Добірка наукової літератури з теми "Temperature of hardening"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Temperature of hardening".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Temperature of hardening"
Niitsu, Y., and K. Ikegami. "Effect of Temperature Variation on Cyclic Elastic-Plastic Behavior of SUS 304 Stainless Steel." Journal of Pressure Vessel Technology 112, no. 2 (May 1, 1990): 152–57. http://dx.doi.org/10.1115/1.2928601.
Повний текст джерелаKirakevych, Iryna, Myroslav Sanytsky та Igor Margal. "Self-Сompacting Сoncretes, which hardening at different temperature conditions". Theory and Building Practice 2020, № 2 (20 листопада 2020): 107–12. http://dx.doi.org/10.23939/jtbp2020.02.107.
Повний текст джерелаRusynko, A. K. "Creep with temperature hardening." Materials Science 33, no. 6 (November 1997): 813–17. http://dx.doi.org/10.1007/bf02355560.
Повний текст джерелаOhno, Nobutada, Ryohei Yamamoto, and Dai Okumura. "Thermo-Mechanical Cyclic Plastic Behavior of 304 Stainless Steel at Large Temperature Ranges." Key Engineering Materials 725 (December 2016): 275–80. http://dx.doi.org/10.4028/www.scientific.net/kem.725.275.
Повний текст джерелаBauer, A., and K. Schreiner. "Dimensional Stability of Low Temperature Surface Hardened Stainless Steel Components*." HTM Journal of Heat Treatment and Materials 77, no. 1 (December 24, 2021): 16–28. http://dx.doi.org/10.1515/htm-2021-0022.
Повний текст джерелаLloyd, David J. "The Work Hardening of some Commercial Al Alloys." Materials Science Forum 519-521 (July 2006): 55–62. http://dx.doi.org/10.4028/www.scientific.net/msf.519-521.55.
Повний текст джерелаGeissler, E., and H. W. Bergmann. "Temperature Controlled Laser Transformation Hardening." Key Engineering Materials 46-47 (January 1991): 121–32. http://dx.doi.org/10.4028/www.scientific.net/kem.46-47.121.
Повний текст джерелаLi, L., X. J. Zhu, L. Zhang, and F. Z. Tian. "Damage constitutive model of pure copper at different annealing temperatures." Journal of Physics: Conference Series 2045, no. 1 (October 1, 2021): 012013. http://dx.doi.org/10.1088/1742-6596/2045/1/012013.
Повний текст джерелаZhu, Jun, and Yin Zhong Shen. "Irradiation Hardening in Ferritic/Martensitic Steel P92 during Ar-Ions Irradiation at Elevated Temperature." Applied Mechanics and Materials 378 (August 2013): 289–92. http://dx.doi.org/10.4028/www.scientific.net/amm.378.289.
Повний текст джерелаOdlum, K. D., and T. J. Blake. "A comparison of analytical approaches for assessing freezing damage in black spruce using electrolyte leakage methods." Canadian Journal of Botany 74, no. 6 (June 1, 1996): 952–58. http://dx.doi.org/10.1139/b96-118.
Повний текст джерелаДисертації з теми "Temperature of hardening"
Zangiabadi, Amirali. "Low-temperature interstitial hardening of 15-5 precipitation hardening martensitic stainless steel." Case Western Reserve University School of Graduate Studies / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=case1480769348244855.
Повний текст джерелаMozgovoy, Sergej. "High Temperature Friction and Wear in Press Hardening." Licentiate thesis, Luleå tekniska universitet, Maskinelement, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-26232.
Повний текст джерелаGodkänd; 2014; 20140919 (sermoz); Nedanstående person kommer att hålla licentiatseminarium för avläggande av teknologie licentiatexamen. Namn: Sergej Mozgovoy Ämne: Maskinelement/Machine Elements Uppsats: High Temperature Friction and Wear in Press Hardening Examinator: Professor Braham Prakash, Institutionen för teknikvetenskap och matematik, Luleå tekniska universitet Diskutant: Dr Manel Rodriguez Ripoll, AC2T research GmbH, Österrike Tid: Fredag den 21 november 2014 kl 10:00 Plats: E231, Luleå tekniska universitet
Hwang, Kai-Lun H. "Physiological diversity and temperature hardening in adult tick dermacentor variabilis (ACARI: IXODIDAE)." The Ohio State University, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=osu1149129871.
Повний текст джерелаPADIAL, ARMANDO G. F. "Caracterizacao microestrutural do aco maraging de grau 400 de resistencia mecanica ultra-elevada." reponame:Repositório Institucional do IPEN, 2002. http://repositorio.ipen.br:8080/xmlui/handle/123456789/10998.
Повний текст джерелаMade available in DSpace on 2014-10-09T13:56:09Z (GMT). No. of bitstreams: 1 07613.pdf: 5555459 bytes, checksum: 0047c9f052248797761d648268e841ba (MD5)
Tese (Doutoramento)
IPEN/T
Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP
Fan, Yangyang. "Precipitation Strengthening of Aluminum by Transition Metal Aluminides." Digital WPI, 2012. https://digitalcommons.wpi.edu/etd-theses/231.
Повний текст джерелаPRASAD, PRASHANTH. "CHARACTERIZATION OF NEW, CAST, HIGH TEMPERATURE ALUMINUM ALLOYS FOR DIESEL ENGINE APPLICATIONS." University of Cincinnati / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1148315194.
Повний текст джерелаBílková, Lenka. "Nízkoteplotní a kryogenní zpracování cementačních součástí." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2008. http://www.nusl.cz/ntk/nusl-228073.
Повний текст джерелаDed, Gurdish S. "CHARACTERIZATION OF Ni-RICH NiTiHf BASED HIGH TEMPERATURE SHAPE MEMORY ALLOYS." UKnowledge, 2010. http://uknowledge.uky.edu/gradschool_theses/55.
Повний текст джерелаKazi-tani, Zakaria. "Simulation of Hardening of the MahanaKhon Tower Mat Foundation." Thesis, KTH, Betongbyggnad, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-244030.
Повний текст джерелаCementhydratation är resultatet av en serie kemiska reaktioner som sker under tillverkningen av betong. Stora mängder värme genereras, vilket följaktligen kan ge upphov till termiska spänningar och orsaka tidig sprickbildning som påverkar betongens hållfasthet, och bärförmåga. Inkludering av flygaska i betongblandningen har visat sig vara en effektiv metod avsedd att minska temperaturerna som utvecklas under hydratationen i ung betong, särskilt i massiva betongkonstruktioner. Flygaska påverkar också betongens utveckling av tryckhållfasthet, draghållfasthet och elasticitetsmodul. MahanaKhon towers bottenplatta är uppdelad i 14 lager, där flygaska inkluderades i bottenplattans betong. En finit elementmodell av bottenplattan skapades i COMSOL Multiphysics, där de utvecklade temperaturerna och termiska spänningarna i den unga betongen simulerades under bottenplattans härdningsfas. Simuleringarna genomfördes som parameterstudier med olika referenstemperaturer. De simulerade temperaturerna jämfördes vidare med befintliga temperaturmätningar som utfördes i tre olika elevationer i varje gjutetapp. Resultaten av temperaturerna visade att de uppmätta temperaturerna var generellt högre än de simulerade, vilket bland annat kan bero på att betongens värmeledningsförmåga, samt konvektiva värmeöverföringskoefficient inte återspeglade det aktuella fallet. Den numeriska modellen tog inte heller hänsyn till effekten av solinstrålning, som sannolikt skulle ökat betongens temperatur. De maximala temperaturerna hittades mestadels i betongens mittnivå, följt av den lägre nivån och slutligen lägsta nivåerna vid toppen. Det observerades även att de maximala temperaturerna i bottenplattan kunde överstiga 70 °C, vilket generellt anses vara högt då risken för fördröjd ettringitbildning kan uppstå. De höga temperaturerna beror delvis på avsaknad av kylmetoder, såsom kylrör, men även på den höga initialtemperaturen och omgivningstemperaturen. Resultaten av spänningsanalysen påvisade att inga dragspänningar uppstod när referenstemperaturen Tref denierades till 30 °C, som motsvarar den genomsnittliga omgivningstemperaturen. Detta förklaras av att betongen kommer att vara i expansion och följaktligen endast utsättas för tryckspänningar. Efter att Tref ökats till 50 °C, vilken ansågs vara en rimlig estimering i denna studie, uppstod dragspänningar i alla lager i bottenplattan, där vissa utsattes för risk för ytsprickor. De maximala dragspänningarna uppstod vid simuleringarnas slut, vilket var förväntat då temperaturerna var som lägst vid den tidpunkten till följd av att isoleringen avlägsnades. Slutligen höjdes Tref till 70 °C, vilket motsvarar den maximala temperaturen i bottenplattan under härdning. De inducerade dragspänningarna ökade avsevärt på grund av den stora temperaturgradienten mellan Tref och betongtemperaturen. Samtliga lager utsattes i detta fall för risk för genomgående sprickor. De maximala dragspänningarna påträffades på toppnivån och orsakades av inre tvång. De näst största dragspänningarna fanns i mitten av plattan och var också resultatet av inre tvång. De lägsta dragspänningarna påträffades vid plattans lägre nivå, som utsattes för yttre tvång.
Mukarati, Tulani Wadzanai. "Constitutive modelling of the strain hardening behaviour of metastable AISI 301LN austenitic stainless steel as a function of strain and temperature." Diss., University of Pretoria, 2020. http://hdl.handle.net/2263/76008.
Повний текст джерелаThesis (PhD)--University of Pretoria, 2020.
1. Columbus Stainless (Pty) Ltd (No grant number) 2. Department of Science and Technology, S.A. Government, through their FMDN (Ferrous Metals Development Network) programme as administered by Mintek
Materials Science and Metallurgical Engineering
PhD
Unrestricted
Книги з теми "Temperature of hardening"
Dawes, William R. Hardening Semiconductor Components Against Radiation and Temperature. Noyes Publications, 1990.
Знайти повний текст джерелаHardening semiconductor components against radiation and temperature. Park Ridge, N.J., U.S.A: Noyes Data Corp., 1989.
Знайти повний текст джерелаAlfred, Grill, and United States. National Aeronautics and Space Administration., eds. Protective coatings of metal surfaces by cold plasma treatments. [Washington, DC]: National Aeronautics and Space Administration, 1985.
Знайти повний текст джерелаOak Ridge National Laboratory. Metals and Ceramics Division., ed. Modeling the influence of irradiation temperature and displacement rate on hardening due to point defect clusters in ferritic steels. Oak Ridge, TN: Metals and Ceramics Division, Oak Ridge National Laboratory, 1992.
Знайти повний текст джерелаC, Tew Roy, Schwarze Gene E, and Lewis Research Center, eds. Impact of radiation hardness and operating temperatures of silicon carbide electronics on space power system mass. [Cleveland, Ohio]: National Aeronautics and Space Administration, Lewis Research Center, 1998.
Знайти повний текст джерелаUnited States. National Aeronautics and Space Administration., ed. Investigation of strain aging in the ordered intermetallic compound [beta]-NiAl. [Washington, D.C.]: National Aeronautics and Space Administration, 1995.
Знайти повний текст джерелаZinn, S., and S. L. Semiatin. Elements of Induction Heating. ASM International, 1988. http://dx.doi.org/10.31399/asm.tb.eihdca.9781627083416.
Повний текст джерелаE, Hicho G., and United States. National Bureau of Standards., eds. Effects of varying preciptiation hardening temperatures and times on the ability of HSLA-80 to achieve a yield strength of 689.5 MPa and impact properties comparable to HSLA-100. Gaithersburg, Md: U.S. Dept. of Commerce, National Bureau of Standards, 1987.
Знайти повний текст джерелаЧастини книг з теми "Temperature of hardening"
Rokugo, Keitetsu, Daichi Hayashi, Koichi Kobayashi, S. C. Lim, and Hiroo Takada. "Effect of Temperature on Tensile Performance of PVA-SHCC." In Strain-Hardening Cement-Based Composites, 333–41. Dordrecht: Springer Netherlands, 2017. http://dx.doi.org/10.1007/978-94-024-1194-2_39.
Повний текст джерелаSchmidt, Mario, Hannes Spieth, Christian Haubach, and Christian Kühne. "High temperature waste heat recovery from hardening furnaces." In 100 Pioneers in Efficient Resource Management, 286–89. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019. http://dx.doi.org/10.1007/978-3-662-56745-6_56.
Повний текст джерелаGál, Viktor, and Zsolt Lukács. "Effect of Cooling Channels to the Press Hardening Tools Temperature." In Vehicle and Automotive Engineering 3, 312–20. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-9529-5_28.
Повний текст джерелаSlámová, Margarita, Miloš Janeček, Miroslav Cieslar, and Vladimír Šíma. "Effect of Quenching Temperature on Age Hardening of AA6016 Sheets." In Materials Science Forum, 333–36. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-469-3.333.
Повний текст джерелаShang, Hongchun, Pengfei Wu, and Yanshan Lou. "Strain Hardening of AA5182-O Considering Strain Rate and Temperature Effect." In Forming the Future, 657–65. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-75381-8_54.
Повний текст джерелаXiao, Bing, Hong Hua Su, Shu Sheng Li, and Hong Jun Xu. "Research on Grind-Hardening Temperature and Cooling Rate of 48MnV Microalloyed Steel." In Advances in Grinding and Abrasive Technology XIV, 148–52. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-459-6.148.
Повний текст джерелаRowshan, Reza, and Mária Kocsis Baán. "Laser Transformation Hardening of Different Steels and 3D Modelling of Their Temperature Distribution." In Materials Science, Testing and Informatics II, 399–406. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-957-1.399.
Повний текст джерелаLucas, Glenn E., G. Robert Odette, Peter M. Lombrozo, and J. William Sheckherd. "Effects of Composition, Microstructure, and Temperature on Irradiation Hardening of Pressure Vessel Steels." In Effects of Radiation on Materials: 12th International Symposium Volume II, 900–930. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 1985. http://dx.doi.org/10.1520/stp87019850023.
Повний текст джерелаTrute, Sebastian, Wolfgang Bleck, and Christian Klinkenberg. "Advanced Material and Processing for the High Temperature Carburising of Microalloyed Case Hardening Steels." In THERMEC 2006, 4470–75. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-428-6.4470.
Повний текст джерелаCáceres, Carlos H., and A. H. Blake. "Solute and Temperature Effects on the Strain Hardening Behaviour of Mg-Zn Solid Solutions." In Materials Science Forum, 45–50. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-469-3.45.
Повний текст джерелаТези доповідей конференцій з теми "Temperature of hardening"
Shmatov, Alexander A. "Low-Temperature and High-Temperature Thermochemical Hardening Technologies for Hard Alloys." In ASME 8th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2006. http://dx.doi.org/10.1115/esda2006-95092.
Повний текст джерелаCoponen, J., and D. Schueftan. "IR Temperature Measurement to Monitor Induction Hardening Processes." In AISTech 2021. AIST, 2021. http://dx.doi.org/10.33313/382/287-13612-276.
Повний текст джерелаCoponen, J., and D. Schueftan. "IR Temperature Measurement to Monitor Induction Hardening Processes." In AISTech 2021. AIST, 2021. http://dx.doi.org/10.33313/382/187.
Повний текст джерелаNaraikina, N. V. "Transcription of Desaturase Genes in Low-Temperature Potato Hardening." In IX Congress of society physiologists of plants of Russia "Plant physiology is the basis for creating plants of the future". Kazan University Press, 2019. http://dx.doi.org/10.26907/978-5-00130-204-9-2019-304.
Повний текст джерелаVeeravalli, Varadan Savulimedu, and Andreas Steininger. "Performance of radiation hardening techniques under voltage and temperature variations." In 2013 IEEE Aerospace Conference. IEEE, 2013. http://dx.doi.org/10.1109/aero.2013.6497390.
Повний текст джерелаAbdurahman, Shiras, Robert Frysch, Richard Bismark, Michael Friebe, and Georg Rose. "Calibration free beam hardening correction using grangeat-based consistency measure." In 2016 IEEE Nuclear Science Symposium, Medical Imaging Conference and Room-Temperature Semiconductor Detector Workshop (NSS/MIC/RTSD). IEEE, 2016. http://dx.doi.org/10.1109/nssmic.2016.8069502.
Повний текст джерелаZhang, Jianhua, Hongsheng Xu, Yang Yu, and Zhi Wei. "FEM Based Numerical Analysis on the Temperature Field in Grind-hardening." In 2009 International Conference on Computational Intelligence and Security. IEEE, 2009. http://dx.doi.org/10.1109/cis.2009.207.
Повний текст джерелаBodner, S. R., and A. M. Rajendran. "On the strain rate and temperature dependence of hardening of copper." In Proceedings of the conference of the American Physical Society topical group on shock compression of condensed matter. AIP, 1996. http://dx.doi.org/10.1063/1.50810.
Повний текст джерелаOberste-Lehn, Ulli, Andreas Karl, and Chad Beamer. "Influence of Machining on Low Temperature Surface Hardening of Stainless Steel." In HT2019. ASM International, 2019. http://dx.doi.org/10.31399/asm.cp.ht2019p0343.
Повний текст джерелаYu, Xinghua, Dongxiao Qiao, Zhili Feng, Paul Crooker, and Yanli Wang. "High Temperature Dynamics Strain Hardening Behavior in Stainless Steels and Nickel Alloys." In ASME 2014 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/pvp2014-28869.
Повний текст джерелаЗвіти організацій з теми "Temperature of hardening"
Wu, A. S., S. G. Torres, J. T. McKeown, D. S. Urabe, D. C. Freeman, J. P. Lotscher, F. J. Ryerson, et al. Low Temperature Age Hardening in Cast Uranium-6 wt. pct. Niobium. Office of Scientific and Technical Information (OSTI), April 2018. http://dx.doi.org/10.2172/1438735.
Повний текст джерелаRamakrishnan, Aravind, Ashraf Alrajhi, Egemen Okte, Hasan Ozer, and Imad Al-Qadi. Truck-Platooning Impacts on Flexible Pavements: Experimental and Mechanistic Approaches. Illinois Center for Transportation, November 2021. http://dx.doi.org/10.36501/0197-9191/21-038.
Повний текст джерелаConrad, Hans, and Jay Narayan. Grain Size Hardening and Softening in Tungsten Carbide at Low Homologous Temperatures. Fort Belvoir, VA: Defense Technical Information Center, January 2003. http://dx.doi.org/10.21236/ada422872.
Повний текст джерелаHicho, G. E., C. H. Brady, L. C. Smith, and R. J. Fields. Effects of varying precipitation hardening temperatures and times on the ability of HSLA-80 to achieve a yield strength of 689.5 MPa and impact properties comparable to HSLA-100. Gaithersburg, MD: National Bureau of Standards, January 1987. http://dx.doi.org/10.6028/nbs.ir.87-3662.
Повний текст джерела