Добірка наукової літератури з теми "Systolic geometry"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Systolic geometry".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Systolic geometry"
Redaelli, A., E. Di Martino, S. Mantero, A. Agazzi, E. Vangeri, A. Gamba, and R. Fumero. "Optimisation of a Stentless Valve Prosthesis Based on an Analytic Parametric Model of the Aortic Valve." International Journal of Artificial Organs 21, no. 3 (March 1998): 161–70. http://dx.doi.org/10.1177/039139889802100307.
Повний текст джерелаAdebayo, Rasaaq A., Olaniyi J. Bamikole, Michael O. Balogun, Anthony O. Akintomide, Victor O. Adeyeye, Luqman A. Bisiriyu, Tuoyo O. Mene-Afejuku, Ebenezer A. Ajayi, and Olugbenga O. Abiodun. "Echocardiographic Assessment of Left Ventricular Geometric Patterns in Hypertensive Patients in Nigeria." Clinical Medicine Insights: Cardiology 7 (January 2013): CMC.S12727. http://dx.doi.org/10.4137/cmc.s12727.
Повний текст джерелаKatz, Mikhail G., and Tahl Nowik. "A systolic inequality with remainder in the real projective plane." Open Mathematics 18, no. 1 (August 24, 2020): 902–6. http://dx.doi.org/10.1515/math-2020-0050.
Повний текст джерелаBabenko, Ivan, Florent Balacheff, and Guillaume Bulteau. "Systolic geometry and simplicial complexity for groups." Journal für die reine und angewandte Mathematik (Crelles Journal) 2019, no. 757 (December 1, 2019): 247–77. http://dx.doi.org/10.1515/crelle-2017-0041.
Повний текст джерелаDehne, F., A. L. Hassenklover, J. R. Sack, and N. Santoro. "Computational geometry algorithms for the systolic screen." Algorithmica 6, no. 1-6 (June 1991): 734–61. http://dx.doi.org/10.1007/bf01759069.
Повний текст джерелаDranishnikov, Alexander N., Mikhail G. Katz, and Yuli B. Rudyak. "Cohomological dimension, self-linking, and systolic geometry." Israel Journal of Mathematics 184, no. 1 (July 31, 2011): 437–53. http://dx.doi.org/10.1007/s11856-011-0075-8.
Повний текст джерелаKatz, M. "Local calibration of mass and systolic geometry." Geometric And Functional Analysis 12, no. 3 (August 1, 2002): 598–621. http://dx.doi.org/10.1007/s00039-002-8259-3.
Повний текст джерелаVatnikov, Yury A., Andrey A. Rudenko, Boris V. Usha, Evgeny V. Kulikov, Elena A. Notina, Irina A. Bykova, Nadiya I. Khairova, Irina V. Bondareva, Victor N. Grishin, and Andrey N. Zharov. "Left ventricular myocardial remodeling in dogs with mitral valve endocardiosis." April-2020 13, no. 4 (2020): 731–38. http://dx.doi.org/10.14202/vetworld.2020.731-738.
Повний текст джерелаBatra, S., and K. Rakusan. "Capillary length, tortuosity, and spacing in rat myocardium during cardiac cycle." American Journal of Physiology-Heart and Circulatory Physiology 263, no. 5 (November 1, 1992): H1369—H1376. http://dx.doi.org/10.1152/ajpheart.1992.263.5.h1369.
Повний текст джерелаOsajda, Damian, and Piotr Przytycki. "Boundaries of systolic groups." Geometry & Topology 13, no. 5 (August 17, 2009): 2807–80. http://dx.doi.org/10.2140/gt.2009.13.2807.
Повний текст джерелаДисертації з теми "Systolic geometry"
Kowalick, Ryan. "Discrete Systolic Inequalities." The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1384873457.
Повний текст джерелаVesier, Carol Cockerham. "The role of papillary muscle-mitral valve geometry in systolic anterior motion of the mitral valve." Diss., Georgia Institute of Technology, 1991. http://hdl.handle.net/1853/10279.
Повний текст джерелаMesmay, Arnaud de. "Topics in low-dimensional computational topology." Paris, École normale supérieure, 2014. https://theses.hal.science/tel-04462650v1.
Повний текст джерелаTopology is the area of mathematics investigating the qualitative properties of shapes and spaces. Although it has been a classical field of study for more than a century, it only appeared recently that being able to compute the topological features of various spaces might be of great value for many applications. This idea forms the core of the blossoming field of computational topology, to which this work belongs. The three contributions of this thesis deal with the development and the study of topological algorithms to compute deformations and decompositions of low-dimensional objects, such as graphs, surfaces or 3-manifolds. The first question we tackle concerns deformations: how can one test whether two graphs embedded on the same surface are isotopic, i. E. , whether one can be deformed continuously into the other? This kind of problems is relevant to practical problems arising with morphings or geographic information systems, for example. Relying on hyperbolic geometry and ideas from the theory of mapping class groups, we first establish a combinatorial criterion to characterize isotopy, reproving and strengthening a result of Ladegaillerie (1984). Combined with earlier algorithms on the homotopy of curves, this allows us in turn to provide efficient algorithms to solve this graph isotopy problem. We then shift our focus to decompositions, by investigating how to cut surfaces along curves or graphs with prescribed topological properties, which is an important routine in graph algorithms or computer graphics, amongst others domains. By establishing a strong connection with the continuous setting, as well as studying a discrete model for random surfaces, we improve the best known bounds for several instances of this problem. In particular, this proves a conjecture of Przytycka and Przytycki from 1993, and one of our new bounds readily translates into an algorithm to compute short pants decompositions. Finally, we move up one dimension, where the best known algorithms for many topological problems, like for example unknot recognition, are exponential. Most of these algorithms rely on normal surfaces, a ubiquitous tool to study the surfaces embedded in a 3-manifold. We investigate a relaxation of this notion called immersed normal surfaces, whose more convenient algebraic structure makes them good candidates to solve topological problems in polynomial time. We show that when working with immersed normal surfaces, a natural problem on the detection of singularities arises, and we prove it to be NP-hard – this is noteworthy as hardness results are very scarce in 3-dimensional topology. Our reduction works by establishing a connection with a restricted class of constraint satisfaction problems which has been partially classified by Feder
Ren, Jiajun Carleton University Dissertation Computer Science. "Geometric characterizations of fault patterns in linear systolic arrays." Ottawa, 1994.
Знайти повний текст джерелаBulteau, Guillaume. "Sur des problèmes topologiques de la géométrie systolique." Thesis, Montpellier 2, 2012. http://www.theses.fr/2012MON20148/document.
Повний текст джерелаLet G be a finitely presented group. A theorem of Gromov asserts the existence of regular geometric cycles which represent a non null homology class h in the nth homology group with integral coefficients of G, geometric cycles which have a systolic volume as close as desired to the systolic volume of h. This theorem, of which no complete proof has been given, has lead to major results in systolic geometry. The first part of this thesis is devoted to a complete proof of this result.The regularizationtechnique consists in the use of these regular geometric cycles to obtain information about the class $h$. This technique allows to link the systolic volume of some closed manifolds to homotopical invariants of these manifolds, such as the minimal entropy and the Betti numbers. The second part of this thesis proposes to investigate these links.The third part of this thesis is devoted to three problems of systolic geometry. First we are investigating an inequality about embeded tori in $R^3$. Second, we are looking into minimal triangulations of compact surfaces and some information they can provide in systolic geometry. And finally, we are presenting the notion of simplicial complexity of a finitely-presented group and its links with the systolic geometry
Karam, Steve. "Croissance du volume des boules dans les revêtements universels des graphes et des surfaces." Phd thesis, Université François Rabelais - Tours, 2013. http://tel.archives-ouvertes.fr/tel-00914945.
Повний текст джерелаCHEN, HOUG-XIN, and 陳宏信. "Systolic algorithms for graph and geometry connectivity problems." Thesis, 1986. http://ndltd.ncl.edu.tw/handle/58775912386612409940.
Повний текст джерелаSanki, Bidyut. "Shortest Length Geodesics on Closed Hyperbolic Surfaces." Thesis, 2014. http://etd.iisc.ac.in/handle/2005/3049.
Повний текст джерелаSanki, Bidyut. "Shortest Length Geodesics on Closed Hyperbolic Surfaces." Thesis, 2014. http://hdl.handle.net/2005/3049.
Повний текст джерелаHuang, Kuo Tai, and 黃國泰. "A systolic array architecture for the decoding of algebraic- geometric codes with modified Feng-Rao algorithm." Thesis, 1996. http://ndltd.ncl.edu.tw/handle/95458916818186210050.
Повний текст джерела國立清華大學
電機工程研究所
84
Feng-Rao algorithm is a successful algorithm for the decoding of algebraic-geometric (AG) codes. However, there is no implementation of this algorithm up to now. In this thesis, we have modified the Feng-Rao algorithm to have more parallelism and developed a systolic array architecture for VLSI implementation. The symmetry property of the syndrome matrix has been exploited to reduce the complexity of this architecture. The complexity of our proposed systolic array architecture is t^3/6+(1+g')t^2/2+[(g-3)g'/2-2/3+g]t, which is comparable to that elimination on a square matrix with matrix size equal to t, where t is the error-correcting capability of a code, g is the genus of the curve, and g'=\floor(g-1/2). The control circuit in oursimple. Besides, we have also proposed a circuitry to perform the majority voting scheme needed in the Feng-Rao algorithm with the consideration that the candidates are q-ary symbols.
Книги з теми "Systolic geometry"
Systolic geometry and topology. Providence, R.I: American Mathematical Society, 2007.
Знайти повний текст джерелаZoccali, Carmine, Davide Bolignano, and Francesca Mallamaci. Left ventricular hypertrophy in chronic kidney disease. Edited by David J. Goldsmith. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780199592548.003.0107_update_001.
Повний текст джерелаЧастини книг з теми "Systolic geometry"
Katz, Mikhail. "Systolic applications of integral geometry." In Mathematical Surveys and Monographs, 43–49. Providence, Rhode Island: American Mathematical Society, 2007. http://dx.doi.org/10.1090/surv/137/06.
Повний текст джерелаKatz, Mikhail. "Geometry and topology of systoles." In Mathematical Surveys and Monographs, 3–11. Providence, Rhode Island: American Mathematical Society, 2007. http://dx.doi.org/10.1090/surv/137/01.
Повний текст джерелаHofer, Helmut, Alberto Abbondandolo, Urs Frauenfelder, and Felix Schlenk. "Remarks on the systoles of symmetric convex hypersurfaces and symplectic capacities." In Symplectic Geometry, 775–800. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-19111-4_26.
Повний текст джерелаFletcher, Nick. "Left ventricular systolic function." In Oxford Textbook of Advanced Critical Care Echocardiography, edited by Anthony McLean, Stephen Huang, and Andrew Hilton, 83–92. Oxford University Press, 2020. http://dx.doi.org/10.1093/med/9780198749288.003.0006.
Повний текст джерелаBadano, Luigi, and Denisa Muraru. "Functional anatomy of atria." In ESC CardioMed, edited by Yen Ho, 88–92. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780198784906.003.0017.
Повний текст джерелаТези доповідей конференцій з теми "Systolic geometry"
Guth, Larry. "Metaphors in Systolic Geometry." In Proceedings of the International Congress of Mathematicians 2010 (ICM 2010). Published by Hindustan Book Agency (HBA), India. WSPC Distribute for All Markets Except in India, 2011. http://dx.doi.org/10.1142/9789814324359_0072.
Повний текст джерелаAL-Rawi, Mohammad, Djelloul Belkacemi, and Ahmed M. Al-Jumaily. "Mesh Independency Analysis for Aorta Geometry Using a Computational Modelling Approach." In ASME 2023 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/imece2023-110446.
Повний текст джерелаAristokleous, Nicolas, Yannis Papaharilaou, Ioannis Seimenis, Georgios C. Georgiou, Brigitta C. Brott, and Andreas S. Anayiotos. "Head Rotation Effects on the Flow and Hemodynamics of the Human Carotid Bifurcation." In ASME 2013 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/sbc2013-14708.
Повний текст джерелаJhun, Choon-Sik, Mark B. Ratcliffe, and Julius M. Guccione. "Ventricular Wall Stress and Pump Function of Ventricular Septal Defect of Congenital Heart Defects." In ASME 2009 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2009. http://dx.doi.org/10.1115/sbc2009-206320.
Повний текст джерелаChandra, Santanu, Vimalatharmaiyah Gnanaruban, Jaehoon Seong, Barry B. Lieber, Jose F. Rodriguez, and Ender A. Finol. "Experimental Validation of a Computational Algorithm for the Zero Pressure Geometry Derivation of Blood Vessels." In ASME 2013 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/sbc2013-14716.
Повний текст джерелаCheng, Allen, Frank Langer, Filiberto Rodriguez, John C. Criscione, George T. Daughters, D. Craig Miller, and Neil B. Ingels. "Transmural LV Systolic Wall Thickening Gradients and Models of Heart Wall Mechanics." In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-61238.
Повний текст джерелаRoldán, Alejandro, Victor Haughton, Tim Osswald, and Naomi Chesler. "Computational Analysis of Cerebrospinal Fluid Flow in the Normal and Obstructed Subarachnoid Space." In ASME 2008 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2008. http://dx.doi.org/10.1115/sbc2008-192762.
Повний текст джерелаMoghaddaszade-Kermani, Ahmad, Peter Oshkai, and Afzal Suleman. "Fluid-Structure Interaction Simulation of Blood Flow Inside a Diseased Left Ventricle With Obstructive Hypertrophic Cardiomyopathy in Early Systole." In ASME 2009 Fluids Engineering Division Summer Meeting. ASMEDC, 2009. http://dx.doi.org/10.1115/fedsm2009-78381.
Повний текст джерелаBale-Glickman, J., K. Selby, D. Saloner, and O¨ Savas¸. "Physiological Flow Studies in Exact-Replica Atherosclerotic Carotid Bifurcations." In ASME 2003 International Mechanical Engineering Congress and Exposition. ASMEDC, 2003. http://dx.doi.org/10.1115/imece2003-41281.
Повний текст джерелаFord, Matthew D., Ugo Piomelli, Richard Y. Cao, Colin D. Funk, and Andrew Pollard. "Numerical Simulations of the Intra-Aneurysmal Vortex Shedding in Induced Mouse Abdominal Aortic Aneurysms." In ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting collocated with 8th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2010. http://dx.doi.org/10.1115/fedsm-icnmm2010-30546.
Повний текст джерела