Зміст
Добірка наукової літератури з теми "Systèmes hôte-Parasite"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Systèmes hôte-Parasite".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Systèmes hôte-Parasite"
Nizeyimana, Jean Baptiste, Jean Marie Mabée, and Jean Marie Zongo. "Étude des conditions de depistage clinique et les effets psycho socioeconomique des personnes porteuses de l’elephantiasis des jambes. cas de l’arrondissement de guidiguis cas de la region de l’extreme-nord cameroun de 2017-2020." RUFSO Journal of Social Sciences and Engineering 26, no. 03 (July 7, 2021). http://dx.doi.org/10.55272/rufso.rjsse.26.3.1.
Повний текст джерелаДисертації з теми "Systèmes hôte-Parasite"
Salvaudon, Lucie. "Les interactions spécifiques entre génotypes dans les systèmes hôte-parasite." Paris 11, 2007. http://www.theses.fr/2007PA112229.
Повний текст джерелаIn this PhD thesis I investigated the coevolution processes occurring in host-parasite associations, and, in particular, how this coevolution is affected by a shared control of the infection phenotype by both protagonists. Indeed, in this type of association, the host and parasite genotypes can both contribute in the expression of phenotypic traits linked to parasite fitness, like infectivity of transmission, as well as to host fitness, for resistance and virulence traits. All these traits then depend on host genotype, on parasite genotype, but can also depend on the specific interaction between the two. With an experimental approach on the infection by the oomycete Hyaloperonospora arabidopsis (= parasitica) on the host plant Arabidopsis thaliana, I demonstrated that quantitative traits such as symptoms intensity and parasite transmission success can also be controlled by these host genotype by parasite genotype interactions. Furthermore these interactions, which can also be found at the population scale, alter the relationship between parasite transmission and virulence. They can then make it more difficult to predict the evolution of virulence in natural populations. Finally, taking into account both protagonists in the determination of infection phenotype emphasize the important role of host mechanisms, aimed at resist or tolerate parasitic damages, and of evolved dependence processes, on the impact of parasites. Indeed, depending on parasite identity, host type of defenses, and their respective evolutionary histories, the outcome of an infection can range from high costs, to even apparent benefits for the host
Bendahmane, Mostafa. "Solutions L1 pour des systèmes de réaction-advection-diffusion intervenant en dynamique des populations." Bordeaux 1, 2001. http://www.theses.fr/2001BOR12461.
Повний текст джерелаMoulia, Catherine. "Modalités des interactions génétiques dans les systèmes hôte-parasite : l'association nématodes (oxyures) : muridés (Mus) en zone d'hybridation hôte." Montpellier 2, 1992. http://www.theses.fr/1992MON20199.
Повний текст джерелаSpataro, Thierry. "De l'individu à la population : étude théorique de l'influence, au niveau de la population, de traits d'histoire de vie et de comportements individuels dans les systèmes hôte-parasitoïde." Lyon 1, 2001. http://www.theses.fr/2001LYO10083.
Повний текст джерелаBahi-Jaber, Narges. "Rôle de la variabilité comportementale des hôtes dans la dynamique et la persistance des maladies infectieuses : implications en termes d'évolution des systèmes hôte-parasite." Lyon 1, 2003. http://www.theses.fr/2003LYO10167.
Повний текст джерелаMichalakis, Ioannis. "Evolution des systèmes plantes hôtes - insectes parasites : approche théorique et expérimentale." Montpellier 2, 1992. http://www.theses.fr/1992MON20008.
Повний текст джерелаTirard, Claire. "Biodiversité et biogéographie évolutive dans les systèmes hôtes-parasites : le modéle Gadiformes (Téleostéens) - Copépodes et Monogènes." Montpellier 2, 1991. http://www.theses.fr/1991MON20140.
Повний текст джерелаDeshpande, Jhelam Nitin. "Eco-evolutionary feedbacks and networks : from genes to landscapes." Electronic Thesis or Diss., Université de Montpellier (2022-....), 2024. http://www.theses.fr/2024UMONG011.
Повний текст джерелаIt has long been recognised that ecology and evolution feed back onto each other. Starting from a mechanistic understanding of links between ecology and evolution at the level of processes, mechanisms, and patterns, I outline key challenges to understanding eco-evolutionary feedbacks: timescales, interactions within and between scales of organisation, and spatial structure (Chapter 1). Then, using a hierarchical networks perspective, I ask the question: how does explicitly accounting for interactions at the level of genes and spatial structure by modelling gene-regulatory (Chapter 2) and spatial networks (Chapters 3--6) respectively, impact eco-evolutionary feedbacks? Therefore, in this thesis, I developed individual-based models that provide proof-of-concept for how relaxing standard assumptions of additivity in genetic architecture and simplified spatial structures impact eco-evolutionary feedbacks. Specifically, I develop models of range expansion into an external environmental gradient and represent the genetic architecture of local adaptation and dispersal as gene-regulatory networks (Chapter 2). I also develop an eco-evolutionary model of a host-parasite system in which parasite virulence and host dispersal may evolve (Chapters 3--6) representing realistic spatial network structure: terrestrial and riverine aquatic landscapes are modelled by random-geometric graphs and optimal channel networks, respectively. By analysing these models, I show that explicitly accounting for gene-regulatory and spatial networks does indeed change ecological and evolutionary patterns relative to simplified models. Specifically, I find that range expansions into external environmental gradients create conditions in which gene-regulatory networks that are more sensitive to mutation, hence adapting faster to novel conditions, end up at the range front (ecology to evolution; eco-to-evo). The evolution of greater sensitivity to mutation in turn leads to accelerating range expansion dynamics (evo-to-eco). This result cannot be obtained in simple additive architectures, indicating that when ecology and evolution are on similar timescales and evolution is mutation limited, the structure of the genotype-to-phenotype map must be taken into account. At the other extreme, in the case of spatial networks when ecology is faster than evolution (Chapters 3--5), I show that terrestrial and riverine aquatic spatial networks distribute densities of hosts and parasites in a characteristic way. This leads to both demographic and genetic (kin) structuring of the interacting partners. Genetic structure as captured by parasite relatedness leads to characteristic patterns of virulence evolution (eco-to-evo) in terrestrial and riverine aquatic landscapes (Chapter~3) and demographic structure (Chapter 4) drives its co-evolution with host dispersal (Chapter~5). Differences in evolved parasite virulence also further impact the distributions of hosts and parasites in space (Chapter~3; evo-to-eco). These results demonstrate that understanding classical eco-evolutionary mechanisms (e.g. kin selection) in terms of the structure of spatial networks is a way forward to a more general theory of eco-evolutionary feedbacks in complex landscapes. Finally, for standing genetic variation limited co-evolution of host dispersal and parasite virulence during co-range expansions into spatial networks (Chapter 6), I show for the range of parameters explored that range expansions create conditions in which the evolutionary effects of spatial network structure are greatly reduced (eco-to-evo). This leads to the speed of co-range expansions being determined by spatial network structure alone (evo-to-eco). Therefore, my results call for a systematic study of the impact of biological system complexity on eco-evolutionary feedbacks at all levels: genes, individuals, populations, and communities explicitly accounting for space and eco-evolutionary timescales (General Discussion; Chapter 7)
Bédhomme, Stéphanie. "Evolution des traits d'histoire de vie dans un système hôte-parasite." Montpellier 2, 2004. http://www.theses.fr/2004MON20099.
Повний текст джерелаGam, Meriame. "Dynamique des systèmes parasites - hôte, entre trematodes digènes et coque Cerastoderma edule : comparaison de la lagune de Merja Zerga avec le bassin d'Arcachon." Thesis, Bordeaux 1, 2008. http://www.theses.fr/2008BOR13684/document.
Повний текст джерелаThe global dynamics of the parasites-host systems (PHS) ‘digenean trematodes – cockle Cerastoderma edule’ was simultaneously studied in Merja Zerga (Morocco) and Arcachon Bay (France). Cockle population dynamics exhibited an intra- and inter-site variability mostly explained by temperature, predation, competition and sedimentary dynamics. In both lagoons, recruitment occurred at 19° C, with a temporal delay due to latitudinal position (April-May at Merja Zerga, and June-July at Arcachon). Growth rates were similar in both cockle populations (K=1.5 an-1) but growth performances were higher at Arcachon (F’=3.3) than at Merja Zerga (F’=3.1). Production was higher at Merja Zerga (36-65 g dry weight.m-2.yr-1). P/B was low in both sites and slighly higher at Arguin (1.1-1.5 contre 1.0-1.1 yr-1). Both sites exhibited rich parasite communities with 11 species at Merja Zerga and 13 species at Arguin, corresponding to 69 and 81% of the identified cockle parasite species richness (digeneans). Great distances and climate differences did not alter the structure of parasite communities. Structure and dynamics of PHS related to latitude showed the moderate effect of temperature, within this climate range. At Merja Zerga, temperature was not a limiting factor for parasite infestation, in contrast with what happens in northern countries. But eventually, parasite loads in adult cockles were similar in both sites. Echinostomatids and gymnophallids were the most contributive families explaining parasite- dependent mortality. Digenean impact on cockle resulted in an increasing of E/B, with a higher effect at Merja Zerga. This difference could be linked to a higher virulence in southern sites. The presence of seagrass beds, the position between subtidal and intertidal and the cockle density remained secondary factors in controlling parasite infestation