Добірка наукової літератури з теми "Systèmes intégrable"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Systèmes intégrable".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Systèmes intégrable"
Seneviratne, H. L. "A Critique of Religion and Power in the Sociological Sciences." Social Compass 32, no. 1 (February 1985): 31–44. http://dx.doi.org/10.1177/003776868503200103.
Повний текст джерелаLesfari, A. "Systèmes hamiltoniens complètement intégrables." Aequationes mathematicae 82, no. 1-2 (May 17, 2011): 165–200. http://dx.doi.org/10.1007/s00010-011-0078-x.
Повний текст джерелаLesfari, A. "Systèmes dynamiques algébriquement complètement intégrables et géométrie." Annals of West University of Timisoara - Mathematics and Computer Science 53, no. 1 (July 1, 2015): 109–36. http://dx.doi.org/10.1515/awutm-2015-0006.
Повний текст джерелаLesfari, Ahmed. "Analyse des singularités de quelques systèmes intégrables." Comptes Rendus Mathematique 341, no. 2 (July 2005): 85–88. http://dx.doi.org/10.1016/j.crma.2005.06.006.
Повний текст джерелаKhemar, Idrisse. "Surfaces isotropes de O et systèmes intégrables." Journal of Differential Geometry 79, no. 3 (July 2008): 479–516. http://dx.doi.org/10.4310/jdg/1213798185.
Повний текст джерелаFrançoise, J. P. "Systèmes intégrables à $m$-corps sur la droite." Mémoires de la Société mathématique de France 1 (1991): 111–22. http://dx.doi.org/10.24033/msmf.357.
Повний текст джерелаBalde, Moussa, Salomon Sambou, and El Hadj Cheikh Mbacke Diop. "Systèmes de contact intégrables à singularitées non dégénérées." Comptes Rendus Mathematique 343, no. 11-12 (December 2006): 751–54. http://dx.doi.org/10.1016/j.crma.2006.10.022.
Повний текст джерелаAmmar, F. "Systèmes hamiltoniens complètement intégrables et déformations d'algèbres de Lie." Publicacions Matemàtiques 38 (July 1, 1994): 427–31. http://dx.doi.org/10.5565/publmat_38294_11.
Повний текст джерелаBeauville, Arnaud. "Jacobiennes des courbes spectrales et systèmes hamiltoniens complètement intégrables." Acta Mathematica 164 (1990): 211–35. http://dx.doi.org/10.1007/bf02392754.
Повний текст джерелаMarco, Jean-Pierre. "Temps d'instabilité pour les perturbations de systèmes intégrables analytiques." Comptes Rendus Mathematique 340, no. 4 (February 2005): 295–300. http://dx.doi.org/10.1016/j.crma.2004.12.019.
Повний текст джерелаДисертації з теми "Systèmes intégrable"
Boldea, Costin-Radu. "Nouveaux systèmes intégrables et solitons non-analytiques." Paris 6, 2002. http://www.theses.fr/2002PA066042.
Повний текст джерелаNguyen, Van Minh. "Géométrie des systèmes dynamiques non-hamiltoniens intégrables." Toulouse 3, 2012. http://thesesups.ups-tlse.fr/1688/.
Повний текст джерелаThis thesis is dedicated to a systematic study of the geometry of integrable non-Hamiltonian systems of type (n,0) on n-manifolds and of type (1,1) on 2-dimensional surfaces. We describe the local and global invariants, associated geometric structures (e. G. Toric manifolds, singular affine structures, reflection groups), and obtain existence and classification results
Nguyen, Thanh Thien. "Géométrie de systèmes dynamiques stochastiques et modèles de second ordre pour les marchés financiers." Toulouse 3, 2014. http://thesesups.ups-tlse.fr/2481/.
Повний текст джерелаThis thesis is devoted to a study of qualitative geometrical properties of stochastic dynamical systems, namely their symmetries, reduction and integrability, with applications to the problem of modelling of financial markets. It consists of four chapters. Chapter 1 is a brief review of basic notions from the theory of stochastic dynamical systems (SDS for short) written in Stratonovich form, and also Hamiltonian systems. The material in this chapter is not new, and is included in this thesis to make it self-contained. In Chapter 2, we study the problem of reduction of SDS with respect to a proper action of a Lie group. This is an important problem in the theory of dynamical systems in general. Various famous processes in stochastic calculus, e. G. The Bessel process, can be viewed as a result of reduction. But there are still some relatively simple results that we did not find in the literature and so we wrote them down in Chapter 2. In particular, we proved that if a SDS is not invariant but only diffusion-wise invariant with respect to a group action, then we can still do reduction. We also give necessary and sufficient conditions for a SDS to be reductible (i. E. Projectable) with respect to a given submersion map. In Chapter 3, we introduce and study the notion of integrability of SDS. This integrability notion lies between the integrability notion for classical deterministic systems and the integrability notion for quantum dynamical systems. One of the most fundamental results in the theory of classical integrable deterministic dynamical systems is the existence of so called Liouville torus actions which have the structure-preserving property. Those Liouville torus actions imply the quasi-periodic behaviour of proper integrable systems, allow one to do averaging and reduction (also for perturbations of integrable systems), find action-angle variables, and do quantization. We extend this fundamental result about the existence of structure-preserving Liouville torus actions to the case of integrable SDS. We also show how integrable SDS are naturally related to the problem of Riemannian metrics with integrable geodesic flows, which is a very interesting problem in geometry with many recent results in the literature. In Chapter 4, we argue that first order (stochastic differential) models of the stock markets, e. G. The famous Black-Scholes model, is conceptually not correct for the description of what is happening in the financial markets, even though they can be used for pricing financial derivative products. More realistic models of the market must be of second order, i. E. Taking into account both the price variables and the momentum variables. We develope in this chapter two simple second order models, namely the stochastic oscillator and the stochastic constrained n-oscillator, which can explain a lot of phenomena in the markets. A key notion introduced in these models is speculation energy (in analogy with physical energy), and we claim that it is this speculation energy which moves the financial markets
Brodier, Olivier. "Effet tunnel dans les systèmes quasi-intégrables." Paris 6, 2002. http://www.theses.fr/2002PA066056.
Повний текст джерелаGatse, Basile. "Contribution à la recherche des solutions périodiques de l'hamiltonien intégrable d'Henon-Heiles." Pau, 1989. http://www.theses.fr/1989PAUU1005.
Повний текст джерелаLe, Blanc Ariane. "Des structures de (quasi -) Poisson quadratiques sur l'algèbre de lacets pour la construction d'un système intégrable sur un espace de modules." Phd thesis, Université de Poitiers, 2006. http://tel.archives-ouvertes.fr/tel-00114640.
Повний текст джерелаM$ des connexions plates du fibré principal $S\times G$ d'une sphère de
Riemann $S$ (ayant $n\geq 3$ bords), où $G=\GL{N,\C}$ et sur l'algèbre de
lacets $\tilde\g=\gl{N,\C}(\!(\l^\mi)\!)$.
Dans un premier temps, nous étudions une hiérarchie de bidérivations
quadratiques sur $\tilde\g$. En particulier, grâce au processus de fusion
introduit par Alekseev, Kosmann-Schwarzbach et Meinrenken en 2002, nous
extrayons parmi elles une structure $\PB^Q_1$ de quasi-Poisson sur
$\tilde\g$. Celle-ci se restreint au sous-espace
$\tilde\g_n=\set{\sum_{k=0}^nx^{[k]}\l^k}$.
Nous montrons ensuite un résultat de réduction dans un contexte de
bidérivation de quasi-Poisson. Il permet d'équipper le quotient $\mathscr
A/G:=\set{\Id\l^n+\l Y(\l)+\Id|Y\in\tilde\g_{n-2}}/G$ d'une structure de
Poisson induite par $\PB^Q_1$.
En s'appuyant sur le système intégrable de Beauville sur
$\tilde\g_{n-2}/G$, nous montrons que la famille de fonctions $({\text{tr}}
X^k(a))_{k\in\N,a\in\C}$ constitue un système intégrable sur $\mathscr
A/G$. Les fonctions que nous considérons sur l'espace de modules $\mathscr
M$ sont les tiré-en-arrière $(\mathscr
T^*{\text{tr}X^k(a)})_{k\in\N,a\in\C}$, où $\mathscr T:G^n\to\tilde\g_n$
est un morphisme de quasi-Poisson et un difféomorphisme local. Nous
utilisons ces propriétés de $\mathscr T$ pour montrer que cette famille de
fonctions constitue un système intégrable sur $\mathscr M$.
Levy-Bencheton, Damien. "Algèbre de Yang-Baxter dynamique et fonctions de corrélation du modèle SOS intégrable." Phd thesis, Ecole normale supérieure de lyon - ENS LYON, 2013. http://tel.archives-ouvertes.fr/tel-00956582.
Повний текст джерелаAlamiddine, Iman. "Géométrie de systèmes Hamiltoniens intégrables : le cas du système de Gelfand-Ceitlin." Toulouse 3, 2009. http://thesesups.ups-tlse.fr/538/.
Повний текст джерелаThe Gelfand-Ceitlin system has been discovered by V. Guillemin and S. Sternberg in 1983. It is a well known geometry, its singularities are yet poorly understood. The aim of this thesis is to study the geometry and topology of integrable Hamiltonian systems and the relationship between the theory of Lie and symplectic geometry and Poisson geometry. We study the Gelfand Ceitlin system on a generic coadjoint orbit of the group SU(3). To describe this system geometrically, we studied the topology of the ambient variety. We calculate its invariants (the cohomology groups, the homotopy groups). We study the problem of convexity in relation with this system. The singularities study of this system shows that all singularities are elliptic non-degenerate, except for only one. We describe carefully the behaviour of the system in the neighbourhood of this singularity, we give a simple model for degenerated singularity that we prove by a theorem which establishes a unique symplectomorphisme between the degenerate singularity and the model of geodesic flows on the sphere S3
Cecile, Mario Guillaume. "Exploring quantum dynamics : from hydrodynamics to measurement induced phase transition." Electronic Thesis or Diss., CY Cergy Paris Université, 2024. http://www.theses.fr/2024CYUN1298.
Повний текст джерелаIn this thesis, we take a deep dive into the world of quantum dynamics, aiming to understand the complex behaviours that arise in quantum many-body systems and the emergence of hydrodynamics behaviour. Throughout the chapters, we simplify key concepts essential for understanding how quantum systems operate. Chapter 1 presents an overview of fundamental concepts on emergent phenomena in quantum integrable systems and generalized hydrodynamics, which is essential to understand the complexities of quantum dynamics. Additionally, we offer an in-depth introduction to Matrix Product States, which are a valuable tool for efficiently simulating quantum dynamics in 1D systems. In Chapter 2, we develop a model to describe the relaxation of spin helices using the framework of generalized hydrodynamics with diffusive corrections and a modified version of the local density approximation. Our analysis demonstrates that this hydrodynamic framework accurately reproduces the experimentally observed relaxation dynamics. Additionally, it predicts the long-term relaxation behaviour, which lies beyond the experimentally accessible time scales. Our theoretical framework elucidates the occurrence of temporal regimes exhibiting seemingly anomalous diffusion and highlights the asymmetry between positive and negative anisotropy regimes at short and intermediate time intervals. Chapter 3 delves into the intriguing phenomena observed in the easy-axis regime |Δ| ≥ 1, where initial states with zero magnetic fluctuations instead locally relax to an exotic equilibrium states that we will refer to as squeezed generalized Gibbs ensemble. At the isotropic point, interestingly, we found an unusual behaviour which explicitly depend on the initial state. Namely, for the Néel state, we found extensive fluctuations and a super-diffusive dynamical exponent compatible with Kardar-Parisi-Zhang universality. For another non-fluctuating initial state, e.g., product state of spin singlets, we instead found diffusive scaling. In Chapter 4, we investigate the time evolution of an extended quantum spin chains under continuous monitoring using matrix product states with a fixed bond dimension, employing the Time-Dependent Variational Principle algorithm. This algorithm yields an effective classical nonlinear evolution with a conserved charge, offering an approximation to the true quantum evolution with some error. We find that the error rate exhibits a phase transition as the strength of the monitoring varies, and this transition can be accurately identified through scaling analysis with relatively small bond dimensions. Our approach enables efficient numerical determination of critical parameters associated with measurement-induced phase transitions in many-body quantum systems. Furthermore, in the presence of U(1) global spin charge, we observe a distinct charge-sharpening transition, which occurs independently of the entanglement transition. This transition is identified by analysing the charge fluctuations within a local subset of the system over extended time periods. Our findings highlight the effectiveness of TDVP time evolution as a means to detect measurement-induced phase transitions in systems of varying dimensions and sizes.Finally, the last chapter provides a conclusive summary of the findings and discusses potential avenues for future research
Cresson, Jacky. "Propriétés d'instabilité des systèmes Hamiltoniens proches de systèmes intégrables." Observatoire de Paris, 1997. https://hal.archives-ouvertes.fr/tel-02071388.
Повний текст джерелаThe purpose of this thesis is to study instability properties of near-integrable Hamiltoniens systems, in particular Arnold’s diffusion. We first describe the phase-space near a partially hyperbolic torus and along a transition chain. We prove that hyperbolic tori, which come from the destruction of resonant tori, are transition tori. We then show that transvers homoclinic partially hyperbolic tori possess a symbolic dynamics. These results allow us to prove the existence of instability’s orbits along a chain as well as periodic orbits of arbitrarily hight period as conjectured by Homes-Marsden. Second, we estimate the time of drift along a chain by geometrical methods. We precise the role of the splitting size, ergodisation time… We prove that for initially hyperbolic Hamiltonian systems this time of drift is polynomial. Our method is general and applies on abstract chain of tori, which is not the case of variational methods. Last, we apply our result on specific examples. We first describe a class of systems, which always possess transition chain. We then show that this class contains a lot of classical systems as the three body problem, Rydberg’s atom…
Книги з теми "Systèmes intégrable"
Chaperon, Marc. Calcul différentiel et calcul intégral 3e année: Cours et exercices avec solutions. 2nd ed. Paris: Dunod, 2008.
Знайти повний текст джерелаSystèmes intégrables & théorie quantique des champs. Paris: Hermann, 2009.
Знайти повний текст джерелаAudin, Michele. Les Systemes Hamiltoniens Et Leur Integrabilite. Societe Mathematique De France, 2001.
Знайти повний текст джерелаAlbert, Claude. Integrable Systems and Foliations: Feuilletages et Systèmes Intégrables. Birkhäuser, 2011.
Знайти повний текст джерелаAlbert, Claude, Robert Brouzet, and Jean P. Dufour. Integrable Systems and Foliations: Feuilletages et Systèmes Intégrables. Birkhauser Verlag, 2012.
Знайти повний текст джерелаSamah, Posse-Ousmane. Les conditions d'admission et de séjour des travailleurs hautement qualifiés dans l'UE. Carl Grossmann Verlag, 2017. http://dx.doi.org/10.24921/2017.94115913.
Повний текст джерелаIntégraphes, la Courbe Intégrale et Ses Applications: Étude Sur un Nouveau Système d'Intégrateurs Mécaniques. Creative Media Partners, LLC, 2022.
Знайти повний текст джерелаCondorcet, J. M. de. Essais d'analyse Ou Sur le Système du Monde et Sur le Calcul Intégral. Creative Media Partners, LLC, 2019.
Знайти повний текст джерелаCondorcet, J. M. de. Essais d'analyse Ou Sur le Système du Monde et Sur le Calcul Intégral. Creative Media Partners, LLC, 2023.
Знайти повний текст джерелаЧастини книг з теми "Systèmes intégrable"
Bennequin, Daniel. "Hommage à Jean-Louis Verdier : au jardin des systèmes intégrables." In Integrable Systems, 1–36. Boston, MA: Birkhäuser Boston, 1993. http://dx.doi.org/10.1007/978-1-4612-0315-5_1.
Повний текст джерелаHukuhara, M. "Sur la stabilité des intégrales d’un système d’équations différentielles." In Mitio Nagumo Collected Papers, 138–40. Tokyo: Springer Japan, 1993. http://dx.doi.org/10.1007/978-4-431-68222-6_13.
Повний текст джерелаBoucetta, Mohamed. "Géometrie Globale des Systèmes Hamiltoniens Complètement Intégrables et Variables Action-Angle avec Singularités." In Mathematical Sciences Research Institute Publications, 13–22. New York, NY: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4613-9719-9_2.
Повний текст джерелаHukuhara, M. "Un théoremè relatif à l’ensemble des courbes intégrales d’un système d’équations différentielles ordinaries." In Mitio Nagumo Collected Papers, 141–47. Tokyo: Springer Japan, 1993. http://dx.doi.org/10.1007/978-4-431-68222-6_14.
Повний текст джерелаBeaulieu, Paul. "Recherches sur la Sustainability." In Recherches sur la Sustainability, 34–53. EMS Editions, 2023. http://dx.doi.org/10.3917/ems.cheva.2023.01.0034.
Повний текст джерела"17. INITIATION AUX PROBLÈMES MAL POSES : ÉQUATIONS INTÉGRALES. SYSTÈMES LINÉAIRES MAL CONDITIONNÉS ET ÉQUATIONS DE CONVOLUTION." In Manuel de calcul numérique appliqué, 273–86. EDP Sciences, 1999. http://dx.doi.org/10.1051/978-2-7598-0252-4.c018.
Повний текст джерелаТези доповідей конференцій з теми "Systèmes intégrable"
Mezentsev, Yuri Alexandrovich, and Olga Alexandrovna Osipova. "INFLUENCE DE FACTEURS EXTERNES ET INTERNES SUR LE VIEILLISSEMENT DE LA PEAU." In Themed collection of papers from Foreign International Scientific Conference «Science and innovation in the framework of the strategic partnership between Algeria and Russia» by HNRI «National development» in cooperation with the University of Science and Technology Houari Boumediene. April 2024. Crossref, 2024. http://dx.doi.org/10.37539/240425.2024.33.32.010.
Повний текст джерела