Зміст
Добірка наукової літератури з теми "Technique des multiplicateurs"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Technique des multiplicateurs".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Technique des multiplicateurs"
Zaoujal, Nouzha, and Rachid El Mataoui. "Promotion Des Exportations Des Produits Industriels, Emploi Et Revenu Des Menages Au Maroc. Une Simulation D’impact A L’aide D’un Modele De Multiplicateurs De La Matrice De Comptabilite Sociale." European Scientific Journal, ESJ 14, no. 25 (September 30, 2018): 354. http://dx.doi.org/10.19044/esj.2018.v14n25p354.
Повний текст джерелаKotrova, Michaela, Katerina Muzikova, Ester Mejstrikova, Michaela Novakova, Violeta Bakardjieva-Mihaylova, Fiser Karel, Jan Stuchly, et al. "Next Generation Amplicon Sequencing of Immunoglobulin Heavy Chain Gene Rearrangaments for Minimal Residual Disease (MRD) Stratification in Childhood Acute Lymphoblastic Leukemia (ALL): A Comparison with Classical qPCR-Based Technique." Blood 124, no. 21 (December 6, 2014): 2395. http://dx.doi.org/10.1182/blood.v124.21.2395.2395.
Повний текст джерелаДисертації з теми "Technique des multiplicateurs"
Manceaux-Cumer, Christelle. "Techniques de commande robuste : approche par multiplicateurs et approche stochastique." Toulouse, ENSAE, 1998. http://www.theses.fr/1998ESAE0003.
Повний текст джерелаOlivero, Anaik. "Les multiplicateurs temps-fréquence : Applications à l’analyse et la synthèse de signaux sonores et musicaux." Thesis, Aix-Marseille, 2012. http://www.theses.fr/2012AIXM4788/document.
Повний текст джерелаAnalysis/Transformation/Synthesis is a generalparadigm in signal processing, that aims at manipulating or generating signalsfor practical applications. This thesis deals with time-frequencyrepresentations obtained with Gabor atoms. In this context, the complexity of a soundtransformation can be modeled by a Gabor multiplier. Gabormultipliers are linear diagonal operators acting on signals, andare characterized by a time-frequency transfer function of complex values, called theGabor mask. Gabor multipliers allows to formalize the conceptof filtering in the time-frequency domain. As they act by multiplying in the time-frequencydomain, they are "a priori'' well adapted to producesound transformations like timbre transformations. In a first part, this work proposes to model theproblem of Gabor mask estimation between two given signals,and provides algorithms to solve it. The Gabor multiplier between two signals is not uniquely defined and the proposed estimationstrategies are able to generate Gabor multipliers that produce signalswith a satisfied sound quality. In a second part, we show that a Gabor maskcontain a relevant information, as it can be viewed asa time-frequency representation of the difference oftimbre between two given sounds. By averaging the energy contained in a Gabor mask, we obtain a measure of this difference that allows to discriminate different musical instrumentsounds. We also propose strategies to automaticallylocalize the time-frequency regions responsible for such a timbre dissimilarity between musicalinstrument classes. Finally, we show that the Gabor multipliers can beused to construct a lot of sounds morphing trajectories,and propose an extension
Trad, Farah. "Stability of some hyperbolic systems with different types of controls under weak geometric conditions." Electronic Thesis or Diss., Valenciennes, Université Polytechnique Hauts-de-France, 2024. http://www.theses.fr/2024UPHF0015.
Повний текст джерелаThe purpose of this thesis is to investigate the stabilization of certain second order evolution equations. First, we focus on studying the stabilization of locally weakly coupled second order evolution equations of hyperbolic type, characterized by direct damping in only one of the two equations. As such systems are not exponentially stable , we are interested in determining polynomial energy decay rates. Our main contributions concern abstract strong and polynomial stability properties, which are derived from the stability properties of two auxiliary problems: the sole damped equation and the equation with a damping related to the coupling operator. The main novelty is thatthe polynomial energy decay rates are obtained in several important situations previously unaddressed, including the case where the coupling operator is neither partially coercive nor necessarily bounded. The main tools used in our study are the frequency domain approach combined with new multipliers technique based on the solutions of the resolvent equations of the aforementioned auxiliary problems. The abstract framework developed is then illustrated by several concrete examples not treated before. Next, the stabilization of a two-dimensional Kirchhoff plate equation with generalized acoustic boundary conditions is examined. Employing a spectrum approach combined with a general criteria of Arendt-Batty, we first establish the strong stability of our model. We then prove that the system doesn't decay exponentially. However, provided that the coefficients of the acoustic boundary conditions satisfy certain assumptions we prove that the energy satisfies varying polynomial energy decay rates depending on the behavior of our auxiliary system. We also investigate the decay rate on domains satisfying multiplier boundary conditions. Further, we present some appropriate examples and show that our assumptions have been set correctly. Finally, we consider a wave wave transmission problem with generalized acoustic boundary conditions in one dimensional space, where we investigate the stability theoretically and numerically. In the theoretical part we prove that our system is strongly stable. We then present diverse polynomial energy decay rates provided that the coefficients of the acoustic boundary conditions satisfy some assumptions. we give relevant examples to show that our assumptions are correct. In the numerical part, we study a numerical approximation of our system using finite volume discretization in a spatial variable and finite difference scheme in time
Putot, Sylvie. "Calcul des capacités parasites dans les interconnexions des circuits intégrés par une méthode de domaines fictifs." Phd thesis, Université Joseph Fourier (Grenoble ; 1971-2015), 2001. http://www.theses.fr/2001GRE10015.
Повний текст джерелаDulau, Laurent. "Contribution à la caractérisation de convertisseurs analogique-numérique vidéo et à la conception de circuits de traitement d'images." Bordeaux 1, 2000. http://www.theses.fr/2000BOR12047.
Повний текст джерелаKassem, Chiraz. "Stabilité et contrôllabilité de quelques systèmes localement couplés." Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAM072.
Повний текст джерелаThis thesis is devoted to study the stabilization and exact controllability of some locally coupled systems. First, we studied the stabilization of a system of two wave equations coupled by velocities with only one localized damping and under appropriate geometric conditions. For the case involved waves propagating at the same speed, we established the exponential energy decay rate. However, the natural physical case also entails waves that do not propagate with equal speed, in such a case, we showed that our system is not uniformly stable and we established an optimal polynomial energy decay rate.Second, we investigated the exact controllability of locally coupled wave equations. The main tool is a result of A. Haraux by which the observability inequality is equivalent to the exponential stability of the system. More precisely, we provided a complete stability analysis of the system in two different Hilbert spaces and under appropriate geometric conditions. Then, using the HUM method, we proved that the system is exactly controllable. Later, we performed numerical experiments to valid our obtained theoretical results.Last, we analyzed the stability of a Bresse system with local Kelvin-Voight damping with fully Dirichlet or Dirichlet- Neumann-Neumann boundary conditions. Here we trait several cases.In the case of three local damping, according to their properties (smoothness), we established an exponential or a polynomial energy decay rate. However, when the waves are only subjected to one or two damping and under Dirichlet-Neumann-Neumann boundary conditions, we demonstrated that the Bresse system is not uniformly stable. In this case, we established a polynomial energy decay rate.In this thesis, the frequency domain approach and the multiplier technique were used
Le, Guyader Carole. "Imagerie mathématique : segmentation sous contraintes géométriques : théorie et applications." Phd thesis, Rouen, INSA, 2004. http://www.theses.fr/2004ISAM0016.
Повний текст джерелаLe, Guyader Carole. "Imagerie Mathématique: segmentation sous contraintes géométriques ~ Théorie et Applications." Phd thesis, INSA de Rouen, 2004. http://tel.archives-ouvertes.fr/tel-00009036.
Повний текст джерелаPour pallier ces difficultés, nous proposons ici des modèles de segmentation intégrant des contraintes géométriques et satisfaisant les critères classiques de détection avec en particulier la régularité sur le contour que cela implique.