Добірка наукової літератури з теми "Tailored Fibre Placement"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Tailored Fibre Placement".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Tailored Fibre Placement"
Crothers, P. J., K. Drechsler, D. Feltin, I. Herszberg, and T. Kruckenberg. "Tailored fibre placement to minimise stress concentrations." Composites Part A: Applied Science and Manufacturing 28, no. 7 (January 1997): 619–25. http://dx.doi.org/10.1016/s1359-835x(97)00022-5.
Повний текст джерелаEl-Dessouky, H. M., M. N. Saleh, M. Gautam, G. Han, R. J. Scaife, and P. Potluri. "Tailored fibre placement of commingled carbon-thermoplastic fibres for notch-insensitive composites." Composite Structures 214 (April 2019): 348–58. http://dx.doi.org/10.1016/j.compstruct.2019.02.043.
Повний текст джерелаMattheij, P., K. Gliesche, and D. Feltin. "3D reinforced stitched carbon/epoxy laminates made by tailored fibre placement." Composites Part A: Applied Science and Manufacturing 31, no. 6 (June 2000): 571–81. http://dx.doi.org/10.1016/s1359-835x(99)00096-2.
Повний текст джерелаLehrecke, August, Cody Tucker, Xiliu Yang, Piotr Baszynski, and Hanaa Dahy. "Tailored Lace: Moldless Fabrication of 3D Bio-Composite Structures through an Integrative Design and Fabrication Process." Applied Sciences 11, no. 22 (November 19, 2021): 10989. http://dx.doi.org/10.3390/app112210989.
Повний текст джерелаSpickenheuer, A., M. Schulz, K. Gliesche, and G. Heinrich. "Using tailored fibre placement technology for stress adapted design of composite structures." Plastics, Rubber and Composites 37, no. 5 (June 2008): 227–32. http://dx.doi.org/10.1179/174328908x309448.
Повний текст джерелаWright, Tom, Thomas Bechtold, Alicia Bernhard, Avinash P. Manian, and Manuel Scheiderbauer. "Tailored fibre placement of carbon fibre rovings for reinforced polypropylene composite part 1: PP infusion of carbon reinforcement." Composites Part B: Engineering 162 (April 2019): 703–11. http://dx.doi.org/10.1016/j.compositesb.2019.01.016.
Повний текст джерелаCordin, Michael, and Thomas Bechtold. "Physical properties of lyocell-reinforced polypropylene composites from intermingled fibre with varying fibre volume fractions." Journal of Thermoplastic Composite Materials 31, no. 8 (October 19, 2017): 1029–41. http://dx.doi.org/10.1177/0892705717734594.
Повний текст джерелаDomenech-Pastor, J., P. Diaz-Garcia, and D. Garcia. "CARBON FIBRE ALIGNMENT FOR REINFORCED COMPOSITES USING EMBROIDERY TECHNOLOGY." TEXTEH Proceedings 2021 (October 22, 2021): 102–8. http://dx.doi.org/10.35530/tt.2021.14.
Повний текст джерелаAstwood, Simon, Kiran Krishnamurthy, and Ashutosh Tiwari. "A strategy to analyse composite designs to improve automated production speeds." Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 232, no. 1 (July 27, 2016): 32–39. http://dx.doi.org/10.1177/0954405416660996.
Повний текст джерелаGliesche, K. "Application of the tailored fibre placement (TFP) process for a local reinforcement on an “open-hole” tension plate from carbon/epoxy laminates." Composites Science and Technology 63, no. 1 (January 2003): 81–88. http://dx.doi.org/10.1016/s0266-3538(02)00178-1.
Повний текст джерелаДисертації з теми "Tailored Fibre Placement"
Carosella, Stefan [Verfasser]. "Analyse und Verbesserung des Faserablegeverfahrens Tailored Fibre Placement zur kostenoptimierten Preformherstellung / Stefan Carosella." München : Verlag Dr. Hut, 2015. http://d-nb.info/1076437567/34.
Повний текст джерелаSimon, Jessy. "Numerical simulation and experimental investigation of the forming of tailored fibre placement preforms : a mixed embedded-ALE finite element formulation." Thesis, Ecole centrale de Nantes, 2022. http://www.theses.fr/2022ECDN0024.
Повний текст джерелаTailored Fibre Placement (TFP) allows manufacturing flat, net shape fibrous reinforcements with continuously varying orientation and thickness. The hybridisation of TFP and forming is an attractive solution to manufacture mechanically optimized 3D shelllike composite parts. During the forming of complex parts, inevitable fibre path changes occur in the TFP preform. Prediction of the final state of TFP preforms is required to take full advantage of this hybrid solution in the industry.A first numerical modelling strategy is proposed to address the forming of flat TFP preforms. Two semi-discrete models based on an embedded formulation are developed to offer the possibility of removing or keeping the backing material. Both finite element models use an explicit discretisation of the fibre tows using beam elements and assumes no slippage between the preform constituents. Full-scale validations of the model without backing material are successfully addressed by forming hemispherical and tetrahedral parts with final orthotropic orientations. Finally, a mixed embedded element-ALE (Arbitrary Lagrangian Eulerian) formulation is proposed to introduce fibre slippage into the models without modifying their initial ingredients. A parametric study of pull-out experiments is performed to characterize the friction behaviour to be implemented in the models. Numerical validations for TFP preforms and an extension to model fibre slippage in conventional textiles are proposed
Uhlig, Kai. "Beitrag zur Anwendung der Tailored Fiber Placement Technologie am Beispiel von Rotoren aus kohlenstofffaserverstärktem Epoxidharz für den Einsatz in Turbomolekularpumpen." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2018. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-235151.
Повний текст джерелаThe present work demonstrates the stiffness and strength design of fiber reinforced plastics (FRP) made by the Tailored Fiber Placement (TFP) technology using the example of a a turbo molecular pump (TMP) rotor made of carbon fiber reinforced epoxy resin (CFRP). In contrast to other textile preform manufacturing processes, the TFP technology enables the placement of reinforcement rovings in arbitrary direction according to an user defined design path. In this technology a double locked stitch in a zigzag stitch pattern is used to fixate the rovings. The fixation process leads to waviness and material inhomogeneities within the placed rovings resulting in reduced material properties in TFP-based fiber reinforced plastics. The wavinessinducing effects have been identified and quantified by detailed process analysis and morphological investigations. Subsequently, a meso-scaled representative volume element (RVE) of a TFP unit cell based on finite elements was developed. The RVE provides the opportunity to derive realistic material properties by calculating the stress and strain distribution as well as as the local fiber content in TFP-based FRP. In this work, the influence of different TFP process parameters on the resulting modulus and strength has been investigated using the RVE approach. Additionally, long term loading effects leading to a reduced matrix modulus were analyzed numerically with the RVE. Based on the development of the CFRP TMP rotor specific characteristics of the design process for components made of TFP are clarified. Besides the explanation of loading conditions of TMP rotors the progress of a load-adapted fiber layout considering geometrical restrictions is demonstrated. For the stress analysis based on the Finite Element Method (FEM) material data calculated with the RVE according to the applied TFP process parameters have been integrated into the FE model. The numerically determined failure speed and the calculated eigenfrequencies were successfully validated by experimental tests. By implementing TFP specific material data in the FE model, both, the strucural rigidity as well as the strength, were predicted for the first time in a TFP-based component. Compared to the state-of-the-art, the developed TMP rotor offers an increased failure speed by 45 %. Furthermore necessary geometric modifications for FRP based TMP rotors in order to achieve a material-specific design adapted to the orthotropic material properties and thus to further increase the nominal rotational speeds were shown. These findings provide in a generalized way for a material-specific design of TFP-based FRP components
Spickenheuer, Axel. "Zur fertigungsgerechten Auslegung von Faser-Kunststoff-Verbundbauteilen für den extremen Leichtbau auf Basis des variabelaxialen Fadenablageverfahrens Tailored Fiber Placement." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-147748.
Повний текст джерелаUhlig, Kai [Verfasser], Gert [Akademischer Betreuer] Heinrich, and Lothar [Gutachter] Kroll. "Beitrag zur Anwendung der Tailored Fiber Placement Technologie am Beispiel von Rotoren aus kohlenstofffaserverstärktem Epoxidharz für den Einsatz in Turbomolekularpumpen / Kai Uhlig ; Gutachter: Lothar Kroll ; Betreuer: Gert Heinrich." Dresden : Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2018. http://d-nb.info/1160875146/34.
Повний текст джерелаSpickenheuer, Axel [Verfasser], Gert [Akademischer Betreuer] Heinrich, and Lothar [Akademischer Betreuer] Kroll. "Zur fertigungsgerechten Auslegung von Faser-Kunststoff-Verbundbauteilen für den extremen Leichtbau auf Basis des variabelaxialen Fadenablageverfahrens Tailored Fiber Placement / Axel Spickenheuer. Gutachter: Gert Heinrich ; Lothar Kroll. Betreuer: Gert Heinrich." Dresden : Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2014. http://d-nb.info/106844746X/34.
Повний текст джерелаUhlig, Kai. "Beitrag zur Anwendung der Tailored Fiber Placement Technologie am Beispiel von Rotoren aus kohlenstofffaserverstärktem Epoxidharz für den Einsatz in Turbomolekularpumpen." Doctoral thesis, 2017. https://tud.qucosa.de/id/qucosa%3A29955.
Повний текст джерелаThe present work demonstrates the stiffness and strength design of fiber reinforced plastics (FRP) made by the Tailored Fiber Placement (TFP) technology using the example of a a turbo molecular pump (TMP) rotor made of carbon fiber reinforced epoxy resin (CFRP). In contrast to other textile preform manufacturing processes, the TFP technology enables the placement of reinforcement rovings in arbitrary direction according to an user defined design path. In this technology a double locked stitch in a zigzag stitch pattern is used to fixate the rovings. The fixation process leads to waviness and material inhomogeneities within the placed rovings resulting in reduced material properties in TFP-based fiber reinforced plastics. The wavinessinducing effects have been identified and quantified by detailed process analysis and morphological investigations. Subsequently, a meso-scaled representative volume element (RVE) of a TFP unit cell based on finite elements was developed. The RVE provides the opportunity to derive realistic material properties by calculating the stress and strain distribution as well as as the local fiber content in TFP-based FRP. In this work, the influence of different TFP process parameters on the resulting modulus and strength has been investigated using the RVE approach. Additionally, long term loading effects leading to a reduced matrix modulus were analyzed numerically with the RVE. Based on the development of the CFRP TMP rotor specific characteristics of the design process for components made of TFP are clarified. Besides the explanation of loading conditions of TMP rotors the progress of a load-adapted fiber layout considering geometrical restrictions is demonstrated. For the stress analysis based on the Finite Element Method (FEM) material data calculated with the RVE according to the applied TFP process parameters have been integrated into the FE model. The numerically determined failure speed and the calculated eigenfrequencies were successfully validated by experimental tests. By implementing TFP specific material data in the FE model, both, the strucural rigidity as well as the strength, were predicted for the first time in a TFP-based component. Compared to the state-of-the-art, the developed TMP rotor offers an increased failure speed by 45 %. Furthermore necessary geometric modifications for FRP based TMP rotors in order to achieve a material-specific design adapted to the orthotropic material properties and thus to further increase the nominal rotational speeds were shown. These findings provide in a generalized way for a material-specific design of TFP-based FRP components.:Kurzfassung Symbol- und Abkürzungsverzeichnis 1 Einleitung 1.1 Motivation und Problemstellung 1.2 Wissenschaftliche Zielstellung der Arbeit 1.3 Aufbau der Arbeit 2 Grundlagen 2.1 Einleitung 2.2 Faser-Kunststoff-Verbunde 2.2.1 Einführung 2.2.2 Kohlenstofffaserverstärkte Epoxidharze 2.3 Elastizitätstheorie 2.3.1 Spannungen 2.3.2 Verzerrungen 2.3.3 Verallgemeinertes Hookesches Gesetz 2.4 Mechanik von rotationssymmetrisch belasteten Körpern 2.4.1 Herleitung der allgemeinen Zusammenhänge am Rotor 2.5 Berechnungsgrundlagen für Faser-Kunststoff-Verbunde 2.5.1 Faservolumengehalt und Dichte 2.5.2 Grundelastizitätsgrößen einer UD-Schicht 2.5.3 Einfluss der Temperatur 2.5.4 Resultierende Eigenschaften der UD-Schicht 2.6 Festigkeitsnachweis von Faser-Kunststoff-Verbunden 2.7 Langzeitverhalten von Faser-Kunststoff-Verbunden 2.7.1 Kriechen und Relaxation 2.7.2 Einfluss der Langzeitbeanspruchung auf die Festigkeiten 2.7.3 Bestimmung der Langzeiteigenschaften 2.8 Finite-Elemente-Methode 2.9 Modalanalyse 2.9.1 Theoretische Grundlagen 2.9.2 Zyklische Symmetrie 2.9.3 Experimentelle Modalanalyse 2.10 Turbomolekularpumpen 2.10.1 Einleitung 2.10.2 Pumpmechanismus von Turbomolekularpumpstufen 3 Faser-Kunststoff-Verbunde auf Basis der TFP-Technologie 3.1 Anforderungen hinsichtlich der Freiheitsgrade bei der Faserablage für Rotoren in Blisk-Bauweise 3.2 Die Tailored Fiber Placement-Technologie 3.2.1 Einführung und Merkmale der TFP-Technologie 3.2.2 In der TFP-Technologie verarbeitete Materialien 3.2.3 Verfahrensgrenzen der TFP-Technologie 3.2.4 Nähfadengehalt in TFP-Laminaten 3.2.5 Faservolumengehalt von TFP-Laminaten 3.3 Infiltrationsverfahren für TFP-basierte Preformen 4 Mikromechanische Betrachtungen an TFP-basierten FKV 4.1 Einführung 4.2 Materialeigenschaften von TFP-Strukturen - Stand der Forschung 4.2.1 TFP-Strukturen in Kombination mit duromeren Matrizes 4.2.2 TFP-Strukturen in Kombination mit thermoplastischen Matrizes 4.3 Analyse der Morphologie von TFP-Strukturen 4.3.1 Rovingwelligkeit bei der Rovingablage 4.3.2 Schliffbildanalyse 4.4 Modellaufbau des Repräsentativen Volumenelementes 4.4.1 Auf Basis des RVE ermittelte Materialeigenschaften von UD-TFP-Strukturen unter uniaxialer Zugbelastung in faserparalleler Richtung 4.4.2 Auf Basis des RVE ermittelte Materialeigenschaften von UD-TFP-Strukturen unter Querzug- bzw. Schubbelastung 4.5 Übertragung der RVE-Ergebnisse auf variabelaxiale TFP-Strukturen 4.6 Langzeiteigenschaften von TFP-Strukturen 4.7 Zusammenfassung der ermittelten Materialeigenschaften von TFP-Strukturen 5 Entwicklung eines TFP-basierten TMP-Rotordemonstrators aus CFK 5.1 Einführung 5.2 Geometrische Randbedingungen und Lastfälle in TMP-Rotoren 5.2.1 Geometrie des TMP-Rotordemonstrators 5.2.2 Lastfälle von TMP-Rotoren 5.3 Bauweisendefinition und strukturmechanische Auslegung des TMP-Rotors 5.3.1 Analytische Vorbetrachtungen 5.3.2 Definition der Bauweise 5.3.3 Dimensionierung des TFP-CFK-Rotors mit Hilfe der FEM 5.3.4 Herstellung des TFP-CFK-Rotordemonstrators 5.4 Experimentelle Validierung 5.4.1 Ermittlung der Versagensfrequenz 5.4.2 Experimentelle Modalanalyse am TFP-CFK-Rotor 5.5 Einordnung der entwickelten TMP-Rotorbauweise 5.5.1 Ausnutzung des Werkstoffpotenzials 5.5.2 Übertragung der Ergebnisse auf andere TMP-Rotorbauweisen 6 Zusammenfassung und Ausblick 6.1 Zusammenfassung 6.2 Ausblick Literaturverzeichnis A Anhang
Spickenheuer, Axel. "Zur fertigungsgerechten Auslegung von Faser-Kunststoff-Verbundbauteilen für den extremen Leichtbau auf Basis des variabelaxialen Fadenablageverfahrens Tailored Fiber Placement." Doctoral thesis, 2013. https://tud.qucosa.de/id/qucosa%3A28180.
Повний текст джерелаТези доповідей конференцій з теми "Tailored Fibre Placement"
RAPKING, DANIEL, BERT LIU, MICHAEL BRAGINSKY, ERIC ZHOU, SCOTT HUELSKAMP, and GYANESHWAR TANDON. "Computational Tool Development for Tailored Fiber Placement (TFP) Design Optimization." In American Society for Composites 2020. Lancaster, PA: DEStech Publications, Inc., 2020. http://dx.doi.org/10.12783/asc35/34920.
Повний текст джерелаLuersen, M. A., C. A. Steeves, and P. B. Nair. "Optimisation of a Laminated Composite Cylindrical Shell With Curvilinear Fibre Paths Using a Surrogate-Based Approach." In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-36285.
Повний текст джерелаBélanger, M., P. Forcier, Y. Gendreau, A. Bujold, S. Pesant, S. Pagé, and L. Laberge-Lebel. "Effect of Tailored Fiber Placement Threads on Carbon/Epoxy Composite Impact Resistance." In CAMX 2019. NA SAMPE, 2019. http://dx.doi.org/10.33599/nasampe/c.19.0666.
Повний текст джерелаLiu, B., D. Rapking, E. Zhou, G. Tandon, M. Braginsky, and S. Huelskamp. "On the Development of a Computational Design Methodology for Tailored Fiber Placement Preforms." In SAMPE 2020 | Virtual Series. NA SAMPE, 2020. http://dx.doi.org/10.33599/382/s.20.0269.
Повний текст джерелаLiu, B., D. Rapking, E. Zhou, G. Tandon, M. Braginsky, and S. Huelskamp. "On the Development of a Computational Design Methodology for Tailored Fiber Placement Preforms." In SAMPE 2020 | Virtual Series. NA SAMPE, 2020. http://dx.doi.org/10.33599/s.20.0269.
Повний текст джерелаLiu, B., D. Rapking, E. Zhou, G. Tandon, M. Braginsky, and S. Huelskamp. "On the Development of a Computational Design Methodology for Tailored Fiber Placement Preforms." In SAMPE 2020 | Virtual Series. NA SAMPE, 2020. http://dx.doi.org/10.33599/nasampe/s.20.0269.
Повний текст джерелаNomura, Tsuyoshi, Yoshihiro Iwano, Atsushi Kawamoto, Katsuharu Yoshikawa, and Axel Spickenheuer. "Variable Axial Composite Lightweight Automotive Parts Using Anisotropic Topology Optimization and Tailored Fiber Placement." In WCX SAE World Congress Experience. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2022. http://dx.doi.org/10.4271/2022-01-0344.
Повний текст джерелаHinebaugh, J., Z. Fishman, and A. Bazylak. "Predicted Liquid Water Saturation in Unstructured Pore Networks Based on PEMFC GDL Porosity Profiles." In ASME 2010 8th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2010. http://dx.doi.org/10.1115/fuelcell2010-33097.
Повний текст джерелаZhou, Yuqing, Tsuyoshi Nomura, Enpei Zhao, Wei Zhang, and Kazuhiro Saitou. "Large-Scale Three-Dimensional Anisotropic Topology Optimization of Variable-Axial Composite Structures." In ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/detc2020-22509.
Повний текст джерелаHinebaugh, J., and A. Bazylak. "PEM Fuel Cell Gas Diffusion Layer Modelling of Pore Structure and Predicted Liquid Water Saturation." In ASME 2011 9th International Conference on Fuel Cell Science, Engineering and Technology collocated with ASME 2011 5th International Conference on Energy Sustainability. ASMEDC, 2011. http://dx.doi.org/10.1115/fuelcell2011-54422.
Повний текст джерела