Добірка наукової літератури з теми "Tableaux-based decision procedure"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Tableaux-based decision procedure".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Tableaux-based decision procedure"

1

Huang, Jian, Xinye Zhao та Jianxing Gong. "Optimised ExpTime Tableaux for𝒮ℋℐ𝒩over Finite Residuated Lattices". Journal of Applied Mathematics 2014 (2014): 1–15. http://dx.doi.org/10.1155/2014/702326.

Повний текст джерела
Анотація:
This study proposes to adopt a novel tableau reasoning algorithm for the description logic𝒮ℋℐ𝒩with semantics based on a finite residuated De Morgan lattice. The syntax, semantics, and logical properties of this logic are given, and a sound, complete, and terminating tableaux algorithm for deciding fuzzy ABox consistency and concept satisfiability problem with respect to TBox is presented. Moreover, based on extended and/or completion-forest with a series of sound optimization technique for checking satisfiability with respect to a TBox in the logic, a new optimized ExpTime (complexity-optimal) tableau decision procedure is presented here. The experimental evaluation indicates that the optimization techniques we considered result in improved efficiency significantly.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

del Cerro, Luis Fariñas, and Olivier Gasquet. "Tableaux Based Decision Procedures for Modal Logics of Confluence and Density." Fundamenta Informaticae 40, no. 4 (1999): 317–33. http://dx.doi.org/10.3233/fi-1999-40401.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Balbiani, Philippe, Çiğdem Gencer, and Zafer Özdemir. "Two decision problems in Contact Logics." Logic Journal of the IGPL 27, no. 1 (July 5, 2018): 8–32. http://dx.doi.org/10.1093/jigpal/jzy016.

Повний текст джерела
Анотація:
Abstract Contact Logics provide a natural framework for representing and reasoning about regions in several areas of computer science. In this paper, we focus our attention on reasoning methods for Contact Logics and address the satisfiability problem and the unifiability problem. Firstly, we give sound and complete tableaux-based decision procedures in Contact Logics and we obtain new results about the decidability/complexity of the satisfiability problem in these logics. Secondly, we address the computability of the unifiability problem in Contact Logics and we obtain new results about the unification type of the unifiability problem in these logics.
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Tableaux-based decision procedure"

1

Friedmann, Oliver, Markus Latte, and Martin Lange. "A Decision Procedure for CTL* Based on Tableaux and Automata." In Automated Reasoning, 331–45. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14203-1_28.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Cerna, David. "A Tableaux-Based Decision Procedure for Multi-parameter Propositional Schemata." In Lecture Notes in Computer Science, 61–75. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08434-3_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Golińska-Pilarek, Joanna, Taneli Huuskonen, and Michał Zawidzki. "Tableau-based Decision Procedure for Non-Fregean Logic of Sentential Identity." In Automated Deduction – CADE 28, 41–57. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-79876-5_3.

Повний текст джерела
Анотація:
AbstractSentential Calculus with Identity ($$\mathsf {SCI}$$ SCI ) is an extension of classical propositional logic, featuring a new connective of identity between formulas. In $$\mathsf {SCI}$$ SCI two formulas are said to be identical if they share the same denotation. In the semantics of the logic, truth values are distinguished from denotations, hence the identity connective is strictly stronger than classical equivalence. In this paper we present a sound, complete, and terminating algorithm deciding the satisfiability of $$\mathsf {SCI}$$ SCI -formulas, based on labelled tableaux. To the best of our knowledge, it is the first implemented decision procedure for $$\mathsf {SCI}$$ SCI which runs in NP, i.e., is complexity-optimal. The obtained complexity bound is a result of dividing derivation rules in the algorithm into two sets: decomposition and equality rules, whose interplay yields derivation trees with branches of polynomial length with respect to the size of the investigated formula. We describe an implementation of the procedure and compare its performance with implementations of other calculi for $$\mathsf {SCI}$$ SCI (for which, however, the termination results were not established). We show possible refinements of our algorithm and discuss the possibility of extending it to other non-Fregean logics.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Cerrito, Serenella, and Marta Cialdea Mayer. "A Tableaux Based Decision Procedure for a Broad Class of Hybrid Formulae with Binders." In Lecture Notes in Computer Science, 104–18. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22119-4_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Cerrito, Serenella, Amélie David, and Valentin Goranko. "Optimal Tableaux-Based Decision Procedure for Testing Satisfiability in the Alternating-Time Temporal Logic ATL+." In Automated Reasoning, 277–91. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08587-6_21.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії