Добірка наукової літератури з теми "Temporal clinical data warehouse"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Temporal clinical data warehouse".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Temporal clinical data warehouse"
Garani, Georgia, and Canan Eren Atay. "Encountering Incomplete Temporal Information in Clinical Data Warehouses." International Journal of Applied Research on Public Health Management 5, no. 1 (January 2020): 32–48. http://dx.doi.org/10.4018/ijarphm.2020010103.
Повний текст джерелаLooten, Vincent, Liliane Kong Win Chang, Antoine Neuraz, Marie-Anne Landau-Loriot, Benoit Vedie, Jean-Louis Paul, Laëtitia Mauge, et al. "What can millions of laboratory test results tell us about the temporal aspect of data quality? Study of data spanning 17 years in a clinical data warehouse." Computer Methods and Programs in Biomedicine 181 (November 2019): 104825. http://dx.doi.org/10.1016/j.cmpb.2018.12.030.
Повний текст джерелаDagliati, Arianna, Lucia Sacchi, Valentina Tibollo, Giulia Cogni, Marsida Teliti, Antonio Martinez-Millana, Vicente Traver, et al. "A dashboard-based system for supporting diabetes care." Journal of the American Medical Informatics Association 25, no. 5 (February 2, 2018): 538–47. http://dx.doi.org/10.1093/jamia/ocx159.
Повний текст джерелаTaweel, A., S. Miles, B. C. Delaney, and R. Bache. "An Eligibility Criteria Query Language for Heterogeneous Data Warehouses." Methods of Information in Medicine 54, no. 01 (2015): 41–44. http://dx.doi.org/10.3414/me13-02-0027.
Повний текст джерелаSuzuki, Hiroyuki, Eli Perencevich, Daniel Diekema, Daniel Livorsi, Marin Schweizer, Rajeshwari Nair, Michael Ohl, et al. "1031. Nationwide Temporal Trends of Candidemia Incidence Over 18 Years Within the Veteran Health Administration System." Open Forum Infectious Diseases 5, suppl_1 (November 2018): S307. http://dx.doi.org/10.1093/ofid/ofy210.868.
Повний текст джерелаLee, Kyeryoung, Zongzhi Liu, Meng Ma, Yun Mai, Christopher Gilman, Minghao Li, Mingwei Zhang, et al. "Analyzing treatment patterns and time to the next treatment in chronic lymphocytic leukemia real-world data using automated temporal phenotyping." Journal of Clinical Oncology 39, no. 15_suppl (May 20, 2021): e19512-e19512. http://dx.doi.org/10.1200/jco.2021.39.15_suppl.e19512.
Повний текст джерелаRoss, Mindy K., Henry Zheng, Bing Zhu, Ailina Lao, Hyejin Hong, Alamelu Natesan, Melina Radparvar, and Alex A. T. Bui. "Accuracy of Asthma Computable Phenotypes to Identify Pediatric Asthma at an Academic Institution." Methods of Information in Medicine 59, no. 06 (December 2020): 219–26. http://dx.doi.org/10.1055/s-0041-1729951.
Повний текст джерелаMorgan, Ethan, Sam Hohmann, Jessica P. Ridgway, Robert S. Daum, and Michael Z. David. "Decreasing Incidence of Skin and Soft-tissue Infections in 86 US Emergency Departments, 2009–2014." Clinical Infectious Diseases 68, no. 3 (June 15, 2018): 453–59. http://dx.doi.org/10.1093/cid/ciy509.
Повний текст джерелаMa, Meng, Arielle Redfern, Xiang Zhou, Dan Li, Ying Ru, Kyeryoung Lee, Christopher Gilman, et al. "Automated abstraction of real-world clinical outcome in lung cancer: A natural language processing and artificial intelligence approach from electronic health records." Journal of Clinical Oncology 38, no. 15_suppl (May 20, 2020): e14062-e14062. http://dx.doi.org/10.1200/jco.2020.38.15_suppl.e14062.
Повний текст джерелаGarani, Georgia, George K. Adam, and Dimitrios Ventzas. "Temporal data warehouse logical modelling." International Journal of Data Mining, Modelling and Management 8, no. 2 (2016): 144. http://dx.doi.org/10.1504/ijdmmm.2016.077156.
Повний текст джерелаДисертації з теми "Temporal clinical data warehouse"
Jamjoom, Arwa. "Transitioning a clinical unit to a data warehouse." Thesis, University of Surrey, 2011. http://epubs.surrey.ac.uk/804656/.
Повний текст джерелаTsuruda, Renata Miwa. "STB-index : um índice baseado em bitmap para data warehouse espaço-temporal." Universidade Federal de São Carlos, 2012. https://repositorio.ufscar.br/handle/ufscar/525.
Повний текст джерелаFinanciadora de Estudos e Projetos
The growing concern with the support of the decision-making process has made companies to search technologies that support their decisions. The technology most widely used presently is the Data Warehouse (DW), which allows storing data so it is possible to produce useful and reliable information to assist in strategic decisions. Combining the concepts of Spatial Data Warehouse (SDW), that allows geometry storage and managing, and Temporal Data Warehouse (TDW), which allows storing data changes that occur in the real-world, a research topic known as Spatio-Temporal Data Warehouse (STDW) has emerged. STDW are suitable for the treatment of geometries that change over time. These technologies, combined with the steady growth volume of data, show the necessity of index structures to improve the performance of analytical query processing with spatial predicates and also with geometries that may vary over time. In this sense, this work focused on proposing an index for STDW called Spatio-Temporal Bitmap Index, or STB-index. The proposed index was designed to processing drill-down and roll-up queries considering the existence of predefined spatial hierarchies and with spatial attributes that can vary its position and shape over time. The validation of STB-index was performed by conducting experimental tests using a DWET created from synthetic data. Tests evaluated the elapsed time and the number of disk accesses to construct the index, the amount of storage space of the index and the elapsed time and the number of disk accesses for query processing. Results were compared with query processing using database management system resources and STBindex improved the query performance by 98.12% up to 99.22% in response time compared to materialized views.
A crescente preocupação com o suporte ao processo de tomada de decisão estratégica fez com que as empresas buscassem tecnologias que apoiassem as suas decisões. A tecnologia mais utilizada atualmente é a de Data Warehouse (DW), que permite armazenar dados de forma que seja possível produzir informação útil e confiável para auxiliar na tomada de decisão estratégica. Aliando-se os conceitos de Data Warehouse Espacial (DWE), que permite o armazenamento e o gerenciamento de geometrias, e de Data Warehouse Temporal (DWT), que possibilita representar as mudanças nos dados que ocorrem no mundo real, surgiu o tema de pesquisa conhecido por Data Warehouse Espaço-Temporal (DWET), que é próprio para o tratamento de geometrias que se alteram ao longo do tempo. Essas tecnologias, aliadas ao constante crescimento no volume de dados armazenados, evidenciam a necessidade de estruturas de indexação que melhorem o desempenho do processamento de consultas analíticas com predicados espaciais e com variação das geometrias no tempo. Nesse sentido, este trabalho se concentrou na proposta de um índice para DWET denominado Spatio- Temporal Bitmap Index, ou STB-index. O índice proposto foi projetado para o processamento de consultas do tipo drill-down e roll-up considerando a existência de hierarquias espaciais predefinidas, sendo que os atributos espaciais podem variar sua posição e sua forma ao longo do tempo. A validação do STB-index ocorreu por meio da realização de testes experimentais utilizando um DWET criado a partir de dados sintéticos. Os testes avaliaram o tempo e o número de acessos a disco para a construção do índice, a quantidade de espaço para armazenamento do índice e o tempo e número de acessos a disco para o processamento de consultas analíticas. Os resultados obtidos foram comparados com o processamento de consultas utilizando os recursos disponíveis dos sistemas gerenciadores de banco de dados, sendo que o STB-index apresentou um ganho de desempenho entre 98,12% e 99,22% no tempo de resposta das consultas se comparado ao uso de visões materializadas.
Veronica, Ruiz Castro Carla. "CSTM: a conceptual spatiotemporal model for data warehouses." Universidade Federal de Pernambuco, 2010. https://repositorio.ufpe.br/handle/123456789/2209.
Повний текст джерелаConselho Nacional de Desenvolvimento Científico e Tecnológico
Estudos abrangentes relacionados a data warehouse temporais e espaciais têm sido conduzidos. Data warehouse temporais permitem lidar com dados variáveis no tempo tanto em tabelas de fatos quanto em tabelas de dimensões. Uma ampla variedade de aplicações precisa capturar não só características espaciais, mas também temporais das entidades modeladas. Entretanto, estudos que unam essas duas áreas de pesquisa não têm sido suficientemente considerados. É neste contexto que o presente trabalho de dissertação está definido. Ele propõe um modelo conceitual para data warehouses espaço temporais. Este modelo permite aos usuários definir níveis, hierarquias e dimensões tanto com características espaciais como temporais. Como consequência disso, é possível representar atributos espaciais variáveis no tempo. Além disso, este trabalho define um conjunto de operadores espaço temporais que poderia ser útil na consulta de data warehouses espaço temporais. Diferentemente de propostas existentes, nossos operadores integram não só operadores multidimensionais e espaciais, mas também espaciais e temporais (i.e., espaço temporais) em uma única sintaxe. Um esquema taxonômico, o qual classifica os operadores propostos, também é definido. A importância da taxonomia proposta é que ajuda no desenvolvimento de tecnologia OLAP espaço temporal. Com o objetivo de automatizar a modelagem de esquemas espaço temporais, uma ferramenta CASE foi desenvolvida. Além de permitir a definição de esquemas conformes com o modelo conceitual proposto, esta ferramenta também permite a geração automática do esquema lógico correspondente usando uma abordagem objeto relacional. As ideias propostas são validadas com um estudo de caso na área meteorológica. O estudo apresenta uma aplicação prática do modelo conceitual espaço temporal e dos operadores espaço temporais apresentados neste trabalho
Filannino, Michele. "Data-driven temporal information extraction with applications in general and clinical domains." Thesis, University of Manchester, 2016. https://www.research.manchester.ac.uk/portal/en/theses/datadriven-temporal-information-extraction-with-applications-in-general-and-clinical-domains(34d7e698-f8a8-4fbf-b742-d522c4fe4a12).html.
Повний текст джерелаMawilmada, Pubudika Kumari. "Impact of a data warehouse model for improved decision-making process in healthcare." Thesis, Queensland University of Technology, 2011. https://eprints.qut.edu.au/47532/1/Pubudika_Mawilmada_Thesis.pdf.
Повний текст джерелаDietrich, Georg [Verfasser], and Frank [Gutachter] Puppe. "Ad Hoc Information Extraction in a Clinical Data Warehouse with Case Studies for Data Exploration and Consistency Checks / Georg Dietrich ; Gutachter: Frank Puppe." Würzburg : Universität Würzburg, 2019. http://d-nb.info/1191102610/34.
Повний текст джерелаKoylu, Caglar. "A Case Study In Weather Pattern Searching Using A Spatial Data Warehouse Model." Master's thesis, METU, 2008. http://etd.lib.metu.edu.tr/upload/2/12609573/index.pdf.
Повний текст джерелаHagen, Matthew. "Biological and clinical data integration and its applications in healthcare." Diss., Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/54267.
Повний текст джерелаLluch-Ariet, Magí. "Contributions to efficient and secure exchange of networked clinical data : the MOSAIC system." Doctoral thesis, Universitat Politècnica de Catalunya, 2016. http://hdl.handle.net/10803/388037.
Повний текст джерелаScheufele, Elisabeth Lee. "Medication recommendations vs. peer practice in pediatric levothyroxine dosing : a study of collective intelligence from a clinical data warehouse as a potential model for clinical decision support." Thesis, Massachusetts Institute of Technology, 2009. http://hdl.handle.net/1721.1/47854.
Повний текст джерелаIncludes bibliographical references.
Clinical decision support systems (CDSS) are developed primarily from knowledge gleaned from evidence-based research, guidelines, trusted resources and domain experts. While these resources generally represent information that is research proven, time-tested and consistent with current medical knowledge, they lack some qualities that would be desirable in a CDSS. For instance, the information is presented as generalized recommendations that are not specific to particular patients and may not consider certain subpopulations. In addition, the knowledge base that produces the guidelines may be outdated and may not reflect real-world practice. Ideally, resources for decision support should be timely, patient-specific, and represent current practice. Patient-oriented clinical decision support is particularly important in the practice of pediatrics because it addresses a population in constant flux. Every age represents a different set of physiological and developmental concerns and considerations, especially in medication dosing patterns. Patient clinical data warehouses (CDW) may be able to bridge the knowledge gap. CDWs contain the collective intelligence of various contributors (i.e. clinicians, administrators, etc.) where each data entry provides information regarding medical care for a patient in the real world. CDWs have the potential to provide information as current as the latest upload, be focused to specific subpopulations and reflect current clinical practice. In this paper, I study the potential of a well-known patient clinical data warehouse to provide information regarding pediatric levothyroxine dosing as a form of clinical decision support. I study the state of the stored data, the necessary data transformations and options for representing the data to effectively summarize and communicate the findings.
(cont.) I also compare the resulting transformed data, representing actual practice within this population, against established dosing recommendations. Of the transformed records, 728 of the 854 (85.2%, [95% confidence interval 82.7:87.6]) medication records contained doses that were under the published recommended range for levothyroxine. As demonstrated by these results, real world practice can diverge from established recommendations. Delivering this information on real-world peer practice medication dosing to clinicians in real-time offers the potential to provide a valuable supplement to established dosing guidelines, enhancing the general and sometimes static dosing recommendations.
by Elisabeth Lee Scheufele.
S.M.
Книги з теми "Temporal clinical data warehouse"
Zimányi, Esteban, and Elzbieta Malinowski. Advanced Data Warehouse Design: From Conventional to Spatial and Temporal Applications. Springer, 2010.
Знайти повний текст джерелаZimányi, Esteban, and Elzbieta Malinowski. Advanced Data Warehouse Design: From Conventional to Spatial and Temporal Applications. Springer London, Limited, 2008.
Знайти повний текст джерелаAdvanced Data Warehouse Design From Conventional To Spatial And Temporal Applications. Springer, 2008.
Знайти повний текст джерелаVoigt, Jens-Uwe. Quantification of left ventricular function and synchrony using tissue Doppler, strain imaging, and speckle tracking. Oxford University Press, 2011. http://dx.doi.org/10.1093/med/9780199599639.003.0006.
Повний текст джерелаGreenblatt, Samuel H. John Hughlings Jackson. Oxford University Press, 2021. http://dx.doi.org/10.1093/med/9780192897640.001.0001.
Повний текст джерелаЧастини книг з теми "Temporal clinical data warehouse"
Gorawski, Marcin. "Multiversion Spatio-temporal Telemetric Data Warehouse." In Advances in Databases and Information Systems, 63–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-12082-4_9.
Повний текст джерелаAhmed, Usman, Anne Tchounikine, Maryvonne Miquel, and Sylvie Servigne. "Real-Time Temporal Data Warehouse Cubing." In Lecture Notes in Computer Science, 159–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15251-1_12.
Повний текст джерелаRavat, Franck, and Olivier Teste. "A Temporal Object-Oriented Data Warehouse Model." In Lecture Notes in Computer Science, 583–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/3-540-44469-6_54.
Повний текст джерелаŚmiałkowska, Bożena. "Effective Methods of Temporal Data Representation in Data Warehouse Systems." In Advanced Computer Systems, 221–34. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4419-8530-9_19.
Повний текст джерелаEder, Johann, and Karl Wiggisser. "Modeling Transformations between Versions of a Temporal Data Warehouse." In Advances in Conceptual Modeling – Challenges and Opportunities, 68–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-87991-6_10.
Повний текст джерелаCombi, Carlo, Elpida Keravnou-Papailiou, and Yuval Shahar. "Abstraction of Time-Oriented Clinical Data." In Temporal Information Systems in Medicine, 139–84. Boston, MA: Springer US, 2010. http://dx.doi.org/10.1007/978-1-4419-6543-1_5.
Повний текст джерелаMartin, Carme, and Alberto Abelló. "A Temporal Study of Data Sources to Load a Corporate Data Warehouse." In Data Warehousing and Knowledge Discovery, 109–18. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-45228-7_12.
Повний текст джерелаAin El Hayat, Soumiya, and Mohamed Bahaj. "A Temporal Data Warehouse Conceptual Modelling and Its Transformation into Temporal Object Relational Model." In Advances in Intelligent Systems and Computing, 314–23. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-11928-7_28.
Повний текст джерелаCombi, Carlo, Elpida Keravnou-Papailiou, and Yuval Shahar. "Displaying Time-Oriented Clinical Data and Knowledge." In Temporal Information Systems in Medicine, 301–50. Boston, MA: Springer US, 2010. http://dx.doi.org/10.1007/978-1-4419-6543-1_8.
Повний текст джерелаZhou, Liang, Mingye Bao, Nanhai Yang, Yizhen Lao, Yun Zhang, and Yangge Tian. "Spatio-temporal Analysis of Weibo Check-in Data Based on Spatial Data Warehouse." In Geo-Informatics in Resource Management and Sustainable Ecosystem, 466–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-41908-9_48.
Повний текст джерелаТези доповідей конференцій з теми "Temporal clinical data warehouse"
Buyl, Ronald, Marc Nyssen, Martin Žagar, Martin Žagar, Krzysztof Sikora, Antoni Zwiefka, Antoni Zwiefka та ін. "Building а National Clinical Data Warehouse". У Fourth International Conference on Telecommunications and Remote Sensing. SCITEPRESS - Science and and Technology Publications, 2015. http://dx.doi.org/10.5220/0005890000930097.
Повний текст джерелаTurki, Ines Zouari, Faiza Ghozzi Jedidi, and Rafik Bouaziz. "Summarizability in Multiversion Data Warehouse." In 2014 21st International Symposium on Temporal Representation and Reasoning (TIME). IEEE, 2014. http://dx.doi.org/10.1109/time.2014.12.
Повний текст джерелаPoenaru, Cristina Elena, Daniel Merezeanu, Radu Dobrescu, and Eugenie Posdarascu. "Advanced solutions for medical information storing: Clinical data warehouse." In 2017 E-Health and Bioengineering Conference (EHB). IEEE, 2017. http://dx.doi.org/10.1109/ehb.2017.7995355.
Повний текст джерелаNealon, Joshua, Wenny Rahayu, and Eric Pardede. "Improving Clinical Data Warehouse Performance via a Windowing Data Structure Architecture." In 2009 International Conference on Computational Science and Its Applications. IEEE, 2009. http://dx.doi.org/10.1109/iccsa.2009.23.
Повний текст джерела"MAPPING TEMPORAL DATA WAREHOUSE CONCEPTS TO SAP BW COMPONENTS." In 7th International Conference on Enterprise Information Systems. SciTePress - Science and and Technology Publications, 2005. http://dx.doi.org/10.5220/0002510903910397.
Повний текст джерелаTsumoto, Shusaku, and Shoji Hirano. "Multidimensional temporal mining in clinical data." In the 2nd ACM SIGHIT symposium. New York, New York, USA: ACM Press, 2012. http://dx.doi.org/10.1145/2110363.2110426.
Повний текст джерелаZhou, Xuezhong, Baoyan Liu, Yinghui Wang, Runsun Zhang, Ping Li, Shibo Chen, Yufeng Guo, Zhuye Gao, and Hua Zhang. "Building Clinical Data Warehouse for Traditional Chinese Medicine Knowledge Discovery." In 2008 International Conference on Biomedical Engineering And Informatics (BMEI). IEEE, 2008. http://dx.doi.org/10.1109/bmei.2008.83.
Повний текст джерелаSavary, L., T. Wan, and K. Zeitouni. "Spatio-temporal data warehouse design for human activity pattern analysis." In Proceedings. 15th International Workshop on Database and Expert Systems Applications, 2004. IEEE, 2004. http://dx.doi.org/10.1109/dexa.2004.1333576.
Повний текст джерелаMantovani, Matteo. "Approximate Temporal Functional Dependencies on Clinical Data." In 2017 IEEE International Conference on Healthcare Informatics (ICHI). IEEE, 2017. http://dx.doi.org/10.1109/ichi.2017.30.
Повний текст джерелаPuppala, Mamta, Tiancheng He, Xiaohui Yu, Shenyi Chen, Richard Ogunti, and Stephen T. C. Wong. "Data security and privacy management in healthcare applications and clinical data warehouse environment." In 2016 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI). IEEE, 2016. http://dx.doi.org/10.1109/bhi.2016.7455821.
Повний текст джерелаЗвіти організацій з теми "Temporal clinical data warehouse"
Totten, Annette, Dana M. Womack, Marian S. McDonagh, Cynthia Davis-O’Reilly, Jessica C. Griffin, Ian Blazina, Sara Grusing, and Nancy Elder. Improving Rural Health Through Telehealth-Guided Provider-to-Provider Communication. Agency for Healthcare Research and Quality, December 2022. http://dx.doi.org/10.23970/ahrqepccer254.
Повний текст джерела