power used for generation of THz radiation and the optimum azimuthal angle of the ZnTe crystals were crucial to obtain a THz-TDS system with a strong electric field. The maximum electric field strength for the THz radiation in this thesis was 13.2 kV/cm, with a signal-to-noise ratio of 43 and dynamic range of 1500.
8

Hussain, Ali. "Ultrabroadband time domain terahertz spectroscopy." Thesis, University of Bath, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.431734.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Torcedo, Jojit Camama. "Time-domain Terahertz Spectroscopy of water." Diss., [Riverside, Calif.] : University of California, Riverside, 2010. http://proquest.umi.com/pqdweb?index=0&did=2019861181&SrchMode=2&sid=1&Fmt=2&VInst=PROD&VType=PQD&RQT=309&VName=PQD&TS=1274284155&clientId=48051.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Thesis (Ph. D.)--University of California, Riverside, 2010.
Includes abstract. Title from first page of PDF file (viewed May 18, 2010). Includes bibliographical references. Issued in print and online. Available via ProQuest Digital Dissertations.
10

Camus, Enrique Castro. "Polarisation resolved terahertz time domain spectroscopy." Thesis, University of Oxford, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.441048.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Terahertz time-domain spectroscopy system":

1

Coutaz, Jean-Louis, Frederic Garet, and Vincent P. Wallace. Principles of Terahertz Time-Domain Spectroscopy. Jenny Stanford Publishing, 2018. http://dx.doi.org/10.1201/b22478.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Coutaz, Jean-Louis, Frederic Garet, and Vincent P. Wallace. Principles of Terahertz Time-Domain Spectroscopy. Jenny Stanford Publishing, 2018.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Coutaz, Jean-Louis, Frederic Garet, and Vincent P. Wallace. Principles of Terahertz Time-Domain Spectroscopy. Jenny Stanford Publishing, 2018.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Coutaz, Jean-Louis, Frederic Garet, and Vincent P. Wallace. Principles of Terahertz Time-Domain Spectroscopy. Jenny Stanford Publishing, 2018.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Coutaz, Jean-Louis, Frederic Garet, and Vincent P. Wallace. Principles of Terahertz Time-Domain Spectroscopy. Jenny Stanford Publishing, 2018.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Coutaz, Jean-Louis, Frederic Garet, and Vincent P. Wallace. Principles of Terahertz Time-Domain Spectroscopy: An Introductory Textbook. Taylor & Francis Group, 2019.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Terahertz time-domain spectroscopy system":

1

Haring Bolivar, P., M. Brucherseifer, M. Nagel, H. P. M. Pellemans, and H. Kurz. "Time-Domain Terahertz Spectroscopy and Sensing." In Terahertz Sources and Systems, 315–28. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0824-2_20.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Nishizawa, Seizi, Kiyomi Sakai, Masanoi Hangyo, Takeshi Nagashima, Mitsuo Wada Takeda, Keisuke Tominaga, Asako Oka, Koichiro Tanaka, and Osamu Morikawa. "Terahertz Time-Domain Spectroscopy." In Topics in Applied Physics, 203–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/10828028_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Jepsen, Peter Uhd, Tobias Olaf Buchmann, Binbin Zhou, Edmund John Railton Kelleher, and Martin Koch. "Terahertz Time-Domain Spectroscopy." In Springer Series in Optical Sciences, 15–22. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-73738-2_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Mosley, Connor Devyn William. "Terahertz Time-Domain Spectroscopy." In Enhanced Polarisation Control and Extreme Electric Fields, 25–39. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-66902-7_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Sundaram, S. K. "Terahertz Time-Domain Spectroscopy of Glasses." In Springer Handbook of Glass, 909–29. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-93728-1_26.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Mosley, Connor Devyn William. "Rotatable-Polarisation Terahertz Time-Domain Spectroscopy of Anisotropic Media." In Enhanced Polarisation Control and Extreme Electric Fields, 41–68. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-66902-7_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Zhang, Yuanyuan, Ze Lian, Jianying Li, and Shengtao Li. "Terahertz Time-Domain Spectroscopy Characterization of Aged XLPE Cable Insulation." In Lecture Notes in Electrical Engineering, 878–86. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-31676-1_82.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Gusev, Sviatoslav I., Ravshanjon Kh Nazarov, Petr S. Demchenko, Tianmiao Zhang, Olga P. Cherkasova, and Mikhail K. Khodzitsky. "Terahertz Time-Domain Spectroscopy in the Assessment of Diabetic Complications." In Biomedical Photonics for Diabetes Research, 213–37. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003112099-10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Gómez Rivas, J., J. Saxler, M. Kuttge, P. Haring Bolívar, and H. Kurz. "Terahertz time-domain spectroscopy of surface plasmon polaritons on semiconductor surfaces." In Springer Series in Chemical Physics, 741–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/3-540-27213-5_226.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Sardarly, R. M., F. Garet, M. Bernier, and J. L. Coutaz. "Characterization of Selenide, Sulfide and Telluride Materials by Terahertz Time-Domain Spectroscopy." In NATO Science for Peace and Security Series B: Physics and Biophysics, 129–33. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-8572-3_18.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Terahertz time-domain spectroscopy system":

1

Murakami, H., T. Nakazawa, K. Serita, M. Tonouchi, Y. Takahashi, M. Yoshimura, Y. Mori, and Y. Imai. "Fiber-connected terahertz time-domain spectroscopy system." In 2011 36th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2011). IEEE, 2011. http://dx.doi.org/10.1109/irmmw-thz.2011.6105002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kojima, S. "Terahertz Time Domain Spectroscopy of Boson Peak." In SLOW DYNAMICS IN COMPLEX SYSTEMS: 3rd International Symposium on Slow Dynamics in Complex Systems. AIP, 2004. http://dx.doi.org/10.1063/1.1764253.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Yu, Yang, Guozhong Zhao, Giorgio Savini, and Shuai Li. "Dual polarization THz time domain spectroscopy system." In 2017 10th UK-Europe-China Workshop on Millimetre Waves and Terahertz Technologies (UCMMT). IEEE, 2017. http://dx.doi.org/10.1109/ucmmt.2017.8068519.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Chady, Tomasz, and Krzysztof Gorący. "Inspection of coatings using terahertz time domain spectroscopy system." In TECHNOLOGIES AND MATERIALS FOR RENEWABLE ENERGY, ENVIRONMENT AND SUSTAINABILITY: TMREES16-Cnam. Author(s), 2017. http://dx.doi.org/10.1063/1.4974706.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Kojima, S., Y. Ike, Y. Seshimo, K. Fukushima, R. Fukasawa, Michio Tokuyama, Irwin Oppenheim, and Hideya Nishiyama. "Terahertz Time Domain Spectroscopy of Glass-Forming Materials." In COMPLEX SYSTEMS: 5th International Workshop on Complex Systems. AIP, 2008. http://dx.doi.org/10.1063/1.2897820.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Nose, M., K. Kawamoto, A. Ihara, H. Inaba, K. Minoshima, T. Araki, and T. Yasui. "Fiber-based, asynchronous optical sampling terahertz time-domain spectroscopy system." In 2009 34th International Conference on Infrared, Millimeter, and Terahertz Waves (IORMMW-THz 2009). IEEE, 2009. http://dx.doi.org/10.1109/icimw.2009.5325720.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ryeom, Junho, and Geunchang Choi. "Terahertz time-domain spectroscopy system for deflected and reflected metasurface." In 2024 International Conference on Information Networking (ICOIN). IEEE, 2024. http://dx.doi.org/10.1109/icoin59985.2024.10572188.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Couture, Nicolas, Wei Cui, Markus Lippl, Rachel Ostic, Défi Junior Jubgang Fandio, Eeswar Kumar Yalavarthi, Aswin Vishnu Radhan, Angela Gamouras, Nicolas Joly, and Jean-Michel Ménard. "Resolving sub-millisecond dynamics with single-pulse terahertz time-domain spectroscopy." In Frontiers in Optics. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/fio.2022.fw6c.2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We present a system capable of single-pulse terahertz time-domain spectroscopy at an acquisition rate of 50 kHz. We demonstrate the capabilities of our system by monitoring sub-millisecond dynamics of carriers injected in Si.
9

Steiger, A., M. Kehrt, and K. Lange. "THz-metrology of time-domain-spectroscopy systems." In 2016 41st International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz). IEEE, 2016. http://dx.doi.org/10.1109/irmmw-thz.2016.7758765.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Jepsen, Peter Uhd, Uffe Moller, Finn Eichhorn, Hannes Merbold, Jacob Riis Folkenberg, and Stewart J. Clark. "Terahertz time-domain spectroscopy of crystalline and aqueous systems." In CLEO 2007. IEEE, 2007. http://dx.doi.org/10.1109/cleo.2007.4452447.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Terahertz time-domain spectroscopy system":

1

Allman, Ronald E., and Robert J. Foltynowicz. Terahertz time-domain spectroscopy of atmospheric water vapor from 0.4 to 2.7 THz. Office of Scientific and Technical Information (OSTI), October 2005. http://dx.doi.org/10.2172/876363.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Wraback, Michael, Anand Sampath, and Dimitra Stratis-Cullum. Compact Femtosecond Pulse Approach to Explosives Detection Combining InN-Based Time Domain Terahertz Spectroscopy and Laser-Induced Breakdown Spectroscopy. Fort Belvoir, VA: Defense Technical Information Center, August 2008. http://dx.doi.org/10.21236/ada486227.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Markelz, Andrea G. Terahertz Time Domain Spectroscopy of Conformational Dynamics of Sensor Proteins: Basic Research and Pathogen Sensor Development. Fort Belvoir, VA: Defense Technical Information Center, August 2004. http://dx.doi.org/10.21236/ada426482.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії