Дисертації з теми "Temperature and Heat Flux characterization"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Temperature and Heat Flux characterization.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 дисертацій для дослідження на тему "Temperature and Heat Flux characterization".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Virk, Akashdeep Singh. "Heat Transfer Characterization in Jet Flames Impinging on Flat Plates." Thesis, Virginia Tech, 2015. http://hdl.handle.net/10919/52985.

Повний текст джерела
Анотація:
The experimental work involves calculation of radial distribution of heat transfer coefficient at the surface of a flat Aluminium plate being impinged by a turbulent flame jet. Heat transfer coefficient distribution at the surface is computed from the measured heat flux and temperature data using a reference method and a slope method. The heat transfer coefficient (h) has a nearly bell shaped radial distribution at the plate surface for H/d =3.3. The value of h drops by 37 % from r/d =0 to r/d= 2. Upon increasing the axial distance to H/d = 5, the stagnation point h decreased by 15%. Adiabatic surface temperature (AST) distribution at the plate surface was computed from the measured heat flux and temperature. AST values were found to be lower than the measured gas temperature values at the stagnation point. Radial distribution of gas temperature at the surface was estimated by least squares linear curve fitting through the convection dominated region of net heat flux data and was validated by experimental measurements with an aspirated thermocouple. For low axial distances (H/d =3.3), the gas temperature dropped by only 15 % from r/d = 0 to r/d = 2. Total heat flux distribution is separated into radiative and convective components with the use of calculated heat transfer coefficient and estimated gas temperatures. At H/d = 3.3, the radiation was found to be less than 25 % of the net heat flux for r/d ≤ 2.
Master of Science
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Genc, Gence. "Serpentinization-assisted deformation processes and characterization of hydrothermal fluxes at mid-ocean ridges." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/43725.

Повний текст джерела
Анотація:
Seafloor hydrothermal systems play a key role in Earth fs energy and geochemical budgets. They also support the existence and development of complex chemosynthetic biological ecosystems that use the mineral-laden fluids as a source of energy and nutrients. This dissertation focuses on two inter-related topics: (1) heat output and geochemical fluxes at mid-ocean ridges, and (2) structural deformation of oceanic lithosphere related to subsurface serpentinization in submarine settings. The determination of heat output is important for several reasons. It provides important constraints on the physics of seafloor hydrothermal processes, on the nature of the heat sources at mid-ocean ridges, and on nutrient transport to biological ecosystems. Despite its importance, measurements of hydrothermal heat outputs are still scarce and cover less than 5% of active hydrothermal vent sites. In this work, we report development of two new devices designed to measure fluid flow velocities from the submersible at temperatures of up to 450 C and depths 5,000 m. By using these instruments on 24 Alvin dives, new measurements of hydrothermal heat output have been conducted at the Juan de Fuca Ridge, including first measurements from the High Rise and Mothra hydrothermal fields. The collected data suggest that the high-temperature heat output at the Main Endeavour Field (MEF) may be declining since the 1999 eruption. The flow measurement results, coupled with in-situ geochemical measurements, yielded the first estimates of geochemical fluxes of volatile compounds at MEF and Mothra. Our findings indicate that geochemical flux from diffuse flows may constitute approximately half of the net geochemical flux from Juan de Fuca Ridge. It has recently been recognized that serpentinization of mantle peridotites, due to its exothermic nature, may be a mechanism contributing to the heat output at mid-ocean ridges. The tectonic response of the crust to serpentinization of extensively distributed peridotites at mid-ocean ridges and subduction zones could provide a means of characterizing serpentinized regions in the oceanic lithosphere. These regions are often associated with surface topographic anomalies that may result from the volume expansion caused by the serpentinization reactions. Although there is a clear correlation between tectonics and serpentinization, the link is complex and still not understood. In this dissertation, we calculated the transformation strain and surface uplift associated with subsurface serpentinization of variously shaped ultramafic inclusions. Application of the results to explain the anomalous topographic salient at the TAG hydrothermal field (Mid-Atlantic Ridge) suggests that this feature may result from a serpentinized body beneath the footwall of a detachment fault. Because the depth of the potential serpentinized region appears to be more than 1.5 times the size of the inclusion, the uplift profile is relatively insensitive to the exact location or shape of the serpentinized domain. The rate of exothermic heat release needed to produce the serpentinized volume may contribute to the ongoing diffuse flow. Application of the results to an uplift feature associated with the Kyushu ]Palau subduction zone in the western Pacific, shows that approximately 3% transformational strain in an inclined serpentinized region of the mantle wedge near the subducted Kyushu ]Palau Ridge may result in the observed uplift on the Miyazaki Plain. Using the uplift data may help to constrain the level of the subsurface serpentinization.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Baker, Karen Irene. "Unsteady surface heat flux and temperature measurements." Thesis, This resource online, 1993. http://scholar.lib.vt.edu/theses/available/etd-12042009-020124/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Lartz, Douglas John. "Feedforward temperature control using a heat flux microsensor." Thesis, This resource online, 1993. http://scholar.lib.vt.edu/theses/available/etd-06302009-040309/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Pullins, Clayton Anthony. "High Temperature Heat Flux Measurement: Sensor Design, Calibration, and Applications." Diss., Virginia Tech, 2011. http://hdl.handle.net/10919/27789.

Повний текст джерела
Анотація:
This effort is focused on the design, calibration, and implementation of a high temperature heat flux sensor for thermal systems research and testing. The High Temperature Heat Flux Sensor (HTHFS) was designed to survive in the harsh thermal environments typically encountered in hypersonic flight, combustion and propulsion research, and large-scale fire testing. The sensor is capable of continuous use at temperatures up to 1000 â ¦C. Two methods for steady-state calibration of the HTHFS at elevated temperatures have been developed as a result of this research. The first method employs a water-cooled heat flux sensor as a reference standard for the calibration. The second method utilizes a blackbody radiant source and a NIST calibrated optical pyrometer as the calibration standard. The HTHFS calibration results obtained from both methods compare favorably with the theoretical sensitivity versus temperature model. Implementation of the HTHFS in several types of transient thermal testing scenarios is also demonstrated herein. A new data processing technique is used to interpret the measurements made by the HTHFS. The Hybrid Heat Flux (HHF) method accounts for the heat flow through the sensor and the heat storage in the sensor, and thus renders the HTHFS virtually insensitive to the material on which it is mounted. The calibrated output of the HTHFS versus temperature ensures accuracy in the measurements made by the sensor at high operating temperatures.
Ph. D.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Raphael-Mabel, Sujay Anand. "Design and Calibration of a Novel High Temperature Heat Flux Sensor." Thesis, Virginia Tech, 2005. http://hdl.handle.net/10919/31688.

Повний текст джерела
Анотація:
Heat flux gages are important in applications where measurement of the transfer of energy is more important than measurement of the temperature itself. There is a need for a heat flux sensor that can perform reliably for long periods of time in high temperature and high heat flux environment. The primary objective is to design and build a heat flux sensor that is capable of operating for extended periods of time in a high heat flux and high temperature environment. A High Temperature Heat Flux Sensor (HTHFS) was made by connecting 10 brass and steel thermocouple junctions in a thermopile circuit. This gage does not have a separate thermal resistance layer making it easier to fabricate. The HTHFS was calibrated in a custom-made convection calibration facility using a commercial Heat Flux Microsensor (HFM) as the calibration standard. The measured sensitivity of the HTHFS was 20.4 ±2.0ìV/(W/cm2). The measured sensitivity value matched with the theoretically calculated value of 20.5 ìV/(W/cm2). The average sensitivity of the HTHFS prototype was one-fifth of the sensitivity of a commercially available HFM. Better ways of mounting the HTHFS in the calibration stand have been recommended for future tests on the HTHFS for better testing. The HTHFS has the potential to be made into a microsensor with thousands of junctions added together in a thermopile circuit. This could lead to a heat flux sensor that could generate large signals (~few mV) and also be capable of operating in high heat flux and high temperature conditions.
Master of Science
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Hoguane, Antonio Mubango. "Hydrodynamics, temperature and salinity in mangrove swamps in Mozambique." Thesis, Bangor University, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.318565.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Vega, Thomas. "Quantification of the Fire Thermal Boundary Condition." Thesis, Virginia Tech, 2012. http://hdl.handle.net/10919/78052.

Повний текст джерела
Анотація:
The thermal boundary condition to a fire exposed surface was quantified with a hybrid heat flux gage. Methods were developed to determine the net heat flux through the gage, incident heat flux, cold surface heat flux, convective heat transfer coefficient, adiabatic surface temperature, and the separated components of radiative and convective heat flux. Experiments were performed in a cone calorimeter with the hybrid gage flush mounted into UNIFRAX Duraboard LD ceramic board. The results were then compared to results obtained with a Schmidt-Boelter gage and a plate thermometer. The hybrid heat flux gage predicted a cold surface heat flux within 5% of cold surface heat fluxes measured with a Schmidt-Boelter gage. Adiabatic surface temperature measurements compared well with the plate thermometer measurements at steady state. Hybrid gage measurements were performed on flat plate samples of Aluminum 5083, Marinite P, and UNIFRAX Duraboard LD ceramic board. The gage and sample assemblies were exposed to mixed-mode heat transfer conditions in a cone calorimeter. Temperature measurements were performed at the top, center, bottom surfaces of the marinite and ceramic board samples. A single midpoint temperature was performed on the aluminum. Boundary condition details obtained with the hybrid gage were then input to the commercial finite element analysis package Abaqus. Abaqus was used to create the flat plate geometries of the sample and variable temperature dependent material properties were used for each material. Measured temperatures were then compared to the model predicted temperatures with good results. Hybrid gage measurements were verified using a new experimental apparatus. The apparatus consisted of an impinging jet assembly, a tungsten lamp, and a gage holster assembly. The impinging jet was used to expose the gage to isolated convection and the lamp was used to expose the gage to isolated radiation. The gage holster assembly was used to water cool the gage when desired. Measurements performed with the gage water cooled in isolated convection allowed for the convective heat transfer coefficient to be determined. Two methods were developed to determine the convective heat transfer coefficient in mixed-mode heat transfer conditions. These methods were then verified by comparison to the isolated heat transfer coefficient. Similarly, the incident radiation was isolated by water cooling the gage while only the lamp was on. The components of heat flux were then separated for mixed-mode comparisons and were verified against this isolated radiation. The hybrid gage predicted convective heat transfer coefficients within 10% of the isolated heat transfer coefficient and incident heat fluxes within 11% of the isolated radiation.
Master of Science
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Tziranis, Alexander Konstantinos 1968. "Temperature, heat flux, and velocity measurements in oscillating flows with pressure variations." Thesis, Massachusetts Institute of Technology, 1992. http://hdl.handle.net/1721.1/12790.

Повний текст джерела
Анотація:
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 1992.
Vita.
Includes bibliographical references (leaves 99-101).
by Alexander Konstantinos Tziranis.
M.S.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kaufman, Melissa Rachel Steinberg. "Upwelling dynamics off Monterey Bay : heat flux and temperature variability, and their sensitivities." Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/59942.

Повний текст джерела
Анотація:
Thesis (S.B.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2010.
"June 2010." Cataloged from PDF version of thesis.
Includes bibliographical references (p. 64-66).
Understanding the complex dynamics of coastal upwelling is essential for coastal ocean dynamics, phytoplankton blooms, and pollution transport. Atmospheric-driven coastal upwelling often occurs when strong alongshore winds and the Coriolis force combine to displace warmer surface waters offshore, leading to upward motions of deeper cooler, nutrient-dense waters to replace these surface waters. Using the models of the MIT Multidisciplinary Simulation, Estimation, and Assimilation System (MSEAS) group, we conduct a large set of simulation sensitivity studies to determine which variables are dominant controls for upwelling events in the Monterey Bay region. Our motivations include determining the dominant atmospheric fluxes and the causes of high-frequency fluctuations found in ocean thermal balances. We focus on the first upwelling event from August 1- 5, 2006 in Monterey Bay that occurred during the Monterey Bay 06 (MB06) at-sea experiment, for which MSEAS data-assimilative baseline simulations already existed. Using the thermal energy (temperature), salinity and momentum (velocity) conservation equations, full ocean fields in the region as well as both control volume (flux) balances and local differential term-by-term balances for the upwelling event events were computed. The studies of ocean fields concentrate on specific depths: surface-0m, thermocline-30m and undercurrent- 150m. Effects of differing atmospheric forcing contributions (wind stress, surface heating/cooling, and evaporation-precipitation) on these full fields and on the volume and term-by-term balances are analyzed. Tidal effects are quantified utilizing pairs of simulations in which tides are either included or not. Effects of data assimilation are also examined. We find that the wind stress forcing is the most important dynamical parameter in explaining the extent and shape of the upwelling event. This is verified using our large set of sensitivity studies and examining the heat flux balances. The assimilation of data has also an impact because this first upwelling event occurs during the initialization. Tidal forcing and, to a lesser extent, the daily atmospheric and data assimilation cycles explain the higher frequency fluctuations found in the volume averaged time rate of change of thermal energy.
by Melissa Rachel Steinberg Kaufman.
S.B.
Стилі APA, Harvard, Vancouver, ISO та ін.
11

D'Elia, Christopher. "Development of Local Transient Heat Flux Measurements in an Axisymmetric Hybrid Rocket Nozzle." DigitalCommons@CalPoly, 2015. https://digitalcommons.calpoly.edu/theses/1349.

Повний текст джерела
Анотація:
A method of performing local transient heat flux measurements in an uncooled axisymmetric hybrid rocket nozzle is presented. Surface temperatures are collected at various axial locations during short duration tests and post processed using finite difference techniques to determine local transient heat fluxes and film coefficients. Comparisons are made between the collected data and the complete Bartz model. Although strong agreement is observed in certain sections of the nozzle, ideal steady state conditions are not observed to entirely validate the Bartz model for hybrid rocket nozzles. An experimental error analysis indicates the experimental heat fluxes are accurate within ±5.2% and supports the accuracy of the results.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

LaMontagne, Aurele. "Characterization and quantification of ground heat flux for late season shallow snow." [Boise, Idaho] : Boise State University, 2009. http://scholarworks.boisestate.edu/td/48/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Magee, Michael P. "Thermal boundary resistance in a high temperature thin-film superconductor under varying heat flux." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1996. http://handle.dtic.mil/100.2/ADA326312.

Повний текст джерела
Анотація:
Thesis (M.S. in Mechanical Engineering) Naval Postgraduate School, December 1996.
"December 1996." Thesis advisor(s): Matthew Kelleher, Pat E. Phelan. Includes bibliographical references (p. 73-75). Also available online.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Bezuidenhout, Johannes Jurie. "Convective heat flux determination using surface temperature history measurements and an inverse calculation method." Thesis, Virginia Tech, 2000. http://hdl.handle.net/10919/35706.

Повний текст джерела
Анотація:
Effective gages to measure skin friction and heat transfer have been established over decades. One of the most important criteria in designing such a gage is the physical size of the gage to minimise the interference of the flow, as well as the mass of these devices. The combined measurement of skin friction and heat flux using one single gage on the other hand, present unique opportunities and with it, unique technical problems.

The objective of this study is therefore to develop a cost-effective single gage that can be used to measure both skin friction and heat flux. The method proposed in this study is to install a coaxial thermocouple into an existing skin friction gage to measure the unsteady temperature on the surface of the gage. By using the temperature history and a computer program the heat flux through the surface can be obtained through an iterative guessing method. To ensure that the heat flux through the gage is similar to the heat flux through the rest of the surface, the gage is manufactured of a material very similar to the rest of the surface.

Walker developed a computer program capable of predicting the heat flux through a surface from the measured surface temperature history. The program is based on an inverse approach to calculate the heat flux through the surface. The biggest advantages of this method are its stability and the small amount of noise induced into the system. The drawback of the method is that it is limited to semi-infinite objects. For surfaces with a finite thickness, a second thermocouple was installed into the system some distance below the first thermocouple. By modifying the computer program these two unsteady temperatures can be used to predict the heat flux through a surface of finite thickness.

As part of this study, the effect of noise induced by the Cook-Felderman technique, found in the literature were investigated in detail and it was concluded that the method proposed in this study is superior to this Cook-Felderman method. Heat flux measurements compared well with measurements recorded with heat flux gages. In all cases evaluated the difference was less than 20%. It can therefore be concluded that heat flux gages on their own can measure surface heat flux very accurately. These gages are however too large to install in a skin-friction gage. The method introduced in this study is noisier than the heat flux gages on their own, but the size which is very important, is magnitudes smaller when using a coaxial thermocouple, to measure the surface temperature history.
Master of Science

Стилі APA, Harvard, Vancouver, ISO та ін.
15

Wikström, Patrik. "A study of surface temperature and heat flux estimations in heating processes by solving an Inverse Heat Conduction Problem." Licentiate thesis, KTH, Materials Science and Engineering, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-605.

Повний текст джерела
Анотація:

The topic of this thesis is estimation of the dynamic changes of the surface temperatureand heat flux during heating processes by using an inverse method. The local transient surface temperature and heat flux of a steel slab are calculated based on measurements in the interior of the slab.

The motivations for using an inverse method may be manifold. Sometimes, especially in the field of thermal engineering, one wants to calculate the transient temperature or heat flux on the surface of a body. This body may be a slab, or billet in metallurgical applications. However, it may be the case that the surface for some reason is inaccessible to exterior measurements with the aid of some measurement device. Such a device could be a thermocouple if contact with the surface in question is possible or a pyrometer if an invasive method is preferred. Sometimes though, these kinds of devices may be an inappropriate choice. It could be the case that the installation of any such device may disturb the experiment in some way or that the environment is chemically destructive or just that the instruments might give incorrect results. In these situations one is directed to using an inverse method based on interior measurements in the body, and in which the desired temperature is calculated by a numerical procedure.

The mathematical model used was applied to experimental data from a small scale laboratory furnace as well as from a full scale industrial reheating furnace and the results verified that the method can be successfully applied to high temperature thermal applications.

Стилі APA, Harvard, Vancouver, ISO та ін.
16

Wikström, Patrik. "A study of surface temperature- and heat flux estimations in heating processes by solving an Inverse Heat Conduction Problem /." Stockholm, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-605.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Jacobi, Christoph, and Daniel Mewes. "Heat flux classification of CMIP5 model results using self-organizing maps." Universität Leipzig, 2019. https://ul.qucosa.de/id/qucosa%3A74181.

Повний текст джерела
Анотація:
We used the self-organizing maps (SOMs) method on eight models that participated in the Coupled model intercomparison project phase 5 (CMIP5) and two different greenhouse gases (GHG) concentration experiments. The SOMs were created from the winter 500 hPa horizontal temperature flux for each model. The clustering by the SOM revealed that in addition to the three flux pathways found in reanalyses (Pacific, Atlantic and Siberian/continental pathway), superpositions of these occur for the free running climate models, which develop their dynamic more freely than the reanalyses. It was found that the general structure of fluxes is indirectly dependent on the GHG concentrations, as the derived results from SOM patterns are different between the two GHG concentrations. It is suggested that flux patterns change from stable cyclonic motion over the north pole to flux pathways that feature more meridional fluxes through the North Atlantic and North Pacific into the Arctic.
Die Methode der Self-Organizing Maps (SOMs) wurde auf acht CMIP5-Modelle mit jeweils zwei verschiedenen Treibhausgasszenarien angwendet. Die SOMs wurden für jedes Modell und jede der beiden Modelläufe für den horizontalen Temperaturfluss in 500 hPa im Winter erstellt. Zusätzlich zu den aus der Analyse von Reanalyse-Daten erwarteten drei Transportwegen (pazifisch, atlantisch und sibirisch/kontinental) wurden Überlagerungen dieser gefunden. Es konnte gezeigt werden, dass die grundsätzliche Struktur der Transporte indirekt abhängig von der Treibhausgaskonzentration ist. Die Ergebnisse deuten darauf hin, dass sich die generelle Struktur des atmosphärischen Transports von einer stabilen zyklonalen Bewegung über dem Nordpol sich zu Transporten verschiebt, welche meridionale Transporte über den Nortdatlantik und den Nordpazifik in die Arktis führen.
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Treiss, Stephanie. "TIME-DEPENDENT SURFACE TEMPERATURE and HEAT FLUX MEASUREMENTS on a SINGLE CYLINDER ENGINE HEAD and LINER." The Ohio State University, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=osu1512061036731254.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Finol, Parra Carlos. "Heat transfer investigations in a modern diesel engine." Thesis, University of Bath, 2008. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.512318.

Повний текст джерела
Анотація:
An experimental investigation has been undertaken to study operating temperatures and heat fluxes in the cylinder walls and cylinder head of a modern diesel engine. Temperatures were measured under a wide range of speed and torque at more than one hundred locations in the block and cylinder head of the engine employing conventional thermocouples arranged to obtain one-dimensional metal thermal gradients and subsequently deduce the corresponding heat fluxes and surface temperatures. Results observed in the cylinder bores revealed that in addition to heat transferred by convection and radiation from combustion gases, the temperature and heat flux distributions are considerably affected by heat conduction from piston rings and skirt through the oil film, and by frictional heat generated at these components. The heat fluxes and surface temperatures obtained in the cylinder head combined with gas pressure measurements were used to evaluate existing formulae to predict heat transfer coefficients from combustion gases to the chamber walls. The evaluation confirmed the significant variation previously observed between the various methods. As a consequence, a modified correlation has been proposed to estimate the gas-side heat transfer coefficient. This new correlation is considered to be an improved tool for estimating the heat transfer coefficients from combustion gases in modern diesel engines. Additionally, the results observed in the cylinder bores were used to develop a simple model from first principles to estimate the heat transferred from piston rings and skirt to the cylinder wall.
Стилі APA, Harvard, Vancouver, ISO та ін.
20

O'Brien, Timothy J. "The Application of BioHeat Perfusion Sensors to Analyze Preservation Temperature and Quantify Pressure Ischemia of Explanted Organs." Thesis, Virginia Tech, 2015. http://hdl.handle.net/10919/51607.

Повний текст джерела
Анотація:
The development of an organ preservation system (primarily kidneys and livers, but could be adapted to fit hearts, lungs, and even limbs in the future) that can provide surgeons and doctors with real-time quantitative feedback on the health of the organ would be a significant improvement on current transplant practices. This organ transport system will provide surgeons and doctors the opportunity to make more educated decisions towards whether or not to proceed with organ transplantation. Here, we discuss the use Smart Perfusion's organ preservation system as a platform for determining the optimal perfusion temperature of an organ. Porcine kidneys were procured and perfused with a modified PBS solution on the Vasowave™. While on this organ preservation system, a heart emulating pressure waveform (90/50 mmHg) was generated and sent to the specimen. The pressure response, flow rate, temperature, pH, dissolved oxygen content, and conductivity of the fluid stream were all monitored throughout the duration of experimentation. In addition to inline sensors, IR imaging captured the surface temperature of the organ while on the system. Lastly, the use of a combined heat flux-temperature (CHFT) sensor, previously developed at Virginia Tech, was applied for the first time to monitor and measure local tissue perfusion of an explanted organ. A total of 12 experiments were performed (6 at a set fluid temperature of 15°C, and 6 at 20°C). All system data was collected, statistically evaluated and finally compared against blind histological readings (taken at the termination of each experiment at the hilum and pole) to investigate the effects of temperature on organ vasculature. The results of this experiment indicated that the effects of temperature on explanted kidneys can be affectively measured using a non-invasive bioheat perfusion sensor. Specifically, the lower temperature group of kidneys was measured to have lower perfusion. Furthermore, an enhancement to the CHFT sensor technology (CHFT+) was developed and tested for compliance. A controllable thin filmed heat resistor was added to the CHFT assembly to replace the current convective thermal event. This enhancement improved the measured heat flux and temperature signals and enables autonomy. Also, the thin and semi-flexible nature of the new CHFT+ sensor allows for perfusion measurements to be taken from the underside of the organ, permitting a quantitative measure of pressure ischemia. Results from a live tissue test illustrated, for the first time, the effects of pressure ischemia on an explanted porcine kidney.
Master of Science
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Nam, Jae-Do. "Polymer matrix degradation : characterization and manufacturing process for high temperature composites /." Thesis, Connect to this title online; UW restricted, 1991. http://hdl.handle.net/1773/9867.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Paik, Sokwon. "Spatially resolved temperature and heat flux measurements for slow evaporating droplets heated by a microfabricated heater array." Diss., Texas A&M University, 2006. http://hdl.handle.net/1969.1/3819.

Повний текст джерела
Анотація:
The evaporation phenomenon of a liquid droplet was investigated by using microfabricated heaters. All 32 microheaters were designed to have the same resistance. Gold microheaters worked both as temperature indicators and as heaters. The first experiment was performed under a constant voltage mode to investigate the temperature and heat flux variation of the heated surface by the evaporating droplet. The second experiment was performed under constant temperature mode to investigate the spatial and temporal heat flux variation of the constant temperature heater surface by the evaporating droplet heater. Droplet evaporation was recorded with a CCD camera. Experimental data showed temperature and heat flux variations inside and outside of the droplet with respect to time and radial position from the center of the droplet by tomographic deconvolution.
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Pedotto, Cristina. "Using IR thermography to determine the heat flux removed by spray cooling a high-temperature metallic surface." Thesis, Manhattan, Kan. : Kansas State University, 2008. http://hdl.handle.net/2097/1044.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Pulliam, Wade Joseph. "Development of Fiber Optic Aerodynamic Sensors for High Reynolds Number Supersonic Flows." Diss., Virginia Tech, 2000. http://hdl.handle.net/10919/26325.

Повний текст джерела
Анотація:
The purpose of the project was to examine fiber optic sensors for the measurement of pressure, skin friction, temperature, and heat flux in high Reynolds number, supersonic flow. Using a standard fiber optic signal conditioning unit (specifically a broadband interferometric system using spectra), the work centered around determining under what conditions these sensors will work effectively and quantifying the total system limitations. An interferometric-based, fiber optic skin friction sensor was developed for the measurement of wall shear stress in complex, supersonic flows. This sensor type was tested successfully in laminar, incompressible flow, and supersonic flow up to Mach 1.92, Mach 2.4 and 3.0 flow, in which the sensor operated with varying success. A micromachined, fiber optic pressure sensor was also tested in these supersonic conditions, also with varying success. The accurate operation of these sensors was found to be tied to the flow conditions and the fiber optic, signal processing system. A correlation was found to exist between the energy of the flow, either through its dynamic pressure or through external disturbances such as shocks or separation, and the noise in the signals, expressed by the variance of the gap estimate, for the pressure and skin friction sensors in these flows. The energy of the flow couples with the mechanical properties of the sensor reducing the fringe contrast of the signal used by the optical signal processing system to determine a gap estimate. As the energy of the flow is increased and the sensor is excited, the fringe contrast is reduced. A practical limit of a normalized fringe contrast of 0.10 was found for producing accurate gap estimates in real flows. A consequence is that there is a limit to the dynamic pressure of the flow for the sensors to operate accurately, which is demonstrated by the varying success of the supersonic wind tunnel tests. This correlation is sensor specific, meaning that sensors can be designed to operate successfully in any flow. Also, the signal processing system, which forms the other end of the total system, could be improved to allow accurate measurements with the current sensors.
Ph. D.
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Fox, Bronwyn Louise. "The manufacture, characterization and aging of novel high temperature carbon fibre composites." View thesis entry in Australian Digital Theses Program, 2001. http://thesis.anu.edu.au/public/adt-ANU20011207.114246/index.html.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Tjahjono, Richard. "Correlation Between Nasal Mucosal Temperature Change and Perception of Nasal Patency." Thesis, University of Sydney, 2021. https://hdl.handle.net/2123/25547.

Повний текст джерела
Анотація:
Introduction – Nasal airway obstruction (NAO) is a common presentation that remains poorly understood. Recent evidence suggests that nasal mucosal temperature change, rather than airflow detection, is the primary determinant of subjective nasal patency. Thus, this study aims to examine the role of nasal mucosal temperature in the perception of nasal patency using computational fluid dynamics (CFD). Methodology – Healthy adult participants were recruited. Participants completed Nasal Obstruction Symptom Evaluation (NOSE) and Visual Analogue Scale (VAS) questionnaires. A temperature probe was used to measure nasal mucosal temperature at the vestibule, inferior and middle turbinates, and nasopharynx bilaterally. Participants underwent a CT scan of the paranasal sinuses, which was used to create 3D computer models of nasal anatomy to perform CFD analysis of airflow and heat transfer during inspiration. Results – Eleven participants (6 females, 54.5%) with a median age of 27 (IQR 24; 48) were recruited. No significant differences were seen in mean nasal mucosal temperature measurements obtained from temperature probe and CFD analysis (p = >0.05 for all locations). A statistically significant positive correlation was seen between higher nasal mucosal temperature and unilateral VAS, strongest at the left nasopharynx (Pearson r = 0.62; p = 0.019). A statistically significant negative correlation was seen between peak heat flux obtained from CFD simulations and unilateral VAS, stronger on the right side (Pearson r = -0.29; p = 0.0079). No statistically significant correlations were seen between wall shear stress, inspiratory nasal airway resistance or minimum cross-sectional area with unilateral VAS. Conclusion – Lower nasal mucosal temperature and higher heat flux within the nasal cavity correlates with a perception of improved nasal patency in healthy individuals. CFD simulations may prove to be a valuable modality in improving the assessment and management of patients with NAO.
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Caramori, Paulo Henrique. "Structural analysis of airborne flux traces and their link to remote sensing of vegetation and surface temperature." Thesis, McGill University, 1992. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=41012.

Повний текст джерела
Анотація:
This thesis examines the link between airborne flux estimates of CO$ sb2$, sensible heat, and water vapor, and surface parameters retrieved by remote sensing. Chapter 1 analyses the relationship between surface temperature and vegetation indices, obtained from the Advanced Very High Resolution Radiometer on board of NOAA-9 and -10 satellites, and fluxes of sensible heat, latent heat, and CO$ sb2$, estimated from aircraft. Linear relationships between CO$ sb2$ and the Normalized Difference Vegetation Index (NDVI) or the Simple Ratio vegetation index (SR) are found on a daily basis, but a highly nonlinear relationship appears for the seasonal variation. Latent Heat fluxes showed the poorest correlations with surface parameters. A seasonal linear relationship appeared between sensible heat and NDVI. Local extreme flux values due to the intermittency of boundary layer dynamics largely contribute to lower the correlations; such variations are the reason for the difficulties in relating fluxes obtained from single overpasses and over short distances to fixed points at the surface. This problem is further examined in Chapter 2, in which conditional sampling of airborne flux estimates is used to characterize the turbulent structures that are carrying flux, and their link to the surface. The analysis confirms that few extreme events may carry a significant fraction of the flux. Missing or hitting one of these structures may translate into very large oscillations on the flux estimate that are often not directly coupled to surface characteristics. A much clearer surface 'signature' emerges when measurements are taken within the surface layer, since the reorganization of turbulent structures that takes place with increasing height will result in a merging of the signature that came from different sources at the surface. This helps to explain some of the poor correlations obtained in Chapter 1 and reinforces the need for a better understanding of the distributions of these tu
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Myers, Philip D. Jr. "Additives for Heat Transfer Enhancement in High Temperature Thermal Energy Storage Media: Selection and Characterization." Scholar Commons, 2015. http://scholarcommons.usf.edu/etd/5749.

Повний текст джерела
Анотація:
Inorganic salts are very promising as high-temperature heat transfer fluids and thermal storage media in solar thermal power production. The dual-tank molten salt storage system, for example, has been demonstrated to be effective for continuous operation in solar power tower plants. In this particular storage regime, however, much of the thermal storage potential of the salts is ignored. Most inorganic salts are characterized by high heats of fusion, so their use as phase-change materials (PCMs) allows for substantially higher energy storage density than their use as sensible heat storage alone. For instance, use of molten sodium-potassium eutectic salt over a temperature range of 260 to 560°C (the approximate operating parameters of a proposed utility-scale storage system) allows for a volumetric energy storage density of 212 kWhth/m3, whereas the use of pure sodium nitrate (T_m = 307°C) over the same temperature range (utilizing both sensible and latent heat) yields a storage density of 347 kWhth/m3. The main downside to these media is their relatively low thermal conductivity (typically on the order of 1 W/m-K). While low conductivity is not as much an issue with heat transfer fluids, which, owing to convective heat transfer, are not as reliant on conduction as a heat transfer mode, it can become important for PCM storage strategies, in which transient charging behavior will necessarily involve heating the solid-phase material up to and through the process of melting. This investigation seeks to develop new methods of improving heat transfer in inorganic salt latent heat thermal energy storage (TES) media, such as sodium / potassium nitrates and chlorides. These methods include two basic strategies: first, inclusion of conductivity-enhancing additives, and second, incorporation of infrared absorptive additives in otherwise transparent media. Also, in the process, a group of chloride based salts for use as sensible storage media and/or heat transfer fluids has been developed, based on relevant cost and thermophysical properties data. For direct conductivity enhancement, the idea is simple: a PCM with low conductivity can be enhanced by incorporation of nanoparticulate additives at low concentration (~5 wt %). This concept has been explored extensively with lower temperature heat transfer fluids such as water, ethylene glycol, etc. (e.g., nanofluids), as well as with many lower temperature PCMs, such as paraffin wax. Extension of the concept to high temperature inorganic salt thermal storage media brings new challenges—most importantly, material compatibility. Also, maintenance of the additive distribution can be more difficult. Promising results were obtained in both these regards with nitrate salt systems. The second heat transfer enhancement strategy examined here is more novel in principle: increasing the infrared absorption of a semitransparent salt PCM (e.g., NaCl) with a suitable additive can theoretically enhance radiative heat transfer (for sufficiently high temperatures), thereby compensating for low thermal conductivity. Here again, material compatibility and maintenance of additive dispersion become the focus, but in very different ways, owing to the higher temperatures of application (>600°C) and the much lower concentration of additives required (~0.5 wt %). Promising results have been obtained in this case, as well, in terms of demonstrably greater infrared absorptance with inclusion of additives.
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Mentré-Le, Sant Véronique. "Amelioration des methodes de mesure du flux par la technique des temperatures superficielles." Paris 6, 1988. http://www.theses.fr/1988PA066416.

Повний текст джерела
Анотація:
Probleme de la variation des caracteristiques thermiques des materiaux avec la temperature et des effets de la geometrie de la maquette lors de dla determination des flux thermiques par convection en soufflerie hypersonique. Presentation de la technique utilisee pour l'etalonnage thermique et de differentes methodes numeriques de depouillement adaptees aux conditions d'essai
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Jiang, Hua. "Effect of Changes in Flow Geometry, Rotation and High Heat Flux on Fluid Dynamics, Heat Transfer and Oxidation/Deposition of Jet Fuels." University of Dayton / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1300553102.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Wasson, Rachel Ann. "Separation of the Heat Transfer Components for Diffusion Flames Impinging onto Ceilings." Thesis, Virginia Tech, 2014. http://hdl.handle.net/10919/50588.

Повний текст джерела
Анотація:
Two series of experiments were performed to determine the flow characteristics and to quantify the heat transfer components from a propane diffusion flame impinging onto a ceiling. A 0.3 m square sand burner with propane as the fuel type provided a steady-state fire. In the first series of experiments, measurements of gas temperature and velocity were made at 76 mm vertical intervals above the burner up to the ceiling. Fire heat release rates (HRRs) of 50 kW and 90 kW with free flame length to ceiling height ratios, Lf/H, of 2, 1.5, 1, 0.8, 0.85 were used to determine their effects on the measured parameters. Gas temperatures within the continuous flaming region were relatively constant, and measured to be independent of ceiling height and HRR, while velocities increased with elevation and were independent of ceiling height yet weakly dependent on HRR. Within the intermittent region, gas temperature was weakly affected by the presence of the ceiling at various heights, while the effect on velocity was more pronounced. HRR had an effect on both temperature and velocity within the intermittent region of the fire plume. Comparisons with existing fire plume correlations showed that the unbounded correlations can be used to provide a good approximation of the gas temperature for the ceiling bounded case; while the correlations for the velocity can only be used for elevations up to approximately 60% of the ceiling height. Elevations above this cutoff were significantly affected by the presence of the ceiling. The second series of experiments investigated HRRs of 50 kW and 90 kW with free flame length to ceiling height ratios, Lf/H, of 2, 1.5, and 1. Heat flux and gas temperature at the stagnation point of the ceiling were measured using hybrid heat flux gauges and an aspirated Type K thermocouple. Four methods of calculating the convective heat transfer coefficient, h, were developed and adapted; two reference methods and two slope methods. The components of heat transfer at the impingement point were separated using these calculated h values. The reference method 2, and both slope methods only required the use of the non-cooled hybrid gauge measurements and were in overall good agreement with one another. The reference method 1 differed significantly, being up to 15.8 times lower than the others. The trends in the two groups were contradictory, with the h calculated using the reference method 1 increasing with ceiling height while the others showed no strong trend with ceiling height. The disagreements between the methods greatly affected the components of heat transfer, particularly at the lowest ceiling heights. Convection calculated using the h from reference method 1 contributed only 2-5% of the total exposure heat flux at the lowest ceiling heights, whereas with the other methods convection contributed 20-50% of the total exposure heat flux. The limitations of each method are discussed. Further investigation is required for all methods to determine their applicability within the flaming region of a fire.
Master of Science
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Gustafsson, David. "Land surface heat exchange over snow and frozen soil." Licentiate thesis, KTH, Land and Water Resources Engineering, 2001. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-1231.

Повний текст джерела
Анотація:

The energy exchange in the soil-snow-vegetation-atmospheresystem was studied to improve the quantitative knowledge of thegoverning processes. The lack of such knowledge contributes tothe uncertainty in the applicability of many existing modelsindependent of the temporal or spatial scale. The theoreticalbackground and available methods for measurements and numericalsimulations were reviewed. Numerical simulation models andavailable data sets representing open land and boreal forestwere evaluated in both diurnal and seasonal time-scales.Surface heat fluxes, snow depth, soil temperatures andmeteorological conditions were measured at an agriculturalfield in central Sweden over two winters, 1997-1999. Twoone-dimensional simulation models of different complexity wereused to simulate the heat and water transfer in thesoil-snow-atmosphere system and compared with the measurements.Comparison of simulated and observed heat fluxes showed thatparameter values governing the upper boundary condition weremore important than the formulation of the internal mass andheat balance of the snow cover. The models were useful toevaluate the lack of energy balance closure in the observedsurface heat fluxes, which underlined the importance ofimproved accuracy in eddy correlation measurements of latentflow during winter conditions.

The representation of boreal forest in the land surfacescheme used within a weather forecast model was tested with athree-year data set from the NOPEX forest site in centralSweden. The formulation with separate energy balances forvegetation and the soil/snow beneath tree cover improvedsimulation of the seasonal and diurnal variations of latent andsensible heat flux compared with an older model version.Further improvements of simulated surface heat fluxes could beexpected if the variation of vegetation properties within andbetween years and a new formulation of the boundary conditionsfor heat flux into the soil is included.

Keywords: Surface energy balance, Snow, Boreal forest,SVAT models, Eddy-correlation Measurements, Latent heat flux,Sensible heat flux, Net radiation, Soil temperature,Aerodynamic roughness, Surface resistance


QC 20100614
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Choi, Keum-Ran. "3D thermal mapping of cone calorimeter specimen and development of a heat flux mapping procedure utilizing an infrared camera." Link to electronic thesis, 2005. http://www.wpi.edu/Pubs/ETD/Available/etd-020205-215634/.

Повний текст джерела
Анотація:
Dissertation (Ph.D.)-- Worcester Polytechnic Institute.
Keywords: temperature measurement; heat flux maps; Cone Calorimeter; three-dimensional heat conduction; fire growth models; retainer frame; ceramic fiberboard; edge effect; one-dimensional heat conduction; heat flux mapping procedure; infrared camera; specimen preparation; edge frame; one-dimensional heat conduction model; thermal properties. Includes bibliographical references (p.202-204).
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Chu, Yi-Fei. "The incorporation of hourly goes data in a surface heat flux model and its impacts on operational temperature predictions in bodies of water /." The Ohio State University, 1998. http://rave.ohiolink.edu/etdc/view?acc_num=osu14879491500689.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

PENTELLA, MARIANO. "Characterization of magnetic materials at extreme ranges of field, temperature, and permeability." Doctoral thesis, Politecnico di Torino, 2022. http://hdl.handle.net/11583/2964790.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Edy, Jean-Luc. "Application de la photoluminescence pour la mesure des flux thermiques en soufflerie hypersonique à rafales." Valenciennes, 1995. https://ged.uphf.fr/nuxeo/site/esupversions/b8f44f3d-2475-494b-9670-b3b708b9c821.

Повний текст джерела
Анотація:
Une étude a été entreprise à la direction de l'aérodynamique de l'onera concernant l'application en soufflerie hypersonique d'une nouvelle méthode thermographique utilisant les propriétés de la photoluminescence. Après avoir étudie la faisabilité de la technique en mesure ponctuelle, il a été décidé de développer un système cartographique basé sur l'utilisation d'une camera video 3-ccd et d'un système de traitement d'images et de vérifier son adéquation aux mesures des transferts de chaleur pariétaux dans les souffleries hypersoniques à rafales. Le système a été étalonné en laboratoire, puis évalué dans le cadre d'essais dans les installations de l'onera à Chalais-Meudon. Il apparait que la thermographie par photoluminescence (tph) fournit des résultats satisfaisants sur des maquettes en matériau isolant thermiquement. Quant aux corps d'étude en matériau conducteur, la comparaison soit avec une évaluation théorique, soit avec données acquises au moyen de capteurs ponctuels montre que l'accord est moins bon. Cette méthode, avec la configuration expérimentale choisie, ne peut concurrencer directement la thermographie infrarouge. Elle est plutôt d'une technique complémentaire applicable quand la thermographie infrarouge ne peut être mise en œuvre
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Ahlswede, Benjamin James. "What to plant and where to plant it; Modeling the biophysical effects of North America temperate forests on climate using the Community Earth System Model." Thesis, Virginia Tech, 2015. http://hdl.handle.net/10919/74269.

Повний текст джерела
Анотація:
Forests affect climate by absorbing CO₂ but also by altering albedo, latent heat flux, and sensible heat flux. In this study we used the Community Earth System Model to assess the biophysical effect of North American temperate forests on climate and how this effect changes with location, tree type, and forest management. We calculated the change in annual temperature and energy balance associated with afforestation with either needle leaf evergreen trees (NET) or broadleaf deciduous trees (BDT) and between forests with high and low leaf-area indices (LAI). Afforestation from crops to forests resulted in lower albedo and higher sensible heat flux but no consistent difference in latent heat flux. Forests were consistently warmer than crops at high latitudes and colder at lower latitudes. In North America, the temperature response from afforestation shifted from warming to cooling between 34° N and 40° N for ground temperature and between 21° N and 25° N for near surface air temperature. NET tended to have lower albedo, higher sensible heat flux and warmer temperatures than BDT. The effect of tree PFT was larger than the effect of afforestation in the south and in the mid-Atlantic. Increasing LAI, a proxy for increased management intensity, caused a cooling effect in both tree types, but NET responded more strongly and albedo decreased while albedo increased for BDT. Our results show that forests' location, tree type, and management intensity can have nearly equal biophysical effects on temperature. A forest will have maximum biophysical cooling effect if it is in the south, composed of broadleaf PFT, and is managed to maximize leaf area index.
Master of Science
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Nagaiah, Narasimha. "NOVEL CONCEPTUAL DESIGN AND ANLYSIS OF POLYMER DERIVED CERAMIC MEMS SENSORS FOR GAS TURBINE ENVIRONMENT." Master's thesis, University of Central Florida, 2006. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/4086.

Повний текст джерела
Анотація:
Technical challenges for developing micro sensors for Ultra High Temperature and turbine applications lie in that the sensors have to survive extremely harsh working conditions that exist when converting fuel to energy. These conditions include high temperatures (500-1500°C), elevated pressures (200-400 psi), pressure oscillations, corrosive environments (oxidizing conditions, gaseous alkali, and water vapors), surface coating or fouling, and high particulate loading. Several technologies are currently underdeveloped for measuring these parameters in turbine engines. One of them is an optical-based non-contact technology. However, these nondirective measuring technologies lack the necessary accuracy, at least at present state. An alternative way to measure these parameters without disturbing the working environments is using MEMS type sensors. Currently, the techniques under development for such harsh environment applications are silicon carbide (SiC) and silicon nitrite (Si3N4) –based ceramic MEMS sensors. But those technologies present some limitation such as narrow processing method, high cost (materials and processing cost), and limited using temperatures (typically < 800 C). In this research we propose to develop two sensors based on recently developed polymer-derived ceramics (PDCs): Constant Temperature Hot wire Anemometer, temperature/heat-flux sensor for turbine applications. PDC is a new class of high temperature ceramics. As we shall describe below, many unique features of PDCs make them particularly suitable for the proposed sensors, including: excellent thermo-mechanical properties at high temperatures, enable high temperature operation of the devices; various well-developed processing technologies, such as injection molding,photolithography, embossing, DRIE etching and precise machining, can be used for the fabrication of the devices; and tunable electric conductivity, enable the proposed sensors fabricated from similar materials, thus reliability considerations associated with thermal mismatch, which is a big concern when using MEMS-based sensors at elevated temperatures, will be minimized.
M.S.M.E.
Department of Mechanical, Materials and Aerospace Engineering;
Engineering and Computer Science
Mechanical Engineering
Стилі APA, Harvard, Vancouver, ISO та ін.
39

White, Kathleen Madara. "Low Temperature Synthesis and Characterization of Some Low Positive and Negative Thermal Expansion Materials." Diss., Georgia Institute of Technology, 2006. http://hdl.handle.net/1853/11582.

Повний текст джерела
Анотація:
LOW TEMPERATURE SYNTHESIS AND CHARACTERIZATION OF SOME LOW POSITIVE AND NEGATIVE THERMAL EXPANSION MATERIALS Kathleen Madara White 151 pages Directed by Dr. Angus P. Wilkinson Low temperature non-hydrolytic sol-gel synthesis was used to explore the possibility of lowering the crystallization temperatures of some known AIVMV2O7 compounds. Crystallization temperatures for ZrP2O7 and ZrP2O7 were unaffected by the use of non-hydrolytic sol-gel methods; however, successful synthesis of these compounds broadens the range of materials that can be produced using this method and suggests the possibility of synthesizing solid solutions (or composites) including ZrP2O7 or ZrV2O7. This research presents for the first time the direct synthesis of ZrP2O7 from separate zirconium and phosphorus starting materials using mild autoclave methods. Characterization of some AIVMV2O7 compounds, using lab and high resolution synchrotron powder XRD, led to the assignment of a new symmetry for CeP2O7 and to the suggestion that the reported structure for PbP2O7 was inadequate. Studies using in situ high temperature lab and synchrotron powder XRD for PbP2O7 and CeP2O7 provided the opportunity to report their thermal properties for the first time, and to compare their behavior to that of some other AIVMV2O7. High pressure diffraction measurements on CeP2O7 provided data for the estimation of bulk moduli and suggested two possible pressure-induced phase transitions. A broad range of MIIIMVP4O14 compounds were prepared using low temperature hydrolytic sol-gel synthesis. Thermal studies revealed nearly linear trends in CTEs and lattice constants with respect to the sizes of MIIIMV cations. Some lower ionic radii compounds had CTEs comparable to that of ZrP2O7 at low temperature, suggesting a similar superstructure. Three compounds were found to exhibit temperature-induced phase transitions.
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Diao, Zhaojin. "CHARACTERIZATION OF METHANE-AIR DIFFUSION FLAMES FOR FLAME SYNTHESIS APPLICATION THROUGH OPTICAL DIAGNOSTICS." UKnowledge, 2018. https://uknowledge.uky.edu/me_etds/121.

Повний текст джерела
Анотація:
Flame synthesis is a growing field of research aiming at forming new materials and coatings through injection of seed materials into a flame. Accurate prediction of the thermal structure of these flames requires detailed information on the radiative properties and a thorough understanding of the governing combustion processes. The objective of this work is to establish a basic optical diagnostic characterization of different methane-air diffusion flames of different complexity. The basic principles are developed and demonstrated at a rotational symmetric co-flow burner and finally applied to a burner consisting of six clustered microflames which is designed for future flame synthesis work. This work focuses on the demonstration of the optical techniques for characterizing the optical emissions from diffusion flames and of the proposed method for the determination of radiating species properties from these optical measurements. In the co-flow diffusion flame setup, the fuel of methane diluted with nitrogen is provided through an inner tube while the air is applied through an outer duct surrounding the fuel nozzle. Filtered imaging and spectrally resolved measurements of the chemiluminescence of CH* and C2* and of water emission were conducted. A procedure for using the HITRAN database to support the spectroscopic analysis of the water emission was developed. In the six clustered microflames burner setup, the burner consisted of six micro-nozzles arranged in a circle surrounding a central nozzle through which air and TaN seed particles with sizes between 0.3 and 3 μm were injected. Spectrally resolved measurements of the chemiluminescence of CH* and C2* were conducted for temperature measurements. Imaging results obtained from a spectral integration of the molecular emission were compared to results from Japanese collaborators who applied a tomographic analysis method to filtered emission measurements of CH* emission which can yield spatially resolved three dimensional mapping of the flame front. The analysis of the spatial distribution of the integrated band emission of CH* and C2* showed that the emission of both species is generated at the same locations in the flame which are the thin flame sheets shown in the tomography results of CH*. The ratio of the C2* and the CH* emission from the emission spectroscopy measurements was used to determine a local equivalence ratio through empirically derived correlations for premixed flames reported in literature. Rotational and vibrational temperature distributions of CH* and C2* radicals throughout the entire flame were determined from the spectrally resolved emission from CH* and C2*. The temperatures of TaN seed particles were characterized using VIS-NIR emission spectra while varying fuel-air flow rates. The temperature profiles of the particles at various heights above the base of the central nozzle, obtained by their VIS-NIR continuum emission, showed a well-defined constant temperature region that extended well beyond the actual flame front and changed as fuel and oxidizer flow rates were varied. The results demonstrate the ability to control the duration to which seed particles are subjected to high temperature reactions by adjusting fuel and oxidizer flow rates in the clustered microflames burner.
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Shirodkar, Rakesh. "An Investigation on Radiometric Measurements of Subterranean Heat Sources." Scholar Commons, 2010. https://scholarcommons.usf.edu/etd/1768.

Повний текст джерела
Анотація:
With global warming on the rise and the urge for conserving our natural resources, it becomes very important that proper steps are taken to protect our natural resources and utilize them efficiently. Forest fires are one of the many issues on the charts towards protection of natural resources. The catastrophic aftermaths caused by forest fires are known to all. The causes for these fires could be known/unknown natural causes or human intervention. Remote sensing techniques use the electromagnetic radiation in the RF/Microwave region, emitted from an object. The amount of energy emitted from an object depends on its present conditions, primarily its temperature and its emissivity. The sensing devices used in such measurements are classified into active and passive sensors. Herein, passive radiometry is used to investigate a model for the propagation of subsurface radiation from underground forest fires through upper ground layers of soil till the land-air interface. Passive radiometry involves capturing the radiation incident on a radiometer antenna aperture directly or deflected from several objects. The energy emitted from sources above 0K is collected and is compared with the calibration standards to estimate the physical quantity under test. Detecting forest fires is one of the potential applications of passive radiometry investigated here.
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Witter, Jason Daniel. "A Two Part Thesis: Diurnal Soil Temperature Effects Within the GLOBE® Program Dataset and Pharmaceutical Compounds in the Wastewater Process Stream in Northwest Ohio." University of Toledo / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1208865262.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Venter, Daniel Petrus Rocco. "Friction factors and nusselt numbers for laminar flow in ducts / Daniel Petrus Rocco Venter." Thesis, North-West University, 2009. http://hdl.handle.net/10394/3995.

Повний текст джерела
Анотація:
By using the finite element method to solve the appropriate momentum and energy equations the friction factors and Nusselt numbers for fully developed laminar flow were determined for one- and two-dimensional flow systems. The Nusselt numbers were determined for domain boundaries subjected to a constant heat flux (H1) or a constant surface temperature (T) around the computational boundaries and in the axial directions. C++ programs, that were rewritten and extended from previous programs, were used to solve the laminar flow and to determine the values. The required wall shear stresses and heat fluxes were directly obtained for a duct as part of the primary finite-element solution; these values were then used to determine the Nusselt number and friction factor for the specific duct. The computations were performed for circular-, annular-, trapezoidal-, rectangular- and triangular ducts. Special emphasis was placed on trapezoidal ducts since only a limited number of studies have been performed on trapezoidal duct shapes and none of these studies employed the finite element method. Excellent agreement was found when the determined values were compared with the values reported in the literature. In general, the agreement of the values improved as the number of elements was increased. It was, therefore, concluded that the methods used in this study yielded friction factors and Nusselt numbers that are very accurate and usable.
Thesis (M.Ing. (Mechanical Engineering))--North-West University, Potchefstroom Campus, 2009.
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Rizk, Rania. "Refroidissement passif de batteries lithium pour le stockage d'énergie." Thesis, Normandie, 2018. http://www.theses.fr/2018NORMC228.

Повний текст джерела
Анотація:
Ce mémoire présente une étude sur le refroidissement passif de batteries lithium-ion. Il se compose de deux grandes parties. La première partie est une étude expérimentale et numérique du comportement thermique d’une batterie et la seconde partie est l’étude expérimentale d’un système passif pour le refroidissement de plusieurs batteries. Un banc d’essais expérimental a été conçu pour suivre l’évolution thermique des batteries soumises à différents courants de sollicitation. Les batteries prismatiques étudiées sont de type LFP et de capacité 60 Ah. Dans un premier temps, le comportement thermique d’une batterie soumise à des cycles de charge / décharge, est caractérisé expérimentalement. Nous montrons que la température n’est pas uniforme à la surface de la batterie et la zone la plus chaude est identifiée. Dans un second temps, un modèle numérique tridimensionnel a été développé pour prédire la température en tout point de la batterie. Ce modèle thermique permet de prédire notamment les températures à l’intérieur de la batterie, non mesurées expérimentalement et ceci, pour différents courants de sollicitation. Les données d’entrée du modèle sont issues des essais expérimentaux et de la littérature. Cette phase de caractérisation thermique de la batterie est essentielle pour la conception d’un système de refroidissement. Enfin, une étude expérimentale d’un système de refroidissement passif basé sur des caloducs et des plaques à ailettes est réalisée. Plusieurs configurations sont testées au fur et à mesure en apportant des améliorations aboutissant enfin à un système à dix caloducs munis de plaques à ailettes verticales au niveau du condenseur combinés à des plaques à ailettes placées sur les faces des batteries
This thesis deals with the passive cooling of lithium-ion batteries. It consists of two large parts. The first part is an experimental and numerical study of the thermal behaviour of a battery and the second part is the experimental study of a passive system for the cooling of several batteries. An experimental test bench was designed to monitor the thermal evolution of batteries subjected to different currents. The prismatic batteries studied are made of lithium-iron-phosphate and have a capacity of 60 Ah. In a first step, the thermal behaviour of a battery subjected to charge / discharge cycles is experimentally characterized. We show that the temperature is not uniform at the surface of the battery and the hottest area is identified. In a second step, a three-dimensional numerical model was developed to predict the temperature at any point of the battery. This thermal model makes it possible to predict in particular the temperatures inside the battery, not measured experimentally and this, for different currents. The model input data are from experimental trials and literature. This phase of thermal characterization of the battery is essential for the design of a cooling system. Finally, an experimental study of a passive cooling system based on heat pipes and finned plates is carried out. Several configurations are tested progressively with improvements leading finally to a system with ten heat pipes with vertical finned plates at the condenser combined with finned plates placed on the faces of the batteries
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Sung, Dong Yul. "Characterization of Arabidopsis heat shock protein 70 (hsp70) gene family and microarray analysis of gene expression in response to temperature extremes." [Gainesville, Fla.] : University of Florida, 2001. http://purl.fcla.edu/fcla/etd/UFE0000356.

Повний текст джерела
Анотація:
Thesis (Ph. D.)--University of Florida, 2001.
Title from title page of source document. Document formatted into pages; contains xii, 140 p.; also contains graphics. Includes vita. Includes bibliographical references.
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Teichmann, Ulrich, Astrid Ziemann, Klaus Arnold, and Armin Raabe. "Akustische Tomographie und optische Scintillometertechnik zur Sondierung der atmosphärischen Grenzschicht." Universitätsbibliothek Leipzig, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-214141.

Повний текст джерела
Анотація:
Während eines Experimentes an der Forschungsstation Melpitz des IfT (Institut für Tropossphärenforschung) im September 1997 wurden erstmalig zwei verschiedene Meßmethoden gleichzeitig eingesetzt, die flächengemittelte Lufttemperaturen (Akustische Tomographie - Leipziger Institut für Meteorologie (LIM)) sowie liniengemittelte fühlbare Wärmeflüsse (Scintillometertechnik - IfT) lieferten. Es konnte gezeigt werden, daß teilweise erhebliche Temperaturdifferenzen an einem Strahlungstag auf dieser oberflächlich betrachteten horizontal homogenen Wiese existieren. Die geringe Datenbasis, größtenteils bedingt durch die ungünstige Anströmrichtung während dieses Zeitraums, läßt noch keinen sicheren Schluß zu, ob diese horizontalen Temperaturdifferenzen für die ebenfalls beobachteten horizontalen Unterschiede der vertikalen fühlbaren Wärmeflüsse und damit für die manchmal in Melpitz beobachtete Nicht-Schließung der Energiebilanz verantwortlich sind
During an experiment at the Iff field research station Melpitz in September 1997 for the first time two different techniques were used to determine simultaneously area averaged air temperatures (Acoustic Tomography -LIM) and line averaged sensible heat fluxes (Scintillation technique - IfT). lt could be shown that on a \'golden\' day appreciably large temperature differences occurred on this superficially considered horizontal homogeneous meadow. Because of the weak data base mostly due to difficult fetch conditions it could not be proven that these temperature differences led to the horizontal differences of vertical sensible heat fluxes and therefore to the sometimes observed non-closure of the energy balance in Melpitz
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Kim, Myeongsub. "Microscale optical thermometry techniques for measuring liquid phase and wall surface temperatures." Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/43754.

Повний текст джерела
Анотація:
Thermal management challenges for microelectronics are a major issue for future integrated circuits, thanks to the continued exponential growth in component density described by Moore¡¯s Law. Current projections from the International Technology Roadmap for Semiconductors predict that local heat fluxes will exceed 1 kW/cm2 within a decade. There is thus an urgent need to develop new compact, high heat flux forced-liquid and evaporative cooling technologies. Thermometry techniques that can measure temperature fields with micron-scale resolution without disturbing the flow of coolant would be valuable in developing and evaluating new thermal management technologies. Specifically, the ability to estimate local convective heat transfer coefficients, which are proportional to the difference between the bulk coolant and wall surface temperatures, would be useful in developing computationally efficient reduced-order models of thermal transport in microscale heat exchangers. The objective of this doctoral thesis is therefore to develop and evaluate non-intrusive optical thermometry techniques to measure wall surface and bulk liquid temperatures with O(1-10 micronmeter) spatial resolution. Intensity-based fluorescence thermometry (FT), where the temperature distribution of an aqueous fluorescent dye solution is estimated from variations in the fluorescent emission intensity, was used to measure temperatures in steady Poiseuille flow at Reynolds numbers less than 10. The flow was driven through 1 mm square channels heated on one side to create temperature gradients exceeding 8 ¡ÆC/mm along both dimensions of the channel cross-section. In the evanescent-wave fluorescence thermometry (EFT) experiments, a solution of fluorescein was illuminated by evanescent waves to estimate the solution temperature within about 300 nm of the wall. In the dual-tracer FT (DFT) studies, a solution of two fluorophores with opposite temperature sensitivities was volumetrically illuminated over most of the `cross-section of the channel to determine solution temperatures in the bulk flow. The accuracy of both types of FT is determined by comparing the temperature data with numerical predictions obtained with commercial computational fluid dynamics software. The results indicate that EFT can measure wall surface temperatures with an average accuracy of about 0.3 ¡ÆC at a spatial resolution of 10 micronmeter, and that DFT can measure bulk water temperature fields with an average accuracy of about 0.3 ¡ÆC at a spatial resolution of 50 micronmeter in the image plane. The results also suggest that the spatial resolution of the DFT data along the optical axis (i.e., normal to the image plane) is at least an order of magnitude greater than the depth of focus of the imaging system.
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Altalidi, Sulaiman Saleh. "Two-Phase Spray Cooling with HFC-134a and HFO-1234yf for Thermal Management of Automotive Power Electronics using Practical Enhanced Surfaces." Thesis, University of North Texas, 2017. https://digital.library.unt.edu/ark:/67531/metadc1011876/.

Повний текст джерела
Анотація:
The objective of this research was to investigate the performance of two-phase spray cooling with HFC-134a and HFO-1234yf refrigerants using practical enhanced heat transfer surfaces. Results of the study were expected to provide a quantitative spray cooling performance comparison with working fluids representing the current and next-generation mobile air conditioning refrigerants, and demonstrate the feasibility of this approach as an alternative active cooling technology for the thermal management of high heat flux power electronics (i.e., IGBTs) in electric-drive vehicles. Potential benefits of two-phase spray cooling include achieving more efficient and reliable operation, as well as compact and lightweight system design that would lead to cost reduction. The experimental work involved testing of four different enhanced boiling surfaces in comparison to a plain reference surface, using a commercial pressure-atomizing spray nozzle at a range of liquid flow rates for each refrigerant to determine the spray cooling performance with respect to heat transfer coefficient (HTC) and critical heat flux (CHF). The heater surfaces were prepared using dual-stage electroplating, brush coating, sanding, and particle blasting, all featuring "practical" room temperature processes that do not require specialized equipment. Based on the obtained results, HFC-134a provided a better heat transfer performance through higher HTC and CHF values compared to HFO-1234yf at all tested surfaces and flow rates. While majority of the tested surfaces provided comparable HTC and modestly higher CHF values compared to the reference surface, one of the enhanced surfaces offered significant heat transfer enhancement.
Стилі APA, Harvard, Vancouver, ISO та ін.
49

SILVA, Ana Paula Nunes da. "Ilha de calor urbana: diagnóstico e impactos no microclima da região metropolitana de Macapá, AP." Universidade Federal de Campina Grande, 2016. http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/1601.

Повний текст джерела
Анотація:
Submitted by Maria Medeiros (maria.dilva1@ufcg.edu.br) on 2018-08-30T13:43:17Z No. of bitstreams: 1 ANA PAULA NUNES DA SILVA - TESE (PPGMet) 2016.pdf: 25525790 bytes, checksum: 973f4462b19d6c6616cfec5845906a37 (MD5)
Made available in DSpace on 2018-08-30T13:43:17Z (GMT). No. of bitstreams: 1 ANA PAULA NUNES DA SILVA - TESE (PPGMet) 2016.pdf: 25525790 bytes, checksum: 973f4462b19d6c6616cfec5845906a37 (MD5) Previous issue date: 2016-05-06
CNPq
O objetivo deste trabalho foi verificar a ocorrência de ilha de calor urbana (ICU) e sua influência no microclima na Região Metropolitana de Macapá (RMM), situada no Nordeste da Amazônia Legal, já que esta região vem apresentando um rápido processo de urbanização. Este processo de crescimento urbano provoca mudanças na cobertura e uso do solo, que podem modificar diretamente o balanço de energia em superfície gerando modificações na atmosfera que podem variar da escala local até a regional. Para verificar o crescimento urbano da RMM utilizou-se imagens do LANDSAT TM e OLI/TIRS de cinco diferentes épocas e através da classificação supervisionada MAXVER, verificou-se a expansão da classe área construída entre 1986 e 2015, classe que subentende a malha urbana. Uma análise climática com dados de precipitação e temperatura, permitiu verificar que possivelmente a variabilidade da temperatura e precipitação encontrada deve estar mais associado com eventos como El Niño do que com mudanças climáticas, entretanto, as tendências de aquecimento observadas podem estar relacionadas com o crescimento urbano. Para entender os impactos do crescimento urbano na modificação do microclima da RMM analisou-se índices de extremos climáticos de duas estações meteorológicas: uma situada no perímetro urbano e outra numa área rural da RMM. Verificou-se que as maiores mudanças térmicas ocorreram na área mais afastada da cidade, fato devido às mudanças de uso do solo na região periférica da RMM, enquanto que os índices relacionados a precipitação foram mais significativos na área urbana. Foram instalados termo-higrômetros em quatro pontos da RMM em áreas suburbanas e rurais para analisar os índices ICU, verificou-se que o índice sazonal de ICU foi maior (menor) nos meses de março a abril (outubro a dezembro), enquanto o índice horário obteve diferentes resultados de acordo com a época do ano: no mês chuvoso (seco) foi mais intenso no início da noite (do dia) com valor para a RMM atingiram valores máximos de 6°C (4,9°C). Na análise da Ilha de Calor Urbana em Superfície (ICUS) utilizaram-se cinco imagens de satélite e se verificou que em todas as imagens houve a comprovação de ICUS com núcleos nos centros da malhas urbanas das duas cidades da RMM e num distrito situado entre os dois centros urbanos analisados. Verificando os índices de conforto térmico gerados pela formação de ICU na RMM, comprovou-se que a região central da RMM apresenta os maiores valores e, que os índices de calor e de temperatura efetiva apresentaram boa relação com a percepção térmica da população de RMM, entrando o índice de conforto humano não se mostrou aplicabilidade na região em estudo.
The goal of the this Doctoral Thesis is to verify the occurrence of the Urban Heat Island (UHI) in the Macapá Metropolitan Area (RMM) Micro climate, which is placed in the Legal Amazon Northeast, due to the fact of the fast urbanization of the area. The development of the urban areas causes changes on the cover and use of the soil which could have a direct effect on the surface energy balance that may result in atmospheric modification in a local, or even regional,scale. In order to verify the RMM urban development, were used images from LANDSAT TM and OLI/TIRS of five different periods. Therefore, through the supervised classification MAXVER, it was possible to verify a expansion of the build-up area, the class of soil that covers the urban sheet, between 1986 and 2015. A climatic Analysis containing precipitation and temperature data showed that, probably, the variation of precipitation and temperature which appeared in the numbers presented are more likely to be associated with specific events, e.g. El Niño, than with the climatic changes. How ever, the growing heat trend observed during the research may be related to the urban development. In order to understand the impact of the development of the urban areas in the modification of the RMM micro climate, extreme climatic levels from two meteorologic bases were adopted: one of the those was placed within the urban perimeter; while the other was located in the RMM rural area. The data collected showed the biggest thermal changes took place further from the city, due to changes in the use of the soil in the isolated region of the RMM. About the levels related to precipitation, they were more significant in the urban areas. Term-hygrometers were installed in four different spots of the RMM, in suburban and rural areas, with the objective of analyzing the UHI levels. It was possible to verify that the season UHI levels were bigger (smaller) between March and April (October and December). The schedule levels showed different results along the year: during the rainy month (dry) it was more intense in the beginning of night (day) reaching maximum levels, in the RMM, of 6.0ºC (4.9ºC). For the analysis of the Urban Heat Island on Surface (SUHI) 5 satellite images were used and it was possible to verify in all of them the existence of ICUS with their cores located in the center of the urban sheets of the two cities that form the RMM and in a district placed between them. Trough the verification of the heat levels generated by the UHI formation in the RMM, it was possible to probe that the central area of the RMM presents the biggest values, and the IC and ITE levels are well connected to the RMM population's thermal perception. Considering the ICH it was evident the applicability of this Thesis in the area of the research.
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Rodríguez-Laguna, María del Rocío. "Heat transfer fluids: From fundamental aspects of graphene nanofluids at room temperature to molten salts formulations for solar-thermal conversion." Doctoral thesis, Universitat Autònoma de Barcelona, 2019. http://hdl.handle.net/10803/667803.

Повний текст джерела
Анотація:
Los fluidos de transferencia de calor, y en particular los nanofluidos, se pueden considerar un elemento esencial en diversos sectores industriales y su rendimiento es clave para una adecuada aplicación en tecnologías que van desde la gestión térmica y la refrigeración, a la generación de energía solar térmica y eléctrica mediante el uso de intercambiadores de calor. Estas industrias necesitan fluidos de transferencia de calor con un rango de temperatura del líquido más amplio y mejores prestaciones en la transferencia de calor que los fluidos convencionales. Todos los fluidos parecen beneficiarse de la dispersión de nanopartículas sólidas, tanto aquellos usados en aplicaciones de baja temperatura y temperatura ambiente, como aquellos que funden a más alta temperatura (p. ej. sales fundidas). La dispersión de nanopartículas conduce a la obtención de nanofluidos que con frecuencia presentan mejores conductividades térmicas y/o calores específicos en comparación con los fluidos base. Sin embargo hay algunas excepciones. En la bibliografía podemos encontrar resultados contradictorios acerca de la mejora de las propiedades térmicas en nanofluidos, lo cual hace que sea necesario un estudio de estos materiales en mayor profundidad. Por otra parte, la naturaleza líquida de estos materiales plantea un verdadero desafío, tanto desde el punto de vista experimental como en relación al marco conceptual. El trabajo que se presenta en esta tesis ha abordado dos retos diferentes relacionados con los fluidos de transferencia de calor y los nanofluidos. En primer lugar, se llevó a cabo un estudio riguroso y sistemático de las propiedades térmicas, morfológicas, reológicas, de estabilidad, acústicas y vibracionales de nanofluidos de grafeno en disolventes orgánicos. Observamos un gran aumento de la conductividad térmica de hasta un 48% y un aumento del 18% en la capacidad calorífica de los nanofluidos de grafeno en N,N-dimetilacetamida (DMAc). También se observó una mejora significativa en los nanofluidos de grafeno en N,N-dimetilformamida (DMF) del orden del 25% y 12% para la conductividad térmica y la capacidad calorífica, respectivamente. El desplazamiento de varias bandas del espectro Raman de DMF y DMAc hacia altas frecuencias (máx. ~ 4 cm-1) al aumentar la concentración de grafeno, sugirió que éste tiene la capacidad de afectar a las moléculas de disolvente a larga distancia, en términos de energía vibracional. En paralelo, las simulaciones numéricas basadas en la teoría funcional de la densidad (DFT) y dinámica molecular (MD) mostraron una orientación paralela de DMF hacia el grafeno, favoreciendo la interacción π-π y contribuyendo a la modificación de los espectros de Raman. Además, se observó un orden local de las moléculas de DMF alrededor del grafeno, lo que sugiere que tanto este tipo especial de interacción como el orden local inducido pueden contribuir a la mejora de las propiedades térmicas del fluido. También se realizaron estudios similares en nanofluidos de grafeno disperso en 1-metil-2-pirrolidona, sin embargo, no se observó ninguna modificación de la conductividad térmica o de los espectros de Raman. Todas estas observaciones juntas sugieren que existe una correlación entre la modificación de los espectros vibracionales y el aumento de la conductividad térmica de los nanofluidos. En vista de los resultados, se discutieron y descartaron algunos de los mecanismos propuestos para explicar la mejora de la conductividad térmica en nanofluidos. La segunda línea de investigación se centró en el desarrollo y caracterización de nuevas formulaciones de sales fundidas con baja temperatura de fusión y alta estabilidad térmica. Con este propósito, se sintetizaron dos nuevas formulaciones de seis componentes basadas en nitratos con una temperatura de fusión de 60-75 °C y una estabilidad térmica de aprox. 500 °C. Por otro lado, la complejidad de las muestras llevó a establecer una serie de métodos experimentales que se proponen para la detección del punto de fusión de estos materiales como una alternativa a la calorimetría convencional, estas técnicas son: espectroscopia Raman, técnica 3ω y transmisión óptica.
Heat transfer fluids and nanofluids constitute an important element in the industry and their performance is key to the successful application in technologies that go from heat management and cooling to heat exchangers in thermal-solar energy and electricity generation. These industries demand heat transfer fluids with a wider liquid temperature range and better thermal performance than the conventional fluids. From low-temperature fluids to high-temperature molten salts, these fluids seem to benefit from the dispersion of solid nanoparticles, leading to nanofluids which frequently feature improved thermal conductivities and/or specific heats as compared with the bare fluids. However, there are some exceptions. Contradictory reports make it necessary to study these materials in greater depth than has been usual. Yet, the liquid nature of these materials poses a real challenge, both from the experimental point of view and from the conceptual framework. The work reported in this thesis has tackled two different challenges related to heat transfer fluids and nanofluids. In the first place, a careful and systematic study of thermal, morphological, rheological, stability, acoustic and vibrational properties of graphene-based nanofluids was carried out. We observed a huge increase of up to 48% in thermal conductivity and 18% in heat capacity of graphene-N,N-dimethylacetamide (DMAc) nanofluids. A significant enhancement was also observed in graphene-N,N-dimethylformamide (DMF) nanofluids of approximately 25% and 12% for thermal conductivity and heat capacity, respectively. The blue shift of several Raman bands (max. ~ 4 cm-1) with increasing graphene concentration in DMF and DMAc nanofluids suggested that graphene has the ability to affect solvent molecules at long-range, in terms of vibrational energy. In parallel, numerical simulations based on density functional theory (DFT) and molecular dynamics (MD) showed a parallel orientation of DMF towards graphene, favoring π–π stacking and contributing to the modification of the Raman spectra. Furthermore, a local order of DMF molecules around graphene was observed suggesting that both this special kind of interaction and the induced local order may contribute to the enhancement of the thermal properties of the fluid. Similar studies were also performed in graphene-N-methyl-2-pyrrolidinone nanofluids, however, no modification of the thermal conductivity or the Raman spectra was observed. All these observations together suggest that there is a correlation between the modification of the vibrational spectra and the increase in the thermal conductivity of the nanofluids. In light of these results, the mechanisms suggested in the literature to explain the enhancement of thermal conductivity in nanofluids were discussed and some of them were discarded. The second line of research focused on the development and characterization of novel molten salts formulations with low-melting temperature and high thermal stability. In this regard, two novel formulations of six components based on nitrates with a melting temperature of 60-75 °C and a thermal stability up to ~ 500 °C were synthesized. Moreover, the complexity of the samples led to establish a series of experimental methods which are proposed for the melting temperature detection of these materials as an alternative to conventional calorimetry. These methods are Raman spectroscopy, three-omega technique, and optical transmission.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії